| Metamath
Proof Explorer Theorem List (p. 395 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | hlrelat1 39401* | An atomistic lattice with 0 is relatively atomic. Part of Lemma 7.2 of [MaedaMaeda] p. 30. (chpssati 32299, with ∧ swapped, analog.) (Contributed by NM, 4-Dec-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌))) | ||
| Theorem | hlrelat5N 39402* | An atomistic lattice with 0 is relatively atomic, using the definition in Remark 2 of [Kalmbach] p. 149. (Contributed by NM, 21-Oct-2011.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) → ∃𝑝 ∈ 𝐴 (𝑋 < (𝑋 ∨ 𝑝) ∧ 𝑝 ≤ 𝑌)) | ||
| Theorem | hlrelat 39403* | A Hilbert lattice is relatively atomic. Remark 2 of [Kalmbach] p. 149. (chrelati 32300 analog.) (Contributed by NM, 4-Feb-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) → ∃𝑝 ∈ 𝐴 (𝑋 < (𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≤ 𝑌)) | ||
| Theorem | hlrelat2 39404* | A consequence of relative atomicity. (chrelat2i 32301 analog.) (Contributed by NM, 5-Feb-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑋 ≤ 𝑌 ↔ ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑌))) | ||
| Theorem | exatleN 39405 | A condition for an atom to be less than or equal to a lattice element. Part of proof of Lemma A in [Crawley] p. 112. (Contributed by NM, 28-Apr-2012.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ≤ 𝑋 ↔ 𝑅 = 𝑃)) | ||
| Theorem | hl2at 39406* | A Hilbert lattice has at least 2 atoms. (Contributed by NM, 5-Dec-2011.) |
| ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (𝐾 ∈ HL → ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 𝑝 ≠ 𝑞) | ||
| Theorem | atex 39407 | At least one atom exists. (Contributed by NM, 15-Jul-2012.) |
| ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (𝐾 ∈ HL → 𝐴 ≠ ∅) | ||
| Theorem | intnatN 39408 | If the intersection with a non-majorizing element is an atom, the intersecting element is not an atom. (Contributed by NM, 26-Jun-2012.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (¬ 𝑌 ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴)) → ¬ 𝑌 ∈ 𝐴) | ||
| Theorem | 2llnne2N 39409 | Condition implying that two intersecting lines are different. (Contributed by NM, 13-Jun-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ¬ 𝑃 ≤ (𝑅 ∨ 𝑄)) → (𝑅 ∨ 𝑃) ≠ (𝑅 ∨ 𝑄)) | ||
| Theorem | 2llnneN 39410 | Condition implying that two intersecting lines are different. (Contributed by NM, 29-May-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ∨ 𝑃) ≠ (𝑅 ∨ 𝑄)) | ||
| Theorem | cvr1 39411 | A Hilbert lattice has the covering property. Proposition 1(ii) in [Kalmbach] p. 140 (and its converse). (chcv1 32291 analog.) (Contributed by NM, 17-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (¬ 𝑃 ≤ 𝑋 ↔ 𝑋𝐶(𝑋 ∨ 𝑃))) | ||
| Theorem | cvr2N 39412 | Less-than and covers equivalence in a Hilbert lattice. (chcv2 32292 analog.) (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋 < (𝑋 ∨ 𝑃) ↔ 𝑋𝐶(𝑋 ∨ 𝑃))) | ||
| Theorem | hlrelat3 39413* | The Hilbert lattice is relatively atomic. Stronger version of hlrelat 39403. (Contributed by NM, 2-May-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) → ∃𝑝 ∈ 𝐴 (𝑋𝐶(𝑋 ∨ 𝑝) ∧ (𝑋 ∨ 𝑝) ≤ 𝑌)) | ||
| Theorem | cvrval3 39414* | Binary relation expressing 𝑌 covers 𝑋. (Contributed by NM, 16-Jun-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑋 ∧ (𝑋 ∨ 𝑝) = 𝑌))) | ||
| Theorem | cvrval4N 39415* | Binary relation expressing 𝑌 covers 𝑋. (Contributed by NM, 16-Jun-2012.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ∃𝑝 ∈ 𝐴 (𝑋 ∨ 𝑝) = 𝑌))) | ||
