| Metamath
Proof Explorer Theorem List (p. 395 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | atle 39401* | Any nonzero element has an atom under it. (Contributed by NM, 28-Jun-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ∃𝑝 ∈ 𝐴 𝑝 ≤ 𝑋) | ||
| Theorem | atlt 39402 | Two atoms are unequal iff their join is greater than one of them. (Contributed by NM, 6-May-2012.) |
| ⊢ < = (lt‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 < (𝑃 ∨ 𝑄) ↔ 𝑃 ≠ 𝑄)) | ||
| Theorem | atlelt 39403 | Transfer less-than relation from one atom to another. (Contributed by NM, 7-May-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 < 𝑋)) → 𝑃 < 𝑋) | ||
| Theorem | 2atlt 39404* | Given an atom less than an element, there is another atom less than the element. (Contributed by NM, 6-May-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 < 𝑋) → ∃𝑞 ∈ 𝐴 (𝑞 ≠ 𝑃 ∧ 𝑞 < 𝑋)) | ||
| Theorem | atexchcvrN 39405 | Atom exchange property. Version of hlatexch2 39361 with covers relation. (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃𝐶(𝑄 ∨ 𝑅) → 𝑄𝐶(𝑃 ∨ 𝑅))) | ||
| Theorem | atexchltN 39406 | Atom exchange property. Version of hlatexch2 39361 with less-than ordering. (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.) |
| ⊢ < = (lt‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 < (𝑄 ∨ 𝑅) → 𝑄 < (𝑃 ∨ 𝑅))) | ||
| Theorem | cvrat3 39407 | A condition implying that a certain lattice element is an atom. Part of Lemma 3.2.20 of [PtakPulmannova] p. 68. (atcvat3i 32323 analog.) (Contributed by NM, 30-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (𝑋 ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴)) | ||
| Theorem | cvrat4 39408* | A condition implying existence of an atom with the properties shown. Lemma 3.2.20 in [PtakPulmannova] p. 68. Also Lemma 9.2(delta) in [MaedaMaeda] p. 41. (atcvat4i 32324 analog.) (Contributed by NM, 30-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋 ≠ 0 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟)))) | ||
| Theorem | cvrat42 39409* | Commuted version of cvrat4 39408. (Contributed by NM, 28-Jan-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋 ≠ 0 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑟 ∨ 𝑄)))) | ||
| Theorem | 2atjm 39410 | The meet of a line (expressed with 2 atoms) and a lattice element. (Contributed by NM, 30-Jul-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) → ((𝑃 ∨ 𝑄) ∧ 𝑋) = 𝑃) | ||
| Theorem | atbtwn 39411 | Property of a 3rd atom 𝑅 on a line 𝑃 ∨ 𝑄 intersecting element 𝑋 at 𝑃. (Contributed by NM, 30-Jul-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ≠ 𝑃 ↔ ¬ 𝑅 ≤ 𝑋)) | ||
| Theorem | atbtwnexOLDN 39412* | There exists a 3rd atom 𝑟 on a line 𝑃 ∨ 𝑄 intersecting element 𝑋 at 𝑃, such that 𝑟 is different from 𝑄 and not in 𝑋. (Contributed by NM, 30-Jul-2012.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑄 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄))) | ||
| Theorem | atbtwnex 39413* | Given atoms 𝑃 in 𝑋 and 𝑄 not in 𝑋, there exists an atom 𝑟 not in 𝑋 such that the line 𝑄 ∨ 𝑟 intersects 𝑋 at 𝑃. (Contributed by NM, 1-Aug-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑄 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟))) | ||
| Theorem | 3noncolr2 39414 | Two ways to express 3 non-colinear atoms (rotated right 2 places). (Contributed by NM, 12-Jul-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑄 ≠ 𝑅 ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅))) | ||
| Theorem | 3noncolr1N 39415 | Two ways to express 3 non-colinear atoms (rotated right 1 place). (Contributed by NM, 12-Jul-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ≠ 𝑃 ∧ ¬ 𝑄 ≤ (𝑅 ∨ 𝑃))) | ||
| Theorem | hlatcon3 39416 | Atom exchange combined with contraposition. (Contributed by NM, 13-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) → ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) | ||
| Theorem | hlatcon2 39417 | Atom exchange combined with contraposition. (Contributed by NM, 13-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) → ¬ 𝑃 ≤ (𝑅 ∨ 𝑄)) | ||
