Home | Metamath
Proof Explorer Theorem List (p. 249 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ismbf 24801* | The predicate "𝐹 is a measurable function". A function is measurable iff the preimages of all open intervals are measurable sets in the sense of ismbl 24699. (Contributed by Mario Carneiro, 17-Jun-2014.) |
⊢ (𝐹:𝐴⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol)) | ||
Theorem | ismbfcn 24802 | A complex function is measurable iff the real and imaginary components of the function are measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
⊢ (𝐹:𝐴⟶ℂ → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn))) | ||
Theorem | mbfima 24803 | Definitional property of a measurable function: the preimage of an open right-unbounded interval is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (◡𝐹 “ (𝐵(,)𝐶)) ∈ dom vol) | ||
Theorem | mbfimaicc 24804 | The preimage of any closed interval under a measurable function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (◡𝐹 “ (𝐵[,]𝐶)) ∈ dom vol) | ||
Theorem | mbfimasn 24805 | The preimage of a point under a measurable function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ ∧ 𝐵 ∈ ℝ) → (◡𝐹 “ {𝐵}) ∈ dom vol) | ||
Theorem | mbfconst 24806 | A constant function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) ∈ MblFn) | ||
Theorem | mbf0 24807 | The empty function is measurable. (Contributed by Brendan Leahy, 28-Mar-2018.) |
⊢ ∅ ∈ MblFn | ||
Theorem | mbfid 24808 | The identity function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
⊢ (𝐴 ∈ dom vol → ( I ↾ 𝐴) ∈ MblFn) | ||
Theorem | mbfmptcl 24809* | Lemma for the MblFn predicate applied to a mapping operation. (Contributed by Mario Carneiro, 11-Aug-2014.) |
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) | ||
Theorem | mbfdm2 24810* | The domain of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Aug-2014.) |
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐴 ∈ dom vol) | ||
Theorem | ismbfcn2 24811* | A complex function is measurable iff the real and imaginary components of the function are measurable. (Contributed by Mario Carneiro, 13-Aug-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ↔ ((𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn))) | ||
Theorem | ismbfd 24812* | Deduction to prove measurability of a real function. The third hypothesis is not necessary, but the proof of this requires countable choice, so we derive this separately as ismbf3d 24827. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ*) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ*) → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) ⇒ ⊢ (𝜑 → 𝐹 ∈ MblFn) | ||
Theorem | ismbf2d 24813* | Deduction to prove measurability of a real function. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐴 ∈ dom vol) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) ⇒ ⊢ (𝜑 → 𝐹 ∈ MblFn) | ||
Theorem | mbfeqalem1 24814* | Lemma for mbfeqalem2 24815. (Contributed by Mario Carneiro, 2-Sep-2014.) (Revised by AV, 19-Aug-2022.) |
⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐴) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐷 ∈ ℝ) ⇒ ⊢ (𝜑 → ((◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∖ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦)) ∈ dom vol) | ||
Theorem | mbfeqalem2 24815* | Lemma for mbfeqa 24816. (Contributed by Mario Carneiro, 2-Sep-2014.) (Proof shortened by AV, 19-Aug-2022.) |
⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐴) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐷 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn ↔ (𝑥 ∈ 𝐵 ↦ 𝐷) ∈ MblFn)) | ||
Theorem | mbfeqa 24816* | If two functions are equal almost everywhere, then one is measurable iff the other is. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Mario Carneiro, 2-Sep-2014.) |
⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐴) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐷 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn ↔ (𝑥 ∈ 𝐵 ↦ 𝐷) ∈ MblFn)) | ||
