Step | Hyp | Ref
| Expression |
1 | | cpolN 38768 |
. 2
class
β₯π |
2 | | vl |
. . 3
setvar π |
3 | | cvv 3474 |
. . 3
class
V |
4 | | vm |
. . . 4
setvar π |
5 | 2 | cv 1540 |
. . . . . 6
class π |
6 | | catm 38128 |
. . . . . 6
class
Atoms |
7 | 5, 6 | cfv 6543 |
. . . . 5
class
(Atomsβπ) |
8 | 7 | cpw 4602 |
. . . 4
class π«
(Atomsβπ) |
9 | | vp |
. . . . . 6
setvar π |
10 | 4 | cv 1540 |
. . . . . 6
class π |
11 | 9 | cv 1540 |
. . . . . . . 8
class π |
12 | | coc 17204 |
. . . . . . . . 9
class
oc |
13 | 5, 12 | cfv 6543 |
. . . . . . . 8
class
(ocβπ) |
14 | 11, 13 | cfv 6543 |
. . . . . . 7
class
((ocβπ)βπ) |
15 | | cpmap 38363 |
. . . . . . . 8
class
pmap |
16 | 5, 15 | cfv 6543 |
. . . . . . 7
class
(pmapβπ) |
17 | 14, 16 | cfv 6543 |
. . . . . 6
class
((pmapβπ)β((ocβπ)βπ)) |
18 | 9, 10, 17 | ciin 4998 |
. . . . 5
class β© π β π ((pmapβπ)β((ocβπ)βπ)) |
19 | 7, 18 | cin 3947 |
. . . 4
class
((Atomsβπ)
β© β© π β π ((pmapβπ)β((ocβπ)βπ))) |
20 | 4, 8, 19 | cmpt 5231 |
. . 3
class (π β π«
(Atomsβπ) β¦
((Atomsβπ) β©
β© π β π ((pmapβπ)β((ocβπ)βπ)))) |
21 | 2, 3, 20 | cmpt 5231 |
. 2
class (π β V β¦ (π β π«
(Atomsβπ) β¦
((Atomsβπ) β©
β© π β π ((pmapβπ)β((ocβπ)βπ))))) |
22 | 1, 21 | wceq 1541 |
1
wff
β₯π = (π β V β¦ (π β π« (Atomsβπ) β¦ ((Atomsβπ) β© β© π β π ((pmapβπ)β((ocβπ)βπ))))) |