| Theorem | 4noncolr3 39418 | A way to express 4 non-colinear atoms (rotated right 3 places). (Contributed by NM, 11-Jul-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) | ||
| Theorem | 4noncolr2 39419 | A way to express 4 non-colinear atoms (rotated right 2 places). (Contributed by NM, 11-Jul-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑅 ≠ 𝑆 ∧ ¬ 𝑃 ≤ (𝑅 ∨ 𝑆) ∧ ¬ 𝑄 ≤ ((𝑅 ∨ 𝑆) ∨ 𝑃))) | ||
| Theorem | 4noncolr1 39420 | A way to express 4 non-colinear atoms (rotated right 1 places). (Contributed by NM, 11-Jul-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑆 ≠ 𝑃 ∧ ¬ 𝑄 ≤ (𝑆 ∨ 𝑃) ∧ ¬ 𝑅 ≤ ((𝑆 ∨ 𝑃) ∨ 𝑄))) | ||
| Theorem | athgt 39421* | A Hilbert lattice, whose height is at least 4, has a chain of 4 successively covering atom joins. (Contributed by NM, 3-May-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (𝐾 ∈ HL → ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝𝐶(𝑝 ∨ 𝑞) ∧ ∃𝑟 ∈ 𝐴 ((𝑝 ∨ 𝑞)𝐶((𝑝 ∨ 𝑞) ∨ 𝑟) ∧ ∃𝑠 ∈ 𝐴 ((𝑝 ∨ 𝑞) ∨ 𝑟)𝐶(((𝑝 ∨ 𝑞) ∨ 𝑟) ∨ 𝑠)))) | ||
| Theorem | 3dim0 39422* | There exists a 3-dimensional (height-4) element i.e. a volume. (Contributed by NM, 25-Jul-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (𝐾 ∈ HL → ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ ¬ 𝑠 ≤ ((𝑝 ∨ 𝑞) ∨ 𝑟))) | ||
| Theorem | 3dimlem1 39423 | Lemma for 3dim1 39432. (Contributed by NM, 25-Jul-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆)) ∧ 𝑃 = 𝑄) → (𝑃 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑅) ∧ ¬ 𝑇 ≤ ((𝑃 ∨ 𝑅) ∨ 𝑆))) | ||
| Theorem | 3dimlem2 39424 | Lemma for 3dim1 39432. (Contributed by NM, 25-Jul-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑃 ≤ (𝑄 ∨ 𝑅))) → (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑆))) | ||
| Theorem | 3dimlem3a 39425 | Lemma for 3dim3 39434. (Contributed by NM, 27-Jul-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) → ¬ 𝑇 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) | ||
| Theorem | 3dimlem3 39426 | Lemma for 3dim1 39432. (Contributed by NM, 25-Jul-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ ¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) → (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) | ||
| Theorem | 3dimlem3OLDN 39427 | Lemma for 3dim1 39432. (Contributed by NM, 25-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ ¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) → (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) | ||
| Theorem | 3dimlem4a 39428 | Lemma for 3dim3 39434. (Contributed by NM, 27-Jul-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (¬ 𝑆 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) → ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) | ||
| Theorem | 3dimlem4 39429 | Lemma for 3dim1 39432. (Contributed by NM, 25-Jul-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) ∧ ¬ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆)) → (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) | ||
| Theorem | 3dimlem4OLDN 39430 | Lemma for 3dim1 39432. (Contributed by NM, 25-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) ∧ ¬ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆)) → (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) | ||
| Theorem | 3dim1lem5 39431* | Lemma for 3dim1 39432. (Contributed by NM, 26-Jul-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑃 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑃 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑃 ∨ 𝑢) ∨ 𝑣))) → ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (𝑃 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑃 ∨ 𝑞) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑞) ∨ 𝑟))) | ||
| Theorem | 3dim1 39432* | Construct a 3-dimensional volume (height-4 element) on top of a given atom 𝑃. (Contributed by NM, 25-Jul-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (𝑃 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑃 ∨ 𝑞) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑞) ∨ 𝑟))) | ||
| Theorem | 3dim2 39433* | Construct 2 new layers on top of 2 given atoms. (Contributed by NM, 27-Jul-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟))) | ||
| Theorem | 3dim3 39434* | Construct a new layer on top of 3 given atoms. (Contributed by NM, 27-Jul-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ∃𝑠 ∈ 𝐴 ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) | ||
| Theorem | 2dim 39435* | Generate a height-3 element (2-dimensional plane) from an atom. (Contributed by NM, 3-May-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑃𝐶(𝑃 ∨ 𝑞) ∧ (𝑃 ∨ 𝑞)𝐶((𝑃 ∨ 𝑞) ∨ 𝑟))) | ||
| Theorem | 1dimN 39436* | An atom is covered by a height-2 element (1-dimensional line). (Contributed by NM, 3-May-2012.) (New usage is discouraged.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → ∃𝑞 ∈ 𝐴 𝑃𝐶(𝑃 ∨ 𝑞)) | ||
| Theorem | 1cvrco 39437 | The orthocomplement of an element covered by 1 is an atom. (Contributed by NM, 7-May-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 1 = (1.‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋𝐶 1 ↔ ( ⊥ ‘𝑋) ∈ 𝐴)) | ||
| Theorem | 1cvratex 39438* | There exists an atom less than an element covered by 1. (Contributed by NM, 7-May-2012.) (Revised by Mario Carneiro, 13-Jun-2014.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 1 = (1.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋𝐶 1 ) → ∃𝑝 ∈ 𝐴 𝑝 < 𝑋) | ||
| Theorem | 1cvratlt 39439 | An atom less than or equal to an element covered by 1 is less than the element. (Contributed by NM, 7-May-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 1 = (1.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) → 𝑃 < 𝑋) | ||
| Theorem | 1cvrjat 39440 | An element covered by the lattice unity, when joined with an atom not under it, equals the lattice unity. (Contributed by NM, 30-Apr-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 1 = (1.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋)) → (𝑋 ∨ 𝑃) = 1 ) | ||
| Theorem | 1cvrat 39441 | Create an atom under an element covered by the lattice unity. Part of proof of Lemma B in [Crawley] p. 112. (Contributed by NM, 30-Apr-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 1 = (1.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≠ 𝑄 ∧ 𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋)) → ((𝑃 ∨ 𝑄) ∧ 𝑋) ∈ 𝐴) | ||
| Theorem | ps-1 39442 | The join of two atoms 𝑅 ∨ 𝑆 (specifying a projective geometry line) is determined uniquely by any two atoms (specifying two points) less than or equal to that join. Part of Lemma 16.4 of [MaedaMaeda] p. 69, showing projective space postulate PS1 in [MaedaMaeda] p. 67. (Contributed by NM, 15-Nov-2011.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆) ↔ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) | ||
| Theorem | ps-2 39443* | Lattice analogue for the projective geometry axiom, "if a line intersects two sides of a triangle at different points then it also intersects the third side." Projective space condition PS2 in [MaedaMaeda] p. 68 and part of Theorem 16.4 in [MaedaMaeda] p. 69. (Contributed by NM, 1-Dec-2011.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((¬ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑄 ∨ 𝑅)))) → ∃𝑢 ∈ 𝐴 (𝑢 ≤ (𝑃 ∨ 𝑅) ∧ 𝑢 ≤ (𝑆 ∨ 𝑇))) | ||
| Theorem | 2atjlej 39444 | Two atoms are different if their join majorizes the join of two different atoms. (Contributed by NM, 4-Jun-2013.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆))) → 𝑅 ≠ 𝑆) | ||
| Theorem | hlatexch3N 39445 | Rearrange join of atoms in an equality. (Contributed by NM, 29-Jul-2013.) (New usage is discouraged.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑅))) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑅)) | ||
| Theorem | hlatexch4 39446 | Exchange 2 atoms. (Contributed by NM, 13-May-2013.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑅 ∧ 𝑄 ≠ 𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑆)) | ||
| Theorem | ps-2b 39447 | Variation of projective geometry axiom ps-2 39443. (Contributed by NM, 3-Jul-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (¬ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ 𝑆 ≠ 𝑇 ∧ (𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑄 ∨ 𝑅)))) → ((𝑃 ∨ 𝑅) ∧ (𝑆 ∨ 𝑇)) ≠ 0 ) | ||
| Theorem | 3atlem1 39448 | Lemma for 3at 39455. (Contributed by NM, 22-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑃 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ 𝑈)) | ||