Theorem | mbfres 24817 | The restriction of a measurable function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (𝐹 ↾ 𝐴) ∈ MblFn) | ||
Theorem | mbfres2 24818 | Measurability of a piecewise function: if 𝐹 is measurable on subsets 𝐵 and 𝐶 of its domain, and these pieces make up all of 𝐴, then 𝐹 is measurable on the whole domain. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → (𝐹 ↾ 𝐵) ∈ MblFn) & ⊢ (𝜑 → (𝐹 ↾ 𝐶) ∈ MblFn) & ⊢ (𝜑 → (𝐵 ∪ 𝐶) = 𝐴) ⇒ ⊢ (𝜑 → 𝐹 ∈ MblFn) | ||
Theorem | mbfss 24819* | Change the domain of a measurability predicate. (Contributed by Mario Carneiro, 17-Aug-2014.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 ∈ dom vol) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 0) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn) | ||
Theorem | mbfmulc2lem 24820 | Multiplication by a constant preserves measurability. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘f · 𝐹) ∈ MblFn) | ||
Theorem | mbfmulc2re 24821 | Multiplication by a constant preserves measurability. (Contributed by Mario Carneiro, 15-Aug-2014.) |
⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) ⇒ ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘f · 𝐹) ∈ MblFn) | ||
Theorem | mbfmax 24822* | The maximum of two functions is measurable. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐺:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐺 ∈ MblFn) & ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ if((𝐹‘𝑥) ≤ (𝐺‘𝑥), (𝐺‘𝑥), (𝐹‘𝑥))) ⇒ ⊢ (𝜑 → 𝐻 ∈ MblFn) | ||
Theorem | mbfneg 24823* | The negative of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Jul-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ -𝐵) ∈ MblFn) | ||
Theorem | mbfpos 24824* | The positive part of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Jul-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn) | ||
Theorem | mbfposr 24825* | Converse to mbfpos 24824. (Contributed by Mario Carneiro, 11-Aug-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) | ||
Theorem | mbfposb 24826* | A function is measurable iff its positive and negative parts are measurable. (Contributed by Mario Carneiro, 11-Aug-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ↔ ((𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn))) | ||
Theorem | ismbf3d 24827* | Simplified form of ismbfd 24812. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) ⇒ ⊢ (𝜑 → 𝐹 ∈ MblFn) | ||
Theorem | mbfimaopnlem 24828* | Lemma for mbfimaopn 24829. (Contributed by Mario Carneiro, 25-Aug-2014.) |
⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐺 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) & ⊢ 𝐵 = ((,) “ (ℚ × ℚ)) & ⊢ 𝐾 = ran (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 × 𝑦)) ⇒ ⊢ ((𝐹 ∈ MblFn ∧ 𝐴 ∈ 𝐽) → (◡𝐹 “ 𝐴) ∈ dom vol) | ||
Theorem | mbfimaopn 24829 | The preimage of any open set (in the complex topology) under a measurable function is measurable. (See also cncombf 24831, which explains why 𝐴 ∈ dom vol is too weak a condition for this theorem.) (Contributed by Mario Carneiro, 25-Aug-2014.) |
⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ ((𝐹 ∈ MblFn ∧ 𝐴 ∈ 𝐽) → (◡𝐹 “ 𝐴) ∈ dom vol) | ||
Theorem | mbfimaopn2 24830 | The preimage of any set open in the subspace topology of the range of the function is measurable. (Contributed by Mario Carneiro, 25-Aug-2014.) |
⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐾 = (𝐽 ↾t 𝐵) ⇒ ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝐶 ∈ 𝐾) → (◡𝐹 “ 𝐶) ∈ dom vol) | ||
Theorem | cncombf 24831 | The composition of a continuous function with a measurable function is measurable. (More generally, 𝐺 can be a Borel-measurable function, but notably the condition that 𝐺 be only measurable is too weak, the usual counterexample taking 𝐺 to be the Cantor function and 𝐹 the indicator function of the 𝐺-image of a nonmeasurable set, which is a subset of the Cantor set and hence null and measurable.) (Contributed by Mario Carneiro, 25-Aug-2014.) |
