| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pcofval | Structured version Visualization version GIF version | ||
| Description: The value of the path concatenation function on a topological space. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 7-Jun-2014.) (Proof shortened by AV, 2-Mar-2024.) |
| Ref | Expression |
|---|---|
| pcofval | ⊢ (*𝑝‘𝐽) = (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7395 | . . . 4 ⊢ (𝑗 = 𝐽 → (II Cn 𝑗) = (II Cn 𝐽)) | |
| 2 | eqidd 2730 | . . . 4 ⊢ (𝑗 = 𝐽 → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))))) | |
| 3 | 1, 1, 2 | mpoeq123dv 7464 | . . 3 ⊢ (𝑗 = 𝐽 → (𝑓 ∈ (II Cn 𝑗), 𝑔 ∈ (II Cn 𝑗) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))))) = (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1)))))) |
| 4 | df-pco 24905 | . . 3 ⊢ *𝑝 = (𝑗 ∈ Top ↦ (𝑓 ∈ (II Cn 𝑗), 𝑔 ∈ (II Cn 𝑗) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1)))))) | |
| 5 | ovex 7420 | . . . 4 ⊢ (II Cn 𝐽) ∈ V | |
| 6 | 5, 5 | mpoex 8058 | . . 3 ⊢ (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))))) ∈ V |
| 7 | 3, 4, 6 | fvmpt 6968 | . 2 ⊢ (𝐽 ∈ Top → (*𝑝‘𝐽) = (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1)))))) |
| 8 | 4 | fvmptndm 6999 | . . 3 ⊢ (¬ 𝐽 ∈ Top → (*𝑝‘𝐽) = ∅) |
| 9 | cntop2 23128 | . . . . . . 7 ⊢ (𝑓 ∈ (II Cn 𝐽) → 𝐽 ∈ Top) | |
| 10 | 9 | con3i 154 | . . . . . 6 ⊢ (¬ 𝐽 ∈ Top → ¬ 𝑓 ∈ (II Cn 𝐽)) |
| 11 | 10 | eq0rdv 4370 | . . . . 5 ⊢ (¬ 𝐽 ∈ Top → (II Cn 𝐽) = ∅) |
| 12 | 11 | olcd 874 | . . . 4 ⊢ (¬ 𝐽 ∈ Top → ((II Cn 𝐽) = ∅ ∨ (II Cn 𝐽) = ∅)) |
| 13 | 0mpo0 7472 | . . . 4 ⊢ (((II Cn 𝐽) = ∅ ∨ (II Cn 𝐽) = ∅) → (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))))) = ∅) | |
| 14 | 12, 13 | syl 17 | . . 3 ⊢ (¬ 𝐽 ∈ Top → (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))))) = ∅) |
| 15 | 8, 14 | eqtr4d 2767 | . 2 ⊢ (¬ 𝐽 ∈ Top → (*𝑝‘𝐽) = (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1)))))) |
| 16 | 7, 15 | pm2.61i 182 | 1 ⊢ (*𝑝‘𝐽) = (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∅c0 4296 ifcif 4488 class class class wbr 5107 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 0cc0 11068 1c1 11069 · cmul 11073 ≤ cle 11209 − cmin 11405 / cdiv 11835 2c2 12241 [,]cicc 13309 Topctop 22780 Cn ccn 23111 IIcii 24768 *𝑝cpco 24900 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-map 8801 df-top 22781 df-topon 22798 df-cn 23114 df-pco 24905 |
| This theorem is referenced by: pcoval 24911 |
| Copyright terms: Public domain | W3C validator |