![]() |
Metamath
Proof Explorer Theorem List (p. 249 of 443) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28477) |
![]() (28478-30002) |
![]() (30003-44274) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | sinq34lt0t 24801 | The sine of a number strictly between π and 2 · π is negative. (Contributed by NM, 17-Aug-2008.) |
⊢ (𝐴 ∈ (π(,)(2 · π)) → (sin‘𝐴) < 0) | ||
Theorem | cosq14gt0 24802 | The cosine of a number strictly between -π / 2 and π / 2 is positive. (Contributed by Mario Carneiro, 25-Feb-2015.) |
⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 0 < (cos‘𝐴)) | ||
Theorem | cosq14ge0 24803 | The cosine of a number between -π / 2 and π / 2 is nonnegative. (Contributed by Mario Carneiro, 13-May-2014.) |
⊢ (𝐴 ∈ (-(π / 2)[,](π / 2)) → 0 ≤ (cos‘𝐴)) | ||
Theorem | sincosq1eq 24804 | Complementarity of the sine and cosine functions in the first quadrant. (Contributed by Paul Chapman, 25-Jan-2008.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 + 𝐵) = 1) → (sin‘(𝐴 · (π / 2))) = (cos‘(𝐵 · (π / 2)))) | ||
Theorem | sincos4thpi 24805 | The sine and cosine of π / 4. (Contributed by Paul Chapman, 25-Jan-2008.) |
⊢ ((sin‘(π / 4)) = (1 / (√‘2)) ∧ (cos‘(π / 4)) = (1 / (√‘2))) | ||
Theorem | tan4thpi 24806 | The tangent of π / 4. (Contributed by Mario Carneiro, 5-Apr-2015.) |
⊢ (tan‘(π / 4)) = 1 | ||
Theorem | sincos6thpi 24807 | The sine and cosine of π / 6. (Contributed by Paul Chapman, 25-Jan-2008.) Replace OLD theorem. (Revised by Wolf Lammen, 24-Sep-2020.) |
⊢ ((sin‘(π / 6)) = (1 / 2) ∧ (cos‘(π / 6)) = ((√‘3) / 2)) | ||
Theorem | sincos3rdpi 24808 | The sine and cosine of π / 3. (Contributed by Mario Carneiro, 21-May-2016.) |
⊢ ((sin‘(π / 3)) = ((√‘3) / 2) ∧ (cos‘(π / 3)) = (1 / 2)) | ||
Theorem | pigt3 24809 | π is greater than 3. (Contributed by Brendan Leahy, 21-Aug-2020.) |
⊢ 3 < π | ||
Theorem | pige3 24810 | π is greater than or equal to 3. (Contributed by Mario Carneiro, 21-May-2016.) |
⊢ 3 ≤ π | ||
Theorem | pige3ALT 24811 | Alternate proof of pige3 24810. This proof is based on the geometric observation that a hexagon of unit side length has perimeter 6, which is less than the unit-radius circumcircle, of perimeter 2π. We translate this to algebra by looking at the function e↑(i𝑥) as 𝑥 goes from 0 to π / 3; it moves at unit speed and travels distance 1, hence 1 ≤ π / 3. (Contributed by Mario Carneiro, 21-May-2016.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 3 ≤ π | ||
Theorem | abssinper 24812 | The absolute value of sine has period π. (Contributed by NM, 17-Aug-2008.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (abs‘(sin‘(𝐴 + (𝐾 · π)))) = (abs‘(sin‘𝐴))) | ||
Theorem | sinkpi 24813 | The sine of an integer multiple of π is 0. (Contributed by NM, 11-Aug-2008.) |
⊢ (𝐾 ∈ ℤ → (sin‘(𝐾 · π)) = 0) | ||
Theorem | coskpi 24814 | The absolute value of the cosine of an integer multiple of π is 1. (Contributed by NM, 19-Aug-2008.) |
⊢ (𝐾 ∈ ℤ → (abs‘(cos‘(𝐾 · π))) = 1) | ||
Theorem | sineq0 24815 | A complex number whose sine is zero is an integer multiple of π. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
⊢ (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (𝐴 / π) ∈ ℤ)) | ||
Theorem | coseq1 24816 | A complex number whose cosine is one is an integer multiple of 2π. (Contributed by Mario Carneiro, 12-May-2014.) |
⊢ (𝐴 ∈ ℂ → ((cos‘𝐴) = 1 ↔ (𝐴 / (2 · π)) ∈ ℤ)) | ||