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺 ∈ (𝐵–cn→ℂ)) → (𝐺 ∘ 𝐹) ∈ MblFn) | ||
Theorem | cnmbf 24832 | A continuous function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Mario Carneiro, 26-Mar-2015.) |
⊢ ((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴–cn→ℂ)) → 𝐹 ∈ MblFn) | ||
Theorem | mbfaddlem 24833 | The sum of two measurable functions is measurable. (Contributed by Mario Carneiro, 15-Aug-2014.) |
⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐺 ∈ MblFn) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐺:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → (𝐹 ∘f + 𝐺) ∈ MblFn) | ||
Theorem | mbfadd 24834 | The sum of two measurable functions is measurable. (Contributed by Mario Carneiro, 15-Aug-2014.) |
⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐺 ∈ MblFn) ⇒ ⊢ (𝜑 → (𝐹 ∘f + 𝐺) ∈ MblFn) | ||
Theorem | mbfsub 24835 | The difference of two measurable functions is measurable. (Contributed by Mario Carneiro, 5-Sep-2014.) |
⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐺 ∈ MblFn) ⇒ ⊢ (𝜑 → (𝐹 ∘f − 𝐺) ∈ MblFn) | ||
Theorem | mbfmulc2 24836* | A complex constant times a measurable function is measurable. (Contributed by Mario Carneiro, 17-Aug-2014.) |
⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn) | ||
Theorem | mbfsup 24837* | The supremum of a sequence of measurable, real-valued functions is measurable. Note that in this and related theorems, 𝐵(𝑛, 𝑥) is a function of both 𝑛 and 𝑥, since it is an 𝑛-indexed sequence of functions on 𝑥. (Contributed by Mario Carneiro, 14-Aug-2014.) (Revised by Mario Carneiro, 7-Sep-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < )) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) & ⊢ ((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴)) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝐵 ≤ 𝑦) ⇒ ⊢ (𝜑 → 𝐺 ∈ MblFn) | ||
Theorem | mbfinf 24838* | The infimum of a sequence of measurable, real-valued functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 13-Sep-2020.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ inf(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < )) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) & ⊢ ((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴)) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵) ⇒ ⊢ (𝜑 → 𝐺 ∈ MblFn) | ||
Theorem | mbflimsup 24839* | The limit supremum of a sequence of measurable real-valued functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵))) & ⊢ 𝐻 = (𝑚 ∈ ℝ ↦ sup((((𝑛 ∈ 𝑍 ↦ 𝐵) “ (𝑚[,)+∞)) ∩ ℝ*), ℝ*, < )) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) & ⊢ ((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴)) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐺 ∈ MblFn) | ||
Theorem | mbflimlem 24840* | The pointwise limit of a sequence of measurable real-valued functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐶) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) & ⊢ ((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴)) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) | ||
Theorem | mbflim 24841* | The pointwise limit of a sequence of measurable functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐶) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) & ⊢ ((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴)) → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) | ||
Syntax | c0p 24842 | Extend class notation to include the zero polynomial. |
class 0𝑝 | ||
Definition | df-0p 24843 | Define the zero polynomial. (Contributed by Mario Carneiro, 19-Jun-2014.) |
⊢ 0𝑝 = (ℂ × {0}) | ||
Theorem | 0pval 24844 | The zero function evaluates to zero at every point. (Contributed by Mario Carneiro, 23-Jul-2014.) |
⊢ (𝐴 ∈ ℂ → (0𝑝‘𝐴) = 0) | ||
Theorem | 0plef 24845 | Two ways to say that the function 𝐹 on the reals is nonnegative. (Contributed by Mario Carneiro, 17-Aug-2014.) |
⊢ (𝐹:ℝ⟶(0[,)+∞) ↔ (𝐹:ℝ⟶ℝ ∧ 0𝑝 ∘r ≤ 𝐹)) | ||