| Theorem | 3atlem2 39449 | Lemma for 3at 39455. (Contributed by NM, 22-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑃 ≠ 𝑈 ∧ 𝑃 ≤ (𝑇 ∨ 𝑈)) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ 𝑈)) | ||
| Theorem | 3atlem3 39450 | Lemma for 3at 39455. (Contributed by NM, 23-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑈 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ 𝑈)) | ||
| Theorem | 3atlem4 39451 | Lemma for 3at 39455. (Contributed by NM, 23-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑅)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ 𝑅)) | ||
| Theorem | 3atlem5 39452 | Lemma for 3at 39455. (Contributed by NM, 23-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ 𝑈)) | ||
| Theorem | 3atlem6 39453 | Lemma for 3at 39455. (Contributed by NM, 23-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄 ∧ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ 𝑈)) | ||
| Theorem | 3atlem7 39454 | Lemma for 3at 39455. (Contributed by NM, 23-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ 𝑈)) | ||
| Theorem | 3at 39455 | Any three non-colinear atoms in a (lattice) plane determine the plane uniquely. This is the 2-dimensional analogue of ps-1 39442 for lines and 4at 39578 for volumes. I could not find this proof in the literature on projective geometry (where it is either given as an axiom or stated as an unproved fact), but it is similar to Theorem 15 of Veblen, "The Foundations of Geometry" (1911), p. 18, which uses different axioms. This proof was written before I became aware of Veblen's, and it is possible that a shorter proof could be obtained by using Veblen's proof for hints. (Contributed by NM, 23-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) → (((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈) ↔ ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ 𝑈))) | ||
| Syntax | clln 39456 | Extend class notation with set of all "lattice lines" (lattice elements which cover an atom) in a Hilbert lattice. |
| class LLines | ||
| Syntax | clpl 39457 | Extend class notation with set of all "lattice planes" (lattice elements which cover a line) in a Hilbert lattice. |
| class LPlanes | ||
| Syntax | clvol 39458 | Extend class notation with set of all 3-dimensional "lattice volumes" (lattice elements which cover a plane) in a Hilbert lattice. |
| class LVols | ||
| Syntax | clines 39459 | Extend class notation with set of all projective lines for a Hilbert lattice. |
| class Lines | ||
| Syntax | cpointsN 39460 | Extend class notation with set of all projective points. |
| class Points | ||
| Syntax | cpsubsp 39461 | Extend class notation with set of all projective subspaces. |
| class PSubSp | ||
| Syntax | cpmap 39462 | Extend class notation with projective map. |
| class pmap | ||
| Definition | df-llines 39463* | Define the set of all "lattice lines" (lattice elements which cover an atom) in a Hilbert lattice 𝑘, in other words all elements of height 2 (or lattice dimension 2 or projective dimension 1). (Contributed by NM, 16-Jun-2012.) |
| ⊢ LLines = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑝 ∈ (Atoms‘𝑘)𝑝( ⋖ ‘𝑘)𝑥}) | ||
| Definition | df-lplanes 39464* | Define the set of all "lattice planes" (lattice elements which cover a line) in a Hilbert lattice 𝑘, in other words all elements of height 3 (or lattice dimension 3 or projective dimension 2). (Contributed by NM, 16-Jun-2012.) |
| ⊢ LPlanes = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑝 ∈ (LLines‘𝑘)𝑝( ⋖ ‘𝑘)𝑥}) | ||
| Definition | df-lvols 39465* | Define the set of all 3-dimensional "lattice volumes" (lattice elements which cover a plane) in a Hilbert lattice 𝑘, in other words all elements of height 4 (or lattice dimension 4 or projective dimension 3). (Contributed by NM, 1-Jul-2012.) |
| ⊢ LVols = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑝 ∈ (LPlanes‘𝑘)𝑝( ⋖ ‘𝑘)𝑥}) | ||
| Definition | df-lines 39466* | Define set of all projective lines for a Hilbert lattice (actually in any set at all, for simplicity). The join of two distinct atoms equals a line. Definition of lines in item 1 of [Holland95] p. 222. (Contributed by NM, 19-Sep-2011.) |