Theorem | efeq1 24817 | A complex number whose exponential is one is an integer multiple of 2πi. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
⊢ (𝐴 ∈ ℂ → ((exp‘𝐴) = 1 ↔ (𝐴 / (i · (2 · π))) ∈ ℤ)) | ||
Theorem | cosne0 24818 | The cosine function has no zeroes within the vertical strip of the complex plane between real part -π / 2 and π / 2. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝐴) ≠ 0) | ||
Theorem | cosordlem 24819 | Lemma for cosord 24820. (Contributed by Mario Carneiro, 10-May-2014.) |
⊢ (𝜑 → 𝐴 ∈ (0[,]π)) & ⊢ (𝜑 → 𝐵 ∈ (0[,]π)) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → (cos‘𝐵) < (cos‘𝐴)) | ||
Theorem | cosord 24820 | Cosine is decreasing over the closed interval from 0 to π. (Contributed by Paul Chapman, 16-Mar-2008.) (Proof shortened by Mario Carneiro, 10-May-2014.) |
⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 < 𝐵 ↔ (cos‘𝐵) < (cos‘𝐴))) | ||
Theorem | cos11 24821 | Cosine is one-to-one over the closed interval from 0 to π. (Contributed by Paul Chapman, 16-Mar-2008.) (Proof shortened by Mario Carneiro, 10-May-2014.) |
⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 = 𝐵 ↔ (cos‘𝐴) = (cos‘𝐵))) | ||
Theorem | sinord 24822 | Sine is increasing over the closed interval from -(π / 2) to (π / 2). (Contributed by Mario Carneiro, 29-Jul-2014.) |
⊢ ((𝐴 ∈ (-(π / 2)[,](π / 2)) ∧ 𝐵 ∈ (-(π / 2)[,](π / 2))) → (𝐴 < 𝐵 ↔ (sin‘𝐴) < (sin‘𝐵))) | ||
Theorem | recosf1o 24823 | The cosine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014.) |
⊢ (cos ↾ (0[,]π)):(0[,]π)–1-1-onto→(-1[,]1) | ||
Theorem | resinf1o 24824 | The sine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014.) |
⊢ (sin ↾ (-(π / 2)[,](π / 2))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1) | ||
Theorem | tanord1 24825 | The tangent function is strictly increasing on the nonnegative part of its principal domain. (Lemma for tanord 24826.) (Contributed by Mario Carneiro, 29-Jul-2014.) Revised to replace an OLD theorem. (Revised by Wolf Lammen, 20-Sep-2020.) |
⊢ ((𝐴 ∈ (0[,)(π / 2)) ∧ 𝐵 ∈ (0[,)(π / 2))) → (𝐴 < 𝐵 ↔ (tan‘𝐴) < (tan‘𝐵))) | ||
Theorem | tanord 24826 | The tangent function is strictly increasing on its principal domain. (Contributed by Mario Carneiro, 4-Apr-2015.) |
⊢ ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐵 ∈ (-(π / 2)(,)(π / 2))) → (𝐴 < 𝐵 ↔ (tan‘𝐴) < (tan‘𝐵))) | ||
Theorem | tanregt0 24827 | The real part of the tangent of a complex number with real part in the open interval (0(,)(π / 2)) is positive. (Contributed by Mario Carneiro, 5-Apr-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < (ℜ‘(tan‘𝐴))) | ||
Theorem | negpitopissre 24828 | The interval (-π(,]π) is a subset of the reals. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (-π(,]π) ⊆ ℝ | ||
Theorem | efgh 24829* | The exponential function of a scaled complex number is a group homomorphism from the group of complex numbers under addition to the set of complex numbers under multiplication. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 11-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (exp‘(𝐴 · 𝑥))) ⇒ ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐹‘(𝐵 + 𝐶)) = ((𝐹‘𝐵) · (𝐹‘𝐶))) | ||
Theorem | efif1olem1 24830* | Lemma for efif1o 24834. (Contributed by Mario Carneiro, 13-May-2014.) |
⊢ 𝐷 = (𝐴(,](𝐴 + (2 · π))) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (abs‘(𝑥 − 𝑦)) < (2 · π)) | ||