Theorem | 0pledm 24846 | Adjust the domain of the left argument to match the right, which works better in our theorems. (Contributed by Mario Carneiro, 28-Jul-2014.) |
⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐹 Fn 𝐴) ⇒ ⊢ (𝜑 → (0𝑝 ∘r ≤ 𝐹 ↔ (𝐴 × {0}) ∘r ≤ 𝐹)) | ||
Theorem | isi1f 24847 | The predicate "𝐹 is a simple function". A simple function is a finite nonnegative linear combination of indicator functions for finitely measurable sets. We use the idiom 𝐹 ∈ dom ∫1 to represent this concept because ∫1 is the first preparation function for our final definition ∫ (see df-itg 24796); unlike that operator, which can integrate any function, this operator can only integrate simple functions. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))) | ||
Theorem | i1fmbf 24848 | Simple functions are measurable. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ (𝐹 ∈ dom ∫1 → 𝐹 ∈ MblFn) | ||
Theorem | i1ff 24849 | A simple function is a function on the reals. (Contributed by Mario Carneiro, 26-Jun-2014.) |
⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) | ||
Theorem | i1frn 24850 | A simple function has finite range. (Contributed by Mario Carneiro, 26-Jun-2014.) |
⊢ (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin) | ||
Theorem | i1fima 24851 | Any preimage of a simple function is measurable. (Contributed by Mario Carneiro, 26-Jun-2014.) |
⊢ (𝐹 ∈ dom ∫1 → (◡𝐹 “ 𝐴) ∈ dom vol) | ||
Theorem | i1fima2 24852 | Any preimage of a simple function not containing zero has finite measure. (Contributed by Mario Carneiro, 26-Jun-2014.) |
⊢ ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (vol‘(◡𝐹 “ 𝐴)) ∈ ℝ) | ||
Theorem | i1fima2sn 24853 | Preimage of a singleton. (Contributed by Mario Carneiro, 26-Jun-2014.) |
⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ (𝐵 ∖ {0})) → (vol‘(◡𝐹 “ {𝐴})) ∈ ℝ) | ||
Theorem | i1fd 24854* | A simplified set of assumptions to show that a given function is simple. (Contributed by Mario Carneiro, 26-Jun-2014.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → ran 𝐹 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → (◡𝐹 “ {𝑥}) ∈ dom vol) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → (vol‘(◡𝐹 “ {𝑥})) ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐹 ∈ dom ∫1) | ||
Theorem | i1f0rn 24855 | Any simple function takes the value zero on a set of unbounded measure, so in particular this set is not empty. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ (𝐹 ∈ dom ∫1 → 0 ∈ ran 𝐹) | ||
Theorem | itg1val 24856* | The value of the integral on simple functions. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ (𝐹 ∈ dom ∫1 → (∫1‘𝐹) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(◡𝐹 “ {𝑥})))) | ||
Theorem | itg1val2 24857* | The value of the integral on simple functions. (Contributed by Mario Carneiro, 26-Jun-2014.) |
⊢ ((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴 ∧ 𝐴 ⊆ (ℝ ∖ {0}))) → (∫1‘𝐹) = Σ𝑥 ∈ 𝐴 (𝑥 · (vol‘(◡𝐹 “ {𝑥})))) | ||
Theorem | itg1cl 24858 | Closure of the integral on simple functions. (Contributed by Mario Carneiro, 26-Jun-2014.) |
⊢ (𝐹 ∈ dom ∫1 → (∫1‘𝐹) ∈ ℝ) | ||
Theorem | itg1ge0 24859 | Closure of the integral on positive simple functions. (Contributed by Mario Carneiro, 19-Jun-2014.) |
⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → 0 ≤ (∫1‘𝐹)) | ||
Theorem | i1f0 24860 | The zero function is simple. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ (ℝ × {0}) ∈ dom ∫1 | ||
Theorem | itg10 24861 | The zero function has zero integral. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ (∫1‘(ℝ × {0})) = 0 | ||
Theorem | i1f1lem 24862* | Lemma for i1f1 24863 and itg11 24864. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 1, 0)) ⇒ ⊢ (𝐹:ℝ⟶{0, 1} ∧ (𝐴 ∈ dom vol → (◡𝐹 “ {1}) = 𝐴)) | ||
Theorem | i1f1 24863* | Base case simple functions are indicator functions of measurable sets. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 1, 0)) ⇒ ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐹 ∈ dom ∫1) | ||