| ⊢ Lines = (𝑘 ∈ V ↦ {𝑠 ∣ ∃𝑞 ∈ (Atoms‘𝑘)∃𝑟 ∈ (Atoms‘𝑘)(𝑞 ≠ 𝑟 ∧ 𝑠 = {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)})}) | ||
| Definition | df-pointsN 39467* | Define set of all projective points in a Hilbert lattice (actually in any set at all, for simplicity). A projective point is the singleton of a lattice atom. Definition 15.1 of [MaedaMaeda] p. 61. Note that item 1 in [Holland95] p. 222 defines a point as the atom itself, but this leads to a complicated subspace ordering that may be either membership or inclusion based on its arguments. (Contributed by NM, 2-Oct-2011.) |
| ⊢ Points = (𝑘 ∈ V ↦ {𝑞 ∣ ∃𝑝 ∈ (Atoms‘𝑘)𝑞 = {𝑝}}) | ||
| Definition | df-psubsp 39468* | Define set of all projective subspaces. Based on definition of subspace in [Holland95] p. 212. (Contributed by NM, 2-Oct-2011.) |
| ⊢ PSubSp = (𝑘 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧ ∀𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ∀𝑟 ∈ (Atoms‘𝑘)(𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟 ∈ 𝑠))}) | ||
| Definition | df-pmap 39469* | Define projective map for 𝑘 at 𝑎. Definition in Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 2-Oct-2011.) |
| ⊢ pmap = (𝑘 ∈ V ↦ (𝑎 ∈ (Base‘𝑘) ↦ {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)𝑎})) | ||
| Theorem | llnset 39470* | The set of lattice lines in a Hilbert lattice. (Contributed by NM, 16-Jun-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐷 → 𝑁 = {𝑥 ∈ 𝐵 ∣ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑥}) | ||
| Theorem | islln 39471* | The predicate "is a lattice line". (Contributed by NM, 16-Jun-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑋))) | ||
| Theorem | islln4 39472* | The predicate "is a lattice line". (Contributed by NM, 16-Jun-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑋)) | ||
| Theorem | llni 39473 | Condition implying a lattice line. (Contributed by NM, 17-Jun-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃𝐶𝑋) → 𝑋 ∈ 𝑁) | ||
| Theorem | llnbase 39474 | A lattice line is a lattice element. (Contributed by NM, 16-Jun-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ (𝑋 ∈ 𝑁 → 𝑋 ∈ 𝐵) | ||
| Theorem | islln3 39475* | The predicate "is a lattice line". (Contributed by NM, 17-Jun-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝 ∨ 𝑞)))) | ||
| Theorem | islln2 39476* | The predicate "is a lattice line". (Contributed by NM, 23-Jun-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ (𝐾 ∈ HL → (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝 ∨ 𝑞))))) | ||
| Theorem | llni2 39477 | The join of two different atoms is a lattice line. (Contributed by NM, 26-Jun-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∨ 𝑄) ∈ 𝑁) | ||
| Theorem | llnnleat 39478 | An atom cannot majorize a lattice line. (Contributed by NM, 8-Jul-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑃 ∈ 𝐴) → ¬ 𝑋 ≤ 𝑃) | ||
| Theorem | llnneat 39479 | A lattice line is not an atom. (Contributed by NM, 19-Jun-2012.) |
| ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) → ¬ 𝑋 ∈ 𝐴) | ||
| Theorem | 2atneat 39480 | The join of two distinct atoms is not an atom. (Contributed by NM, 12-Oct-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → ¬ (𝑃 ∨ 𝑄) ∈ 𝐴) | ||
| Theorem | llnn0 39481 | A lattice line is nonzero. (Contributed by NM, 15-Jul-2012.) |
| ⊢ 0 = (0.‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) → 𝑋 ≠ 0 ) | ||
| Theorem | islln2a 39482 | The predicate "is a lattice line" in terms of atoms. (Contributed by NM, 15-Jul-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ((𝑃 ∨ 𝑄) ∈ 𝑁 ↔ 𝑃 ≠ 𝑄)) | ||
| Theorem | llnle 39483* | Any element greater than 0 and not an atom majorizes a lattice line. (Contributed by NM, 28-Jun-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑋 ≠ 0 ∧ ¬ 𝑋 ∈ 𝐴)) → ∃𝑦 ∈ 𝑁 𝑦 ≤ 𝑋) | ||
| Theorem | atcvrlln2 39484 | An atom under a line is covered by it. (Contributed by NM, 2-Jul-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁) ∧ 𝑃 ≤ 𝑋) → 𝑃𝐶𝑋) | ||
| Theorem | atcvrlln 39485 | An element covering an atom is a lattice line and vice-versa. (Contributed by NM, 18-Jun-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → (𝑋 ∈ 𝐴 ↔ 𝑌 ∈ 𝑁)) | ||
| Theorem | llnexatN 39486* | Given an atom on a line, there is another atom whose join equals the line. (Contributed by NM, 26-Jun-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → ∃𝑞 ∈ 𝐴 (𝑃 ≠ 𝑞 ∧ 𝑋 = (𝑃 ∨ 𝑞))) | ||
| Theorem | llncmp 39487 | If two lattice lines are comparable, they are equal. (Contributed by NM, 19-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) → (𝑋 ≤ 𝑌 ↔ 𝑋 = 𝑌)) | ||
| Theorem | llnnlt 39488 | Two lattice lines cannot satisfy the less than relation. (Contributed by NM, 26-Jun-2012.) |
| ⊢ < = (lt‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) → ¬ 𝑋 < 𝑌) | ||
| Theorem | 2llnmat 39489 | Two intersecting lines intersect at an atom. (Contributed by NM, 30-Apr-2012.) |
| ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑋 ≠ 𝑌 ∧ (𝑋 ∧ 𝑌) ≠ 0 )) → (𝑋 ∧ 𝑌) ∈ 𝐴) | ||
| Theorem | 2at0mat0 39490 | Special case of 2atmat0 39491 where one atom could be zero. (Contributed by NM, 30-May-2013.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = 0 )) | ||
| Theorem | 2atmat0 39491 | The meet of two unequal lines (expressed as joins of atoms) is an atom or zero. (Contributed by NM, 2-Dec-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = 0 )) | ||
| Theorem | 2atm 39492 | An atom majorized by two different atom joins (which could be atoms or lines) is equal to their intersection. (Contributed by NM, 30-Jun-2013.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑅 ∨ 𝑆) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → 𝑇 = ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆))) | ||
| Theorem | ps-2c 39493 | Variation of projective geometry axiom ps-2 39443. (Contributed by NM, 3-Jul-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ ((¬ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ 𝑆 ≠ 𝑇) ∧ (𝑃 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇) ∧ (𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑄 ∨ 𝑅)))) → ((𝑃 ∨ 𝑅) ∧ (𝑆 ∨ 𝑇)) ∈ 𝐴) | ||
| Theorem | lplnset 39494* | The set of lattice planes in a Hilbert lattice. (Contributed by NM, 16-Jun-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) & ⊢ 𝑃 = (LPlanes‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐴 → 𝑃 = {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑥}) | ||
| Theorem | islpln 39495* | The predicate "is a lattice plane". (Contributed by NM, 16-Jun-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) & ⊢ 𝑃 = (LPlanes‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐴 → (𝑋 ∈ 𝑃 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑋))) | ||
| Theorem | islpln4 39496* | The predicate "is a lattice plane". (Contributed by NM, 17-Jun-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) & ⊢ 𝑃 = (LPlanes‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑃 ↔ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑋)) | ||
| Theorem | lplni 39497 | Condition implying a lattice plane. (Contributed by NM, 20-Jun-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) & ⊢ 𝑃 = (LPlanes‘𝐾) ⇒ ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝑁) ∧ 𝑋𝐶𝑌) → 𝑌 ∈ 𝑃) | ||
| Theorem | islpln3 39498* | The predicate "is a lattice plane". (Contributed by NM, 17-Jun-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) & ⊢ 𝑃 = (LPlanes‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑃 ↔ ∃𝑦 ∈ 𝑁 ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑝)))) | ||
| Theorem | lplnbase 39499 | A lattice plane is a lattice element. (Contributed by NM, 17-Jun-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑃 = (LPlanes‘𝐾) ⇒ ⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ 𝐵) | ||
| Theorem | islpln5 39500* | The predicate "is a lattice plane" in terms of atoms. (Contributed by NM, 24-Jun-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑃 = (LPlanes‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑃 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ 𝑋 = ((𝑝 ∨ 𝑞) ∨ 𝑟)))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |