| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pcofval | Structured version Visualization version GIF version | ||
| Description: The value of the path concatenation function on a topological space. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 7-Jun-2014.) (Proof shortened by AV, 2-Mar-2024.) |
| Ref | Expression |
|---|---|
| pcofval | ⊢ (*𝑝‘𝐽) = (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7360 | . . . 4 ⊢ (𝑗 = 𝐽 → (II Cn 𝑗) = (II Cn 𝐽)) | |
| 2 | eqidd 2734 | . . . 4 ⊢ (𝑗 = 𝐽 → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))))) | |
| 3 | 1, 1, 2 | mpoeq123dv 7427 | . . 3 ⊢ (𝑗 = 𝐽 → (𝑓 ∈ (II Cn 𝑗), 𝑔 ∈ (II Cn 𝑗) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))))) = (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1)))))) |
| 4 | df-pco 24933 | . . 3 ⊢ *𝑝 = (𝑗 ∈ Top ↦ (𝑓 ∈ (II Cn 𝑗), 𝑔 ∈ (II Cn 𝑗) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1)))))) | |
| 5 | ovex 7385 | . . . 4 ⊢ (II Cn 𝐽) ∈ V | |
| 6 | 5, 5 | mpoex 8017 | . . 3 ⊢ (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))))) ∈ V |
| 7 | 3, 4, 6 | fvmpt 6935 | . 2 ⊢ (𝐽 ∈ Top → (*𝑝‘𝐽) = (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1)))))) |
| 8 | 4 | fvmptndm 6966 | . . 3 ⊢ (¬ 𝐽 ∈ Top → (*𝑝‘𝐽) = ∅) |
| 9 | cntop2 23157 | . . . . . . 7 ⊢ (𝑓 ∈ (II Cn 𝐽) → 𝐽 ∈ Top) | |
| 10 | 9 | con3i 154 | . . . . . 6 ⊢ (¬ 𝐽 ∈ Top → ¬ 𝑓 ∈ (II Cn 𝐽)) |
| 11 | 10 | eq0rdv 4356 | . . . . 5 ⊢ (¬ 𝐽 ∈ Top → (II Cn 𝐽) = ∅) |
| 12 | 11 | olcd 874 | . . . 4 ⊢ (¬ 𝐽 ∈ Top → ((II Cn 𝐽) = ∅ ∨ (II Cn 𝐽) = ∅)) |
| 13 | 0mpo0 7435 | . . . 4 ⊢ (((II Cn 𝐽) = ∅ ∨ (II Cn 𝐽) = ∅) → (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))))) = ∅) | |
| 14 | 12, 13 | syl 17 | . . 3 ⊢ (¬ 𝐽 ∈ Top → (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))))) = ∅) |
| 15 | 8, 14 | eqtr4d 2771 | . 2 ⊢ (¬ 𝐽 ∈ Top → (*𝑝‘𝐽) = (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1)))))) |
| 16 | 7, 15 | pm2.61i 182 | 1 ⊢ (*𝑝‘𝐽) = (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∨ wo 847 = wceq 1541 ∈ wcel 2113 ∅c0 4282 ifcif 4474 class class class wbr 5093 ↦ cmpt 5174 ‘cfv 6486 (class class class)co 7352 ∈ cmpo 7354 0cc0 11013 1c1 11014 · cmul 11018 ≤ cle 11154 − cmin 11351 / cdiv 11781 2c2 12187 [,]cicc 13250 Topctop 22809 Cn ccn 23140 IIcii 24796 *𝑝cpco 24928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-map 8758 df-top 22810 df-topon 22827 df-cn 23143 df-pco 24933 |
| This theorem is referenced by: pcoval 24939 |
| Copyright terms: Public domain | W3C validator |