Theorem | efif1olem2 24831* | Lemma for efif1o 24834. (Contributed by Mario Carneiro, 13-May-2014.) |
⊢ 𝐷 = (𝐴(,](𝐴 + (2 · π))) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ∃𝑦 ∈ 𝐷 ((𝑧 − 𝑦) / (2 · π)) ∈ ℤ) | ||
Theorem | efif1olem3 24832* | Lemma for efif1o 24834. (Contributed by Mario Carneiro, 8-May-2015.) |
⊢ 𝐹 = (𝑤 ∈ 𝐷 ↦ (exp‘(i · 𝑤))) & ⊢ 𝐶 = (◡abs “ {1}) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (ℑ‘(√‘𝑥)) ∈ (-1[,]1)) | ||
Theorem | efif1olem4 24833* | The exponential function of an imaginary number maps any interval of length 2π one-to-one onto the unit circle. (Contributed by Paul Chapman, 16-Mar-2008.) (Proof shortened by Mario Carneiro, 13-May-2014.) |
⊢ 𝐹 = (𝑤 ∈ 𝐷 ↦ (exp‘(i · 𝑤))) & ⊢ 𝐶 = (◡abs “ {1}) & ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (abs‘(𝑥 − 𝑦)) < (2 · π)) & ⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → ∃𝑦 ∈ 𝐷 ((𝑧 − 𝑦) / (2 · π)) ∈ ℤ) & ⊢ 𝑆 = (sin ↾ (-(π / 2)[,](π / 2))) ⇒ ⊢ (𝜑 → 𝐹:𝐷–1-1-onto→𝐶) | ||
Theorem | efif1o 24834* | The exponential function of an imaginary number maps any open-below, closed-above interval of length 2π one-to-one onto the unit circle. (Contributed by Paul Chapman, 16-Mar-2008.) (Revised by Mario Carneiro, 13-May-2014.) |
⊢ 𝐹 = (𝑤 ∈ 𝐷 ↦ (exp‘(i · 𝑤))) & ⊢ 𝐶 = (◡abs “ {1}) & ⊢ 𝐷 = (𝐴(,](𝐴 + (2 · π))) ⇒ ⊢ (𝐴 ∈ ℝ → 𝐹:𝐷–1-1-onto→𝐶) | ||
Theorem | efifo 24835* | The exponential function of an imaginary number maps the reals onto the unit circle. (Contributed by Mario Carneiro, 13-May-2014.) |
⊢ 𝐹 = (𝑧 ∈ ℝ ↦ (exp‘(i · 𝑧))) & ⊢ 𝐶 = (◡abs “ {1}) ⇒ ⊢ 𝐹:ℝ–onto→𝐶 | ||
Theorem | eff1olem 24836* | The exponential function maps the set 𝑆, of complex numbers with imaginary part in a real interval of length 2 · π, one-to-one onto the nonzero complex numbers. (Contributed by Paul Chapman, 16-Apr-2008.) (Proof shortened by Mario Carneiro, 13-May-2014.) |
⊢ 𝐹 = (𝑤 ∈ 𝐷 ↦ (exp‘(i · 𝑤))) & ⊢ 𝑆 = (◡ℑ “ 𝐷) & ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (abs‘(𝑥 − 𝑦)) < (2 · π)) & ⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → ∃𝑦 ∈ 𝐷 ((𝑧 − 𝑦) / (2 · π)) ∈ ℤ) ⇒ ⊢ (𝜑 → (exp ↾ 𝑆):𝑆–1-1-onto→(ℂ ∖ {0})) | ||
Theorem | eff1o 24837 | The exponential function maps the set 𝑆, of complex numbers with imaginary part in the closed-above, open-below interval from -π to π one-to-one onto the nonzero complex numbers. (Contributed by Paul Chapman, 16-Apr-2008.) (Revised by Mario Carneiro, 13-May-2014.) |
⊢ 𝑆 = (◡ℑ “ (-π(,]π)) ⇒ ⊢ (exp ↾ 𝑆):𝑆–1-1-onto→(ℂ ∖ {0}) | ||
Theorem | efabl 24838* | The image of a subgroup of the group +, under the exponential function of a scaled complex number, is an Abelian group. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (exp‘(𝐴 · 𝑥))) & ⊢ 𝐺 = ((mulGrp‘ℂfld) ↾s ran 𝐹) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ (SubGrp‘ℂfld)) ⇒ ⊢ (𝜑 → 𝐺 ∈ Abel) | ||
Theorem | efsubm 24839* | The image of a subgroup of the group +, under the exponential function of a scaled complex number is a submonoid of the multiplicative group of ℂfld. (Contributed by Thierry Arnoux, 26-Jan-2020.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (exp‘(𝐴 · 𝑥))) & ⊢ 𝐺 = ((mulGrp‘ℂfld) ↾s ran 𝐹) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ (SubGrp‘ℂfld)) ⇒ ⊢ (𝜑 → ran 𝐹 ∈ (SubMnd‘(mulGrp‘ℂfld))) | ||
Theorem | circgrp 24840 | The circle group 𝑇 is an Abelian group. (Contributed by Paul Chapman, 25-Mar-2008.) (Revised by Mario Carneiro, 13-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.) |