Theorem | itg11 24864* | The integral of an indicator function is the volume of the set. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 1, 0)) ⇒ ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (∫1‘𝐹) = (vol‘𝐴)) | ||
Theorem | itg1addlem1 24865* | Decompose a preimage, which is always a disjoint union. (Contributed by Mario Carneiro, 25-Jun-2014.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) |
⊢ (𝜑 → 𝐹:𝑋⟶𝑌) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ (◡𝐹 “ {𝑘})) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ dom vol) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (vol‘𝐵) ∈ ℝ) ⇒ ⊢ (𝜑 → (vol‘∪ 𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (vol‘𝐵)) | ||
Theorem | i1faddlem 24866* | Decompose the preimage of a sum. (Contributed by Mario Carneiro, 19-Jun-2014.) |
⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ ℂ) → (◡(𝐹 ∘f + 𝐺) “ {𝐴}) = ∪ 𝑦 ∈ ran 𝐺((◡𝐹 “ {(𝐴 − 𝑦)}) ∩ (◡𝐺 “ {𝑦}))) | ||
Theorem | i1fmullem 24867* | Decompose the preimage of a product. (Contributed by Mario Carneiro, 19-Jun-2014.) |
⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ (ℂ ∖ {0})) → (◡(𝐹 ∘f · 𝐺) “ {𝐴}) = ∪ 𝑦 ∈ (ran 𝐺 ∖ {0})((◡𝐹 “ {(𝐴 / 𝑦)}) ∩ (◡𝐺 “ {𝑦}))) | ||
Theorem | i1fadd 24868 | The sum of two simple functions is a simple function. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) ⇒ ⊢ (𝜑 → (𝐹 ∘f + 𝐺) ∈ dom ∫1) | ||
Theorem | i1fmul 24869 | The pointwise product of two simple functions is a simple function. (Contributed by Mario Carneiro, 5-Sep-2014.) |
⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) ⇒ ⊢ (𝜑 → (𝐹 ∘f · 𝐺) ∈ dom ∫1) | ||
Theorem | itg1addlem2 24870* | Lemma for itg1add 24875. The function 𝐼 represents the pieces into which we will break up the domain of the sum. Since it is infinite only when both 𝑖 and 𝑗 are zero, we arbitrarily define it to be zero there to simplify the sums that are manipulated in itg1addlem4 24872 and itg1addlem5 24874. (Contributed by Mario Carneiro, 26-Jun-2014.) |
⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) & ⊢ 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))))) ⇒ ⊢ (𝜑 → 𝐼:(ℝ × ℝ)⟶ℝ) | ||
Theorem | itg1addlem3 24871* | Lemma for itg1add 24875. (Contributed by Mario Carneiro, 26-Jun-2014.) |
⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) & ⊢ 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))))) ⇒ ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴𝐼𝐵) = (vol‘((◡𝐹 “ {𝐴}) ∩ (◡𝐺 “ {𝐵})))) | ||
Theorem | itg1addlem4 24872* | Lemma for itg1add 24875. (Contributed by Mario Carneiro, 28-Jun-2014.) (Proof shortened by SN, 3-Oct-2024.) |
⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) & ⊢ 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))))) & ⊢ 𝑃 = ( + ↾ (ran 𝐹 × ran 𝐺)) ⇒ ⊢ (𝜑 → (∫1‘(𝐹 ∘f + 𝐺)) = Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺((𝑦 + 𝑧) · (𝑦𝐼𝑧))) | ||
Theorem | itg1addlem4OLD 24873* | Obsolete version of itg1addlem4 24872. (Contributed by Mario Carneiro, 28-Jun-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) & ⊢ 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))))) & ⊢ 𝑃 = ( + ↾ (ran 𝐹 × ran 𝐺)) ⇒ ⊢ (𝜑 → (∫1‘(𝐹 ∘f + 𝐺)) = Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺((𝑦 + 𝑧) · (𝑦𝐼𝑧))) | ||
Theorem | itg1addlem5 24874* | Lemma for itg1add 24875. (Contributed by Mario Carneiro, 27-Jun-2014.) |
⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) & ⊢ 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))))) & ⊢ 𝑃 = ( + ↾ (ran 𝐹 × ran 𝐺)) ⇒ ⊢ (𝜑 → (∫1‘(𝐹 ∘f + 𝐺)) = ((∫1‘𝐹) + (∫1‘𝐺))) | ||
Theorem | itg1add 24875 | The integral of a sum of simple functions is the sum of the integrals. (Contributed by Mario Carneiro, 28-Jun-2014.) |
⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) ⇒ ⊢ (𝜑 → (∫1‘(𝐹 ∘f + 𝐺)) = ((∫1‘𝐹) + (∫1‘𝐺))) | ||
Theorem | i1fmulclem 24876 | Decompose the preimage of a constant times a function. (Contributed by Mario Carneiro, 25-Jun-2014.) |
⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (((𝜑 ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → (◡((ℝ × {𝐴}) ∘f · 𝐹) “ {𝐵}) = (◡𝐹 “ {(𝐵 / 𝐴)})) | ||
Theorem | i1fmulc 24877 | A nonnegative constant times a simple function gives another simple function. (Contributed by Mario Carneiro, 25-Jun-2014.) |
⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → ((ℝ × {𝐴}) ∘f · 𝐹) ∈ dom ∫1) | ||
Theorem | itg1mulc 24878 | The integral of a constant times a simple function is the constant times the original integral. (Contributed by Mario Carneiro, 25-Jun-2014.) |
⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (∫1‘((ℝ × {𝐴}) ∘f · 𝐹)) = (𝐴 · (∫1‘𝐹))) | ||
Theorem | i1fres 24879* | The "restriction" of a simple function to a measurable subset is simple. (It's not actually a restriction because it is zero instead of undefined outside 𝐴.) (Contributed by Mario Carneiro, 29-Jun-2014.) |
⊢ 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝐹‘𝑥), 0)) ⇒ ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol) → 𝐺 ∈ dom ∫1) | ||
Theorem | i1fpos 24880* | The positive part of a simple function is simple. (Contributed by Mario Carneiro, 28-Jun-2014.) |
⊢ 𝐺 = (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0)) ⇒ ⊢ (𝐹 ∈ dom ∫1 → 𝐺 ∈ dom ∫1) | ||
Theorem | i1fposd 24881* | Deduction form of i1fposd 24881. (Contributed by Mario Carneiro, 6-Aug-2014.) |
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ 𝐴) ∈ dom ∫1) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(0 ≤ 𝐴, 𝐴, 0)) ∈ dom ∫1) | ||
Theorem | i1fsub 24882 | The difference of two simple functions is a simple function. (Contributed by Mario Carneiro, 6-Aug-2014.) |
⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (𝐹 ∘f − 𝐺) ∈ dom ∫1) | ||
Theorem | itg1sub 24883 | The integral of a difference of two simple functions. (Contributed by Mario Carneiro, 6-Aug-2014.) |
⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1) → (∫1‘(𝐹 ∘f − 𝐺)) = ((∫1‘𝐹) − (∫1‘𝐺))) | ||
Theorem | itg10a 24884* | The integral of a simple function supported on a nullset is zero. (Contributed by Mario Carneiro, 11-Aug-2014.) |
⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐴) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) = 0) ⇒ ⊢ (𝜑 → (∫1‘𝐹) = 0) | ||
Theorem | itg1ge0a 24885* | The integral of an almost positive simple function is positive. (Contributed by Mario Carneiro, 11-Aug-2014.) |
⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐴) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → 0 ≤ (𝐹‘𝑥)) ⇒ ⊢ (𝜑 → 0 ≤ (∫1‘𝐹)) | ||
Theorem | itg1lea 24886* | Approximate version of itg1le 24887. If 𝐹 ≤ 𝐺 for almost all 𝑥, then ∫1𝐹 ≤ ∫1𝐺. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 6-Aug-2014.) |
⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐴) = 0) & ⊢ (𝜑 → 𝐺 ∈ dom ∫1) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) ⇒ ⊢ (𝜑 → (∫1‘𝐹) ≤ (∫1‘𝐺)) | ||
Theorem | itg1le 24887 | If one simple function dominates another, then the integral of the larger is also larger. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 6-Aug-2014.) |
⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺) → (∫1‘𝐹) ≤ (∫1‘𝐺)) | ||
Theorem | itg1climres 24888* | Restricting the simple function 𝐹 to the increasing sequence 𝐴(𝑛) of measurable sets whose union is ℝ yields a sequence of simple functions whose integrals approach the integral of 𝐹. (Contributed by Mario Carneiro, 15-Aug-2014.) |
⊢ (𝜑 → 𝐴:ℕ⟶dom vol) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴‘𝑛) ⊆ (𝐴‘(𝑛 + 1))) & ⊢ (𝜑 → ∪ ran 𝐴 = ℝ) & ⊢ (𝜑 → 𝐹 ∈ dom ∫1) & ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑛), (𝐹‘𝑥), 0)) ⇒ ⊢ (𝜑 → (𝑛 ∈ ℕ ↦ (∫1‘𝐺)) ⇝ (∫1‘𝐹)) | ||
Theorem | mbfi1fseqlem1 24889* | Lemma for mbfi1fseq 24895. (Contributed by Mario Carneiro, 16-Aug-2014.) |
⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) ⇒ ⊢ (𝜑 → 𝐽:(ℕ × ℝ)⟶(0[,)+∞)) | ||
Theorem | mbfi1fseqlem2 24890* | Lemma for mbfi1fseq 24895. (Contributed by Mario Carneiro, 16-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) ⇒ ⊢ (𝐴 ∈ ℕ → (𝐺‘𝐴) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))) | ||
Theorem | mbfi1fseqlem3 24891* | Lemma for mbfi1fseq 24895. (Contributed by Mario Carneiro, 16-Aug-2014.) |
⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → (𝐺‘𝐴):ℝ⟶ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) | ||
Theorem | mbfi1fseqlem4 24892* | Lemma for mbfi1fseq 24895. This lemma is not as interesting as it is long - it is simply checking that 𝐺 is in fact a sequence of simple functions, by verifying that its range is in (0...𝑛2↑𝑛) / (2↑𝑛) (which is to say, the numbers from 0 to 𝑛 in increments of 1 / (2↑𝑛)), and also that the preimage of each point 𝑘 is measurable, because it is equal to (-𝑛[,]𝑛) ∩ (◡𝐹 “ (𝑘[,)𝑘 + 1 / (2↑𝑛))) for 𝑘 < 𝑛 and (-𝑛[,]𝑛) ∩ (◡𝐹 “ (𝑘[,)+∞)) for 𝑘 = 𝑛. (Contributed by Mario Carneiro, 16-Aug-2014.) |
⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) ⇒ ⊢ (𝜑 → 𝐺:ℕ⟶dom ∫1) | ||
Theorem | mbfi1fseqlem5 24893* | Lemma for mbfi1fseq 24895. Verify that 𝐺 describes an increasing sequence of positive functions. (Contributed by Mario Carneiro, 16-Aug-2014.) |
⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → (0𝑝 ∘r ≤ (𝐺‘𝐴) ∧ (𝐺‘𝐴) ∘r ≤ (𝐺‘(𝐴 + 1)))) | ||
Theorem | mbfi1fseqlem6 24894* | Lemma for mbfi1fseq 24895. Verify that 𝐺 converges pointwise to 𝐹, and wrap up the existential quantifier. (Contributed by Mario Carneiro, 16-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) & ⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) ⇒ ⊢ (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝 ∘r ≤ (𝑔‘𝑛) ∧ (𝑔‘𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) | ||
Theorem | mbfi1fseq 24895* | A characterization of measurability in terms of simple functions (this is an if and only if for nonnegative functions, although we don't prove it). Any nonnegative measurable function is the limit of an increasing sequence of nonnegative simple functions. This proof is an example of a poor de Bruijn factor - the formalized proof is much longer than an average hand proof, which usually just describes the function 𝐺 and "leaves the details as an exercise to the reader". (Contributed by Mario Carneiro, 16-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) ⇒ ⊢ (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝 ∘r ≤ (𝑔‘𝑛) ∧ (𝑔‘𝑛) ∘r ≤ (𝑔‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) | ||
Theorem | mbfi1flimlem 24896* | Lemma for mbfi1flim 24897. (Contributed by Mario Carneiro, 5-Sep-2014.) |
⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) ⇒ ⊢ (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) | ||
Theorem | mbfi1flim 24897* | Any real measurable function has a sequence of simple functions that converges to it. (Contributed by Mario Carneiro, 5-Sep-2014.) |
⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ 𝐴 (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) | ||
Theorem | mbfmullem2 24898* | Lemma for mbfmul 24900. (Contributed by Mario Carneiro, 7-Sep-2014.) |
⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐺 ∈ MblFn) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐺:𝐴⟶ℝ) & ⊢ (𝜑 → 𝑃:ℕ⟶dom ∫1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) & ⊢ (𝜑 → 𝑄:ℕ⟶dom ∫1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ ℕ ↦ ((𝑄‘𝑛)‘𝑥)) ⇝ (𝐺‘𝑥)) ⇒ ⊢ (𝜑 → (𝐹 ∘f · 𝐺) ∈ MblFn) | ||
Theorem | mbfmullem 24899 | Lemma for mbfmul 24900. (Contributed by Mario Carneiro, 7-Sep-2014.) |
⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐺 ∈ MblFn) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐺:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → (𝐹 ∘f · 𝐺) ∈ MblFn) | ||
Theorem | mbfmul 24900 | The product of two measurable functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.) |
⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐺 ∈ MblFn) ⇒ ⊢ (𝜑 → (𝐹 ∘f · 𝐺) ∈ MblFn) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |