![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pcofval | Structured version Visualization version GIF version |
Description: The value of the path concatenation function on a topological space. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 7-Jun-2014.) (Proof shortened by AV, 2-Mar-2024.) |
Ref | Expression |
---|---|
pcofval | ⊢ (*𝑝‘𝐽) = (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7410 | . . . 4 ⊢ (𝑗 = 𝐽 → (II Cn 𝑗) = (II Cn 𝐽)) | |
2 | eqidd 2725 | . . . 4 ⊢ (𝑗 = 𝐽 → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))))) | |
3 | 1, 1, 2 | mpoeq123dv 7477 | . . 3 ⊢ (𝑗 = 𝐽 → (𝑓 ∈ (II Cn 𝑗), 𝑔 ∈ (II Cn 𝑗) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))))) = (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1)))))) |
4 | df-pco 24856 | . . 3 ⊢ *𝑝 = (𝑗 ∈ Top ↦ (𝑓 ∈ (II Cn 𝑗), 𝑔 ∈ (II Cn 𝑗) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1)))))) | |
5 | ovex 7435 | . . . 4 ⊢ (II Cn 𝐽) ∈ V | |
6 | 5, 5 | mpoex 8060 | . . 3 ⊢ (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))))) ∈ V |
7 | 3, 4, 6 | fvmpt 6989 | . 2 ⊢ (𝐽 ∈ Top → (*𝑝‘𝐽) = (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1)))))) |
8 | 4 | fvmptndm 7019 | . . 3 ⊢ (¬ 𝐽 ∈ Top → (*𝑝‘𝐽) = ∅) |
9 | cntop2 23069 | . . . . . . 7 ⊢ (𝑓 ∈ (II Cn 𝐽) → 𝐽 ∈ Top) | |
10 | 9 | con3i 154 | . . . . . 6 ⊢ (¬ 𝐽 ∈ Top → ¬ 𝑓 ∈ (II Cn 𝐽)) |
11 | 10 | eq0rdv 4397 | . . . . 5 ⊢ (¬ 𝐽 ∈ Top → (II Cn 𝐽) = ∅) |
12 | 11 | olcd 871 | . . . 4 ⊢ (¬ 𝐽 ∈ Top → ((II Cn 𝐽) = ∅ ∨ (II Cn 𝐽) = ∅)) |
13 | 0mpo0 7485 | . . . 4 ⊢ (((II Cn 𝐽) = ∅ ∨ (II Cn 𝐽) = ∅) → (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))))) = ∅) | |
14 | 12, 13 | syl 17 | . . 3 ⊢ (¬ 𝐽 ∈ Top → (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))))) = ∅) |
15 | 8, 14 | eqtr4d 2767 | . 2 ⊢ (¬ 𝐽 ∈ Top → (*𝑝‘𝐽) = (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1)))))) |
16 | 7, 15 | pm2.61i 182 | 1 ⊢ (*𝑝‘𝐽) = (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 844 = wceq 1533 ∈ wcel 2098 ∅c0 4315 ifcif 4521 class class class wbr 5139 ↦ cmpt 5222 ‘cfv 6534 (class class class)co 7402 ∈ cmpo 7404 0cc0 11107 1c1 11108 · cmul 11112 ≤ cle 11247 − cmin 11442 / cdiv 11869 2c2 12265 [,]cicc 13325 Topctop 22719 Cn ccn 23052 IIcii 24719 *𝑝cpco 24851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-oprab 7406 df-mpo 7407 df-1st 7969 df-2nd 7970 df-map 8819 df-top 22720 df-topon 22737 df-cn 23055 df-pco 24856 |
This theorem is referenced by: pcoval 24862 |
Copyright terms: Public domain | W3C validator |