Detailed syntax breakdown of Definition df-polarityN
| Step | Hyp | Ref
| Expression |
| 1 | | cpolN 39904 |
. 2
class
⊥𝑃 |
| 2 | | vl |
. . 3
setvar 𝑙 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vm |
. . . 4
setvar 𝑚 |
| 5 | 2 | cv 1539 |
. . . . . 6
class 𝑙 |
| 6 | | catm 39264 |
. . . . . 6
class
Atoms |
| 7 | 5, 6 | cfv 6561 |
. . . . 5
class
(Atoms‘𝑙) |
| 8 | 7 | cpw 4600 |
. . . 4
class 𝒫
(Atoms‘𝑙) |
| 9 | | vp |
. . . . . 6
setvar 𝑝 |
| 10 | 4 | cv 1539 |
. . . . . 6
class 𝑚 |
| 11 | 9 | cv 1539 |
. . . . . . . 8
class 𝑝 |
| 12 | | coc 17305 |
. . . . . . . . 9
class
oc |
| 13 | 5, 12 | cfv 6561 |
. . . . . . . 8
class
(oc‘𝑙) |
| 14 | 11, 13 | cfv 6561 |
. . . . . . 7
class
((oc‘𝑙)‘𝑝) |
| 15 | | cpmap 39499 |
. . . . . . . 8
class
pmap |
| 16 | 5, 15 | cfv 6561 |
. . . . . . 7
class
(pmap‘𝑙) |
| 17 | 14, 16 | cfv 6561 |
. . . . . 6
class
((pmap‘𝑙)‘((oc‘𝑙)‘𝑝)) |
| 18 | 9, 10, 17 | ciin 4992 |
. . . . 5
class ∩ 𝑝 ∈ 𝑚 ((pmap‘𝑙)‘((oc‘𝑙)‘𝑝)) |
| 19 | 7, 18 | cin 3950 |
. . . 4
class
((Atoms‘𝑙)
∩ ∩ 𝑝 ∈ 𝑚 ((pmap‘𝑙)‘((oc‘𝑙)‘𝑝))) |
| 20 | 4, 8, 19 | cmpt 5225 |
. . 3
class (𝑚 ∈ 𝒫
(Atoms‘𝑙) ↦
((Atoms‘𝑙) ∩
∩ 𝑝 ∈ 𝑚 ((pmap‘𝑙)‘((oc‘𝑙)‘𝑝)))) |
| 21 | 2, 3, 20 | cmpt 5225 |
. 2
class (𝑙 ∈ V ↦ (𝑚 ∈ 𝒫
(Atoms‘𝑙) ↦
((Atoms‘𝑙) ∩
∩ 𝑝 ∈ 𝑚 ((pmap‘𝑙)‘((oc‘𝑙)‘𝑝))))) |
| 22 | 1, 21 | wceq 1540 |
1
wff
⊥𝑃 = (𝑙 ∈ V ↦ (𝑚 ∈ 𝒫 (Atoms‘𝑙) ↦ ((Atoms‘𝑙) ∩ ∩ 𝑝 ∈ 𝑚 ((pmap‘𝑙)‘((oc‘𝑙)‘𝑝))))) |