⊢ 𝐶 = (◡abs “ {1}) & ⊢ 𝑇 = ((mulGrp‘ℂfld) ↾s 𝐶) ⇒ ⊢ 𝑇 ∈ Abel | ||
Theorem | circsubm 24841 | The circle group 𝑇 is a submonoid of the multiplicative group of ℂfld. (Contributed by Thierry Arnoux, 26-Jan-2020.) |
⊢ 𝐶 = (◡abs “ {1}) & ⊢ 𝑇 = ((mulGrp‘ℂfld) ↾s 𝐶) ⇒ ⊢ 𝐶 ∈ (SubMnd‘(mulGrp‘ℂfld)) | ||
Syntax | clog 24842 | Extend class notation with the natural logarithm function on complex numbers. |
class log | ||
Syntax | ccxp 24843 | Extend class notation with the complex power function. |
class ↑𝑐 | ||
Definition | df-log 24844 | Define the natural logarithm function on complex numbers. It is defined as the principal value, that is, the inverse of the exponential whose imaginary part lies in the interval (-pi, pi]. See http://en.wikipedia.org/wiki/Natural_logarithm and https://en.wikipedia.org/wiki/Complex_logarithm. (Contributed by Paul Chapman, 21-Apr-2008.) |
⊢ log = ◡(exp ↾ (◡ℑ “ (-π(,]π))) | ||
Definition | df-cxp 24845* | Define the power function on complex numbers. Note that the value of this function when 𝑥 = 0 and (ℜ‘𝑦) ≤ 0, 𝑦 ≠ 0 should properly be undefined, but defining it by convention this way simplifies the domain. (Contributed by Mario Carneiro, 2-Aug-2014.) |
⊢ ↑𝑐 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ if(𝑥 = 0, if(𝑦 = 0, 1, 0), (exp‘(𝑦 · (log‘𝑥))))) | ||
Theorem | logrn 24846 | The range of the natural logarithm function, also the principal domain of the exponential function. This allows us to write the longer class expression as simply ran log. (Contributed by Paul Chapman, 21-Apr-2008.) (Revised by Mario Carneiro, 13-May-2014.) |
⊢ ran log = (◡ℑ “ (-π(,]π)) | ||
Theorem | ellogrn 24847 | Write out the property 𝐴 ∈ ran log explicitly. (Contributed by Mario Carneiro, 1-Apr-2015.) |
⊢ (𝐴 ∈ ran log ↔ (𝐴 ∈ ℂ ∧ -π < (ℑ‘𝐴) ∧ (ℑ‘𝐴) ≤ π)) | ||
Theorem | dflog2 24848 | The natural logarithm function in terms of the exponential function restricted to its principal domain. (Contributed by Paul Chapman, 21-Apr-2008.) |
⊢ log = ◡(exp ↾ ran log) | ||
Theorem | relogrn 24849 | The range of the natural logarithm function includes the real numbers. (Contributed by Paul Chapman, 21-Apr-2008.) (Proof shortened by Mario Carneiro, 1-Apr-2015.) |
⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ran log) | ||
Theorem | logrncn 24850 | The range of the natural logarithm function is a subset of the complex numbers. (Contributed by Mario Carneiro, 13-May-2014.) |
⊢ (𝐴 ∈ ran log → 𝐴 ∈ ℂ) | ||
Theorem | eff1o2 24851 | The exponential function restricted to its principal domain maps one-to-one onto the nonzero complex numbers. (Contributed by Paul Chapman, 21-Apr-2008.) (Revised by Mario Carneiro, 13-May-2014.) |
⊢ (exp ↾ ran log):ran log–1-1-onto→(ℂ ∖ {0}) | ||
Theorem | logf1o 24852 | The natural logarithm function maps the nonzero complex numbers one-to-one onto its range. (Contributed by Paul Chapman, 21-Apr-2008.) |
⊢ log:(ℂ ∖ {0})–1-1-onto→ran log | ||
Theorem | dfrelog 24853 | The natural logarithm function on the positive reals in terms of the real exponential function. (Contributed by Paul Chapman, 21-Apr-2008.) |
⊢ (log ↾ ℝ+) = ◡(exp ↾ ℝ) | ||
Theorem | relogf1o 24854 | The natural logarithm function maps the positive reals one-to-one onto the real numbers. (Contributed by Paul Chapman, 21-Apr-2008.) |
⊢ (log ↾ ℝ+):ℝ+–1-1-onto→ℝ | ||
Theorem | logrncl 24855 | Closure of the natural logarithm function. (Contributed by Paul Chapman, 21-Apr-2008.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ran log) | ||
Theorem | logcl 24856 | Closure of the natural logarithm function. (Contributed by NM, 21-Apr-2008.) (Revised by Mario Carneiro, 23-Sep-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ) | ||
Theorem | logimcl 24857 | Closure of the imaginary part of the logarithm function. (Contributed by Mario Carneiro, 23-Sep-2014.) (Revised by Mario Carneiro, 1-Apr-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)) | ||
Theorem | logcld 24858 | The logarithm of a nonzero complex number is a complex number. Deduction form of logcl 24856. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ≠ 0) ⇒ ⊢ (𝜑 → (log‘𝑋) ∈ ℂ) | ||
Theorem | logimcld 24859 | The imaginary part of the logarithm is in (-π(,]π). Deduction form of logimcl 24857. Compare logimclad 24860. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ≠ 0) ⇒ ⊢ (𝜑 → (-π < (ℑ‘(log‘𝑋)) ∧ (ℑ‘(log‘𝑋)) ≤ π)) | ||
Theorem | logimclad 24860 | The imaginary part of the logarithm is in (-π(,]π). Alternate form of logimcld 24859. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ≠ 0) ⇒ ⊢ (𝜑 → (ℑ‘(log‘𝑋)) ∈ (-π(,]π)) | ||
Theorem | abslogimle 24861 | The imaginary part of the logarithm function has absolute value less than pi. (Contributed by Mario Carneiro, 3-Jul-2017.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘(ℑ‘(log‘𝐴))) ≤ π) | ||
Theorem | logrnaddcl 24862 | The range of the natural logarithm is closed under addition with reals. (Contributed by Mario Carneiro, 3-Apr-2015.) |
⊢ ((𝐴 ∈ ran log ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ran log) | ||
Theorem | relogcl 24863 | Closure of the natural logarithm function on positive reals. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
⊢ (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ) | ||
Theorem | eflog 24864 | Relationship between the natural logarithm function and the exponential function. (Contributed by Paul Chapman, 21-Apr-2008.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴) | ||
Theorem | logeq0im1 24865 | If the logarithm of a number is 0, the number must be 1. (Contributed by David A. Wheeler, 22-Jul-2017.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (log‘𝐴) = 0) → 𝐴 = 1) | ||
Theorem | logccne0 24866 | The logarithm isn't 0 if its argument isn't 0 or 1. (Contributed by David A. Wheeler, 17-Jul-2017.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘𝐴) ≠ 0) | ||
Theorem | logne0 24867 | Logarithm of a non-1 positive real number is not zero and thus suitable as a divisor. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Proof shortened by AV, 14-Jun-2020.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≠ 1) → (log‘𝐴) ≠ 0) | ||
Theorem | reeflog 24868 | Relationship between the natural logarithm function and the exponential function. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
⊢ (𝐴 ∈ ℝ+ → (exp‘(log‘𝐴)) = 𝐴) | ||
Theorem | logef 24869 | Relationship between the natural logarithm function and the exponential function. (Contributed by Paul Chapman, 21-Apr-2008.) |
⊢ (𝐴 ∈ ran log → (log‘(exp‘𝐴)) = 𝐴) | ||
Theorem | relogef 24870 | Relationship between the natural logarithm function and the exponential function. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
⊢ (𝐴 ∈ ℝ → (log‘(exp‘𝐴)) = 𝐴) | ||
Theorem | logeftb 24871 | Relationship between the natural logarithm function and the exponential function. (Contributed by Paul Chapman, 21-Apr-2008.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ran log) → ((log‘𝐴) = 𝐵 ↔ (exp‘𝐵) = 𝐴)) | ||
Theorem | relogeftb 24872 | Relationship between the natural logarithm function and the exponential function. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → ((log‘𝐴) = 𝐵 ↔ (exp‘𝐵) = 𝐴)) | ||
Theorem | log1 24873 | The natural logarithm of 1. One case of Property 1a of [Cohen] p. 301. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
⊢ (log‘1) = 0 | ||
Theorem | loge 24874 | The natural logarithm of e. One case of Property 1b of [Cohen] p. 301. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
⊢ (log‘e) = 1 | ||
Theorem | logneg 24875 | The natural logarithm of a negative real number. (Contributed by Mario Carneiro, 13-May-2014.) (Revised by Mario Carneiro, 3-Apr-2015.) |
⊢ (𝐴 ∈ ℝ+ → (log‘-𝐴) = ((log‘𝐴) + (i · π))) | ||
Theorem | logm1 24876 | The natural logarithm of negative 1. (Contributed by Paul Chapman, 21-Apr-2008.) (Revised by Mario Carneiro, 13-May-2014.) |
⊢ (log‘-1) = (i · π) | ||
Theorem | lognegb 24877 | If a number has imaginary part equal to π, then it is on the negative real axis and vice-versa. (Contributed by Mario Carneiro, 23-Sep-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π)) | ||
Theorem | relogoprlem 24878 | Lemma for relogmul 24879 and relogdiv 24880. Remark of [Cohen] p. 301 ("The proof of Property 3 is quite similar to the proof given for Property 2"). (Contributed by Steve Rodriguez, 25-Nov-2007.) |
⊢ (((log‘𝐴) ∈ ℂ ∧ (log‘𝐵) ∈ ℂ) → (exp‘((log‘𝐴)𝐹(log‘𝐵))) = ((exp‘(log‘𝐴))𝐺(exp‘(log‘𝐵)))) & ⊢ (((log‘𝐴) ∈ ℝ ∧ (log‘𝐵) ∈ ℝ) → ((log‘𝐴)𝐹(log‘𝐵)) ∈ ℝ) ⇒ ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (log‘(𝐴𝐺𝐵)) = ((log‘𝐴)𝐹(log‘𝐵))) | ||
Theorem | relogmul 24879 | The natural logarithm of the product of two positive real numbers is the sum of natural logarithms. Property 2 of [Cohen] p. 301, restricted to natural logarithms. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (log‘(𝐴 · 𝐵)) = ((log‘𝐴) + (log‘𝐵))) | ||
Theorem | relogdiv 24880 | The natural logarithm of the quotient of two positive real numbers is the difference of natural logarithms. Exercise 72(a) and Property 3 of [Cohen] p. 301, restricted to natural logarithms. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (log‘(𝐴 / 𝐵)) = ((log‘𝐴) − (log‘𝐵))) | ||
Theorem | explog 24881 | Exponentiation of a nonzero complex number to an integer power. (Contributed by Paul Chapman, 21-Apr-2008.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) = (exp‘(𝑁 · (log‘𝐴)))) | ||
Theorem | reexplog 24882 | Exponentiation of a positive real number to an integer power. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) = (exp‘(𝑁 · (log‘𝐴)))) | ||
Theorem | relogexp 24883 | The natural logarithm of positive 𝐴 raised to an integer power. Property 4 of [Cohen] p. 301-302, restricted to natural logarithms and integer powers 𝑁. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (log‘(𝐴↑𝑁)) = (𝑁 · (log‘𝐴))) | ||
Theorem | relog 24884 | Real part of a logarithm. (Contributed by Mario Carneiro, 15-Sep-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘(log‘𝐴)) = (log‘(abs‘𝐴))) | ||
Theorem | relogiso 24885 | The natural logarithm function on positive reals determines an isomorphism from the positive reals onto the reals. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
⊢ (log ↾ ℝ+) Isom < , < (ℝ+, ℝ) | ||
Theorem | reloggim 24886 | The natural logarithm is a group isomorphism from the group of positive reals under multiplication to the group of reals under addition. (Contributed by Mario Carneiro, 21-Jun-2015.) (Revised by Thierry Arnoux, 30-Jun-2019.) |
⊢ 𝑃 = ((mulGrp‘ℂfld) ↾s ℝ+) ⇒ ⊢ (log ↾ ℝ+) ∈ (𝑃 GrpIso ℝfld) | ||
Theorem | logltb 24887 | The natural logarithm function on positive reals is strictly monotonic. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (log‘𝐴) < (log‘𝐵))) | ||
Theorem | logfac 24888* | The logarithm of a factorial can be expressed as a finite sum of logs. (Contributed by Mario Carneiro, 17-Apr-2015.) |
⊢ (𝑁 ∈ ℕ0 → (log‘(!‘𝑁)) = Σ𝑘 ∈ (1...𝑁)(log‘𝑘)) | ||
Theorem | eflogeq 24889* | Solve an equation involving an exponential. (Contributed by Mario Carneiro, 23-Apr-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((exp‘𝐴) = 𝐵 ↔ ∃𝑛 ∈ ℤ 𝐴 = ((log‘𝐵) + ((i · (2 · π)) · 𝑛)))) | ||
Theorem | logleb 24890 | Natural logarithm preserves ≤. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 ≤ 𝐵 ↔ (log‘𝐴) ≤ (log‘𝐵))) | ||
Theorem | rplogcl 24891 | Closure of the logarithm function in the positive reals. (Contributed by Mario Carneiro, 21-Sep-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (log‘𝐴) ∈ ℝ+) | ||
Theorem | logge0 24892 | The logarithm of a number greater than 1 is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 ≤ (log‘𝐴)) | ||
Theorem | logcj 24893 | The natural logarithm distributes under conjugation away from the branch cut. (Contributed by Mario Carneiro, 25-Feb-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≠ 0) → (log‘(∗‘𝐴)) = (∗‘(log‘𝐴))) | ||
Theorem | efiarg 24894 | The exponential of the "arg" function ℑ ∘ log. (Contributed by Mario Carneiro, 25-Feb-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴))) | ||
Theorem | cosargd 24895 | The cosine of the argument is the quotient of the real part and the absolute value. Compare to efiarg 24894. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ≠ 0) ⇒ ⊢ (𝜑 → (cos‘(ℑ‘(log‘𝑋))) = ((ℜ‘𝑋) / (abs‘𝑋))) | ||
Theorem | cosarg0d 24896 | The cosine of the argument is zero precisely on the imaginary axis. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ≠ 0) ⇒ ⊢ (𝜑 → ((cos‘(ℑ‘(log‘𝑋))) = 0 ↔ (ℜ‘𝑋) = 0)) | ||
Theorem | argregt0 24897 | Closure of the argument of a complex number with positive real part. (Contributed by Mario Carneiro, 25-Feb-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (-(π / 2)(,)(π / 2))) | ||
Theorem | argrege0 24898 | Closure of the argument of a complex number with nonnegative real part. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (-(π / 2)[,](π / 2))) | ||
Theorem | argimgt0 24899 | Closure of the argument of a complex number with positive imaginary part. (Contributed by Mario Carneiro, 25-Feb-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (0(,)π)) | ||
Theorem | argimlt0 24900 | Closure of the argument of a complex number with negative imaginary part. (Contributed by Mario Carneiro, 25-Feb-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) < 0) → (ℑ‘(log‘𝐴)) ∈ (-π(,)0)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |