MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcofval Structured version   Visualization version   GIF version

Theorem pcofval 23616
Description: The value of the path concatenation function on a topological space. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 7-Jun-2014.) (Proof shortened by AV, 2-Mar-2024.)
Assertion
Ref Expression
pcofval (*𝑝𝐽) = (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1)))))
Distinct variable group:   𝑓,𝑔,𝑥,𝐽

Proof of Theorem pcofval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7166 . . . 4 (𝑗 = 𝐽 → (II Cn 𝑗) = (II Cn 𝐽))
2 eqidd 2824 . . . 4 (𝑗 = 𝐽 → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1)))))
31, 1, 2mpoeq123dv 7231 . . 3 (𝑗 = 𝐽 → (𝑓 ∈ (II Cn 𝑗), 𝑔 ∈ (II Cn 𝑗) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))))) = (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))))))
4 df-pco 23611 . . 3 *𝑝 = (𝑗 ∈ Top ↦ (𝑓 ∈ (II Cn 𝑗), 𝑔 ∈ (II Cn 𝑗) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))))))
5 ovex 7191 . . . 4 (II Cn 𝐽) ∈ V
65, 5mpoex 7779 . . 3 (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))))) ∈ V
73, 4, 6fvmpt 6770 . 2 (𝐽 ∈ Top → (*𝑝𝐽) = (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))))))
84fvmptndm 6800 . . 3 𝐽 ∈ Top → (*𝑝𝐽) = ∅)
9 cntop2 21851 . . . . . . 7 (𝑓 ∈ (II Cn 𝐽) → 𝐽 ∈ Top)
109con3i 157 . . . . . 6 𝐽 ∈ Top → ¬ 𝑓 ∈ (II Cn 𝐽))
1110eq0rdv 4359 . . . . 5 𝐽 ∈ Top → (II Cn 𝐽) = ∅)
1211olcd 870 . . . 4 𝐽 ∈ Top → ((II Cn 𝐽) = ∅ ∨ (II Cn 𝐽) = ∅))
13 0mpo0 7239 . . . 4 (((II Cn 𝐽) = ∅ ∨ (II Cn 𝐽) = ∅) → (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))))) = ∅)
1412, 13syl 17 . . 3 𝐽 ∈ Top → (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))))) = ∅)
158, 14eqtr4d 2861 . 2 𝐽 ∈ Top → (*𝑝𝐽) = (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))))))
167, 15pm2.61i 184 1 (*𝑝𝐽) = (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 843   = wceq 1537  wcel 2114  c0 4293  ifcif 4469   class class class wbr 5068  cmpt 5148  cfv 6357  (class class class)co 7158  cmpo 7160  0cc0 10539  1c1 10540   · cmul 10544  cle 10678  cmin 10872   / cdiv 11299  2c2 11695  [,]cicc 12744  Topctop 21503   Cn ccn 21834  IIcii 23485  *𝑝cpco 23606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-map 8410  df-top 21504  df-topon 21521  df-cn 21837  df-pco 23611
This theorem is referenced by:  pcoval  23617
  Copyright terms: Public domain W3C validator