| Theorem | cvrval5 39416* | Binary relation expressing 𝑋 covers 𝑋 ∧ 𝑌. (Contributed by NM, 7-Dec-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ 𝑌)𝐶𝑋 ↔ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑌 ∧ (𝑝 ∨ (𝑋 ∧ 𝑌)) = 𝑋))) | ||
| Theorem | cvrp 39417 | A Hilbert lattice satisfies the covering property of Definition 7.4 of [MaedaMaeda] p. 31 and its converse. (cvp 32311 analog.) (Contributed by NM, 18-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → ((𝑋 ∧ 𝑃) = 0 ↔ 𝑋𝐶(𝑋 ∨ 𝑃))) | ||
| Theorem | atcvr1 39418 | An atom is covered by its join with a different atom. (Contributed by NM, 7-Feb-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ 𝑃𝐶(𝑃 ∨ 𝑄))) | ||
| Theorem | atcvr2 39419 | An atom is covered by its join with a different atom. (Contributed by NM, 7-Feb-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ 𝑃𝐶(𝑄 ∨ 𝑃))) | ||
| Theorem | cvrexchlem 39420 | Lemma for cvrexch 39421. (cvexchlem 32304 analog.) (Contributed by NM, 18-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ 𝑌)𝐶𝑌 → 𝑋𝐶(𝑋 ∨ 𝑌))) | ||
| Theorem | cvrexch 39421 | A Hilbert lattice satisfies the exchange axiom. Proposition 1(iii) of [Kalmbach] p. 140 and its converse. Originally proved by Garrett Birkhoff in 1933. (cvexchi 32305 analog.) (Contributed by NM, 18-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ 𝑌)𝐶𝑌 ↔ 𝑋𝐶(𝑋 ∨ 𝑌))) | ||
| Theorem | cvratlem 39422 | Lemma for cvrat 39423. (atcvatlem 32321 analog.) (Contributed by NM, 22-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ (𝑋 ≠ 0 ∧ 𝑋 < (𝑃 ∨ 𝑄))) → (¬ 𝑃(le‘𝐾)𝑋 → 𝑋 ∈ 𝐴)) | ||
| Theorem | cvrat 39423 | A nonzero Hilbert lattice element less than the join of two atoms is an atom. (atcvati 32322 analog.) (Contributed by NM, 22-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋 ≠ 0 ∧ 𝑋 < (𝑃 ∨ 𝑄)) → 𝑋 ∈ 𝐴)) | ||
| Theorem | ltltncvr 39424 | A chained strong ordering is not a covers relation. (Contributed by NM, 18-Jun-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑍) → ¬ 𝑋𝐶𝑍)) | ||
| Theorem | ltcvrntr 39425 | Non-transitive condition for the covers relation. (Contributed by NM, 18-Jun-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌𝐶𝑍) → ¬ 𝑋𝐶𝑍)) | ||
| Theorem | cvrntr 39426 | The covers relation is not transitive. (cvntr 32228 analog.) (Contributed by NM, 18-Jun-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋𝐶𝑌 ∧ 𝑌𝐶𝑍) → ¬ 𝑋𝐶𝑍)) | ||
| Theorem | atcvr0eq 39427 | The covers relation is not transitive. (atcv0eq 32315 analog.) (Contributed by NM, 29-Nov-2011.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ( 0 𝐶(𝑃 ∨ 𝑄) ↔ 𝑃 = 𝑄)) | ||
| Theorem | lnnat 39428 | A line (the join of two distinct atoms) is not an atom. (Contributed by NM, 14-Jun-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ ¬ (𝑃 ∨ 𝑄) ∈ 𝐴)) | ||
| Theorem | atcvrj0 39429 | Two atoms covering the zero subspace are equal. (atcv1 32316 analog.) (Contributed by NM, 29-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋𝐶(𝑃 ∨ 𝑄)) → (𝑋 = 0 ↔ 𝑃 = 𝑄)) | ||
| Theorem | cvrat2 39430 | A Hilbert lattice element covered by the join of two distinct atoms is an atom. (atcvat2i 32323 analog.) (Contributed by NM, 30-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑋𝐶(𝑃 ∨ 𝑄))) → 𝑋 ∈ 𝐴) | ||
| Theorem | atcvrneN 39431 | Inequality derived from atom condition. (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃𝐶(𝑄 ∨ 𝑅)) → 𝑄 ≠ 𝑅) | ||
| Theorem | atcvrj1 39432 | Condition for an atom to be covered by the join of two others. (Contributed by NM, 7-Feb-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑅 ∧ 𝑃 ≤ (𝑄 ∨ 𝑅))) → 𝑃𝐶(𝑄 ∨ 𝑅)) | ||
| Theorem | atcvrj2b 39433 | Condition for an atom to be covered by the join of two others. (Contributed by NM, 7-Feb-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑄 ≠ 𝑅 ∧ 𝑃 ≤ (𝑄 ∨ 𝑅)) ↔ 𝑃𝐶(𝑄 ∨ 𝑅))) | ||
| Theorem | atcvrj2 39434 | Condition for an atom to be covered by the join of two others. (Contributed by NM, 7-Feb-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ 𝑃 ≤ (𝑄 ∨ 𝑅))) → 𝑃𝐶(𝑄 ∨ 𝑅)) | ||
| Theorem | atleneN 39435 | Inequality derived from atom condition. (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑅 ∧ 𝑃 ≤ (𝑄 ∨ 𝑅))) → 𝑄 ≠ 𝑅) | ||
| Theorem | atltcvr 39436 | An equivalence of less-than ordering and covers relation. (Contributed by NM, 7-Feb-2012.) |
| ⊢ < = (lt‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑃 < (𝑄 ∨ 𝑅) ↔ 𝑃𝐶(𝑄 ∨ 𝑅))) | ||
| Theorem | atle 39437* | Any nonzero element has an atom under it. (Contributed by NM, 28-Jun-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ∃𝑝 ∈ 𝐴 𝑝 ≤ 𝑋) | ||
| Theorem | atlt 39438 | Two atoms are unequal iff their join is greater than one of them. (Contributed by NM, 6-May-2012.) |
| ⊢ < = (lt‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 < (𝑃 ∨ 𝑄) ↔ 𝑃 ≠ 𝑄)) | ||
| Theorem | atlelt 39439 | Transfer less-than relation from one atom to another. (Contributed by NM, 7-May-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 < 𝑋)) → 𝑃 < 𝑋) | ||
| Theorem | 2atlt 39440* | Given an atom less than an element, there is another atom less than the element. (Contributed by NM, 6-May-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 < 𝑋) → ∃𝑞 ∈ 𝐴 (𝑞 ≠ 𝑃 ∧ 𝑞 < 𝑋)) | ||
| Theorem | atexchcvrN 39441 | Atom exchange property. Version of hlatexch2 39397 with covers relation. (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃𝐶(𝑄 ∨ 𝑅) → 𝑄𝐶(𝑃 ∨ 𝑅))) | ||
| Theorem | atexchltN 39442 | Atom exchange property. Version of hlatexch2 39397 with less-than ordering. (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.) |
| ⊢ < = (lt‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 < (𝑄 ∨ 𝑅) → 𝑄 < (𝑃 ∨ 𝑅))) | ||
| Theorem | cvrat3 39443 | A condition implying that a certain lattice element is an atom. Part of Lemma 3.2.20 of [PtakPulmannova] p. 68. (atcvat3i 32332 analog.) (Contributed by NM, 30-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (𝑋 ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴)) | ||
| Theorem | cvrat4 39444* | A condition implying existence of an atom with the properties shown. Lemma 3.2.20 in [PtakPulmannova] p. 68. Also Lemma 9.2(delta) in [MaedaMaeda] p. 41. (atcvat4i 32333 analog.) (Contributed by NM, 30-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋 ≠ 0 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟)))) | ||
| Theorem | cvrat42 39445* | Commuted version of cvrat4 39444. (Contributed by NM, 28-Jan-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋 ≠ 0 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑟 ∨ 𝑄)))) | ||
| Theorem | 2atjm 39446 | The meet of a line (expressed with 2 atoms) and a lattice element. (Contributed by NM, 30-Jul-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) → ((𝑃 ∨ 𝑄) ∧ 𝑋) = 𝑃) | ||
| Theorem | atbtwn 39447 | Property of a 3rd atom 𝑅 on a line 𝑃 ∨ 𝑄 intersecting element 𝑋 at 𝑃. (Contributed by NM, 30-Jul-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ≠ 𝑃 ↔ ¬ 𝑅 ≤ 𝑋)) | ||
| Theorem | atbtwnexOLDN 39448* | There exists a 3rd atom 𝑟 on a line 𝑃 ∨ 𝑄 intersecting element 𝑋 at 𝑃, such that 𝑟 is different from 𝑄 and not in 𝑋. (Contributed by NM, 30-Jul-2012.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑄 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄))) | ||
| Theorem | atbtwnex 39449* | Given atoms 𝑃 in 𝑋 and 𝑄 not in 𝑋, there exists an atom 𝑟 not in 𝑋 such that the line 𝑄 ∨ 𝑟 intersects 𝑋 at 𝑃. (Contributed by NM, 1-Aug-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑄 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟))) | ||
| Theorem | 3noncolr2 39450 | Two ways to express 3 non-colinear atoms (rotated right 2 places). (Contributed by NM, 12-Jul-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑄 ≠ 𝑅 ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅))) | ||
| Theorem | 3noncolr1N 39451 | Two ways to express 3 non-colinear atoms (rotated right 1 place). (Contributed by NM, 12-Jul-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ≠ 𝑃 ∧ ¬ 𝑄 ≤ (𝑅 ∨ 𝑃))) | ||
| Theorem | hlatcon3 39452 | Atom exchange combined with contraposition. (Contributed by NM, 13-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) → ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) | ||
| Theorem | hlatcon2 39453 | Atom exchange combined with contraposition. (Contributed by NM, 13-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) → ¬ 𝑃 ≤ (𝑅 ∨ 𝑄)) | ||
| Theorem | 4noncolr3 39454 | A way to express 4 non-colinear atoms (rotated right 3 places). (Contributed by NM, 11-Jul-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) | ||
| Theorem | 4noncolr2 39455 | A way to express 4 non-colinear atoms (rotated right 2 places). (Contributed by NM, 11-Jul-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑅 ≠ 𝑆 ∧ ¬ 𝑃 ≤ (𝑅 ∨ 𝑆) ∧ ¬ 𝑄 ≤ ((𝑅 ∨ 𝑆) ∨ 𝑃))) | ||
| Theorem | 4noncolr1 39456 | A way to express 4 non-colinear atoms (rotated right 1 places). (Contributed by NM, 11-Jul-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑆 ≠ 𝑃 ∧ ¬ 𝑄 ≤ (𝑆 ∨ 𝑃) ∧ ¬ 𝑅 ≤ ((𝑆 ∨ 𝑃) ∨ 𝑄))) | ||
| Theorem | athgt 39457* | A Hilbert lattice, whose height is at least 4, has a chain of 4 successively covering atom joins. (Contributed by NM, 3-May-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (𝐾 ∈ HL → ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝𝐶(𝑝 ∨ 𝑞) ∧ ∃𝑟 ∈ 𝐴 ((𝑝 ∨ 𝑞)𝐶((𝑝 ∨ 𝑞) ∨ 𝑟) ∧ ∃𝑠 ∈ 𝐴 ((𝑝 ∨ 𝑞) ∨ 𝑟)𝐶(((𝑝 ∨ 𝑞) ∨ 𝑟) ∨ 𝑠)))) | ||
| Theorem | 3dim0 39458* | There exists a 3-dimensional (height-4) element i.e. a volume. (Contributed by NM, 25-Jul-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (𝐾 ∈ HL → ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ ¬ 𝑠 ≤ ((𝑝 ∨ 𝑞) ∨ 𝑟))) | ||
| Theorem | 3dimlem1 39459 | Lemma for 3dim1 39468. (Contributed by NM, 25-Jul-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆)) ∧ 𝑃 = 𝑄) → (𝑃 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑅) ∧ ¬ 𝑇 ≤ ((𝑃 ∨ 𝑅) ∨ 𝑆))) | ||
| Theorem | 3dimlem2 39460 | Lemma for 3dim1 39468. (Contributed by NM, 25-Jul-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑃 ≤ (𝑄 ∨ 𝑅))) → (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑆))) | ||
| Theorem | 3dimlem3a 39461 | Lemma for 3dim3 39470. (Contributed by NM, 27-Jul-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) → ¬ 𝑇 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) | ||
| Theorem | 3dimlem3 39462 | Lemma for 3dim1 39468. (Contributed by NM, 25-Jul-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ ¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) → (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) | ||
| Theorem | 3dimlem3OLDN 39463 | Lemma for 3dim1 39468. (Contributed by NM, 25-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ ¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) → (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) | ||
| Theorem | 3dimlem4a 39464 | Lemma for 3dim3 39470. (Contributed by NM, 27-Jul-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (¬ 𝑆 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) → ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) | ||
| Theorem | 3dimlem4 39465 | Lemma for 3dim1 39468. (Contributed by NM, 25-Jul-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) ∧ ¬ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆)) → (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) | ||
| Theorem | 3dimlem4OLDN 39466 | Lemma for 3dim1 39468. (Contributed by NM, 25-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) ∧ ¬ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆)) → (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) | ||
| Theorem | 3dim1lem5 39467* | Lemma for 3dim1 39468. (Contributed by NM, 26-Jul-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑃 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑃 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑃 ∨ 𝑢) ∨ 𝑣))) → ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (𝑃 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑃 ∨ 𝑞) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑞) ∨ 𝑟))) | ||
| Theorem | 3dim1 39468* | Construct a 3-dimensional volume (height-4 element) on top of a given atom 𝑃. (Contributed by NM, 25-Jul-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (𝑃 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑃 ∨ 𝑞) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑞) ∨ 𝑟))) | ||
| Theorem | 3dim2 39469* | Construct 2 new layers on top of 2 given atoms. (Contributed by NM, 27-Jul-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟))) | ||
| Theorem | 3dim3 39470* | Construct a new layer on top of 3 given atoms. (Contributed by NM, 27-Jul-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ∃𝑠 ∈ 𝐴 ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) | ||
| Theorem | 2dim 39471* | Generate a height-3 element (2-dimensional plane) from an atom. (Contributed by NM, 3-May-2012.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑃𝐶(𝑃 ∨ 𝑞) ∧ (𝑃 ∨ 𝑞)𝐶((𝑃 ∨ 𝑞) ∨ 𝑟))) | ||
| Theorem | 1dimN 39472* | An atom is covered by a height-2 element (1-dimensional line). (Contributed by NM, 3-May-2012.) (New usage is discouraged.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → ∃𝑞 ∈ 𝐴 𝑃𝐶(𝑃 ∨ 𝑞)) | ||
| Theorem | 1cvrco 39473 | The orthocomplement of an element covered by 1 is an atom. (Contributed by NM, 7-May-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 1 = (1.‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋𝐶 1 ↔ ( ⊥ ‘𝑋) ∈ 𝐴)) | ||
| Theorem | 1cvratex 39474* | There exists an atom less than an element covered by 1. (Contributed by NM, 7-May-2012.) (Revised by Mario Carneiro, 13-Jun-2014.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 1 = (1.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋𝐶 1 ) → ∃𝑝 ∈ 𝐴 𝑝 < 𝑋) | ||
| Theorem | 1cvratlt 39475 | An atom less than or equal to an element covered by 1 is less than the element. (Contributed by NM, 7-May-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 1 = (1.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) → 𝑃 < 𝑋) | ||
| Theorem | 1cvrjat 39476 | An element covered by the lattice unity, when joined with an atom not under it, equals the lattice unity. (Contributed by NM, 30-Apr-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 1 = (1.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋)) → (𝑋 ∨ 𝑃) = 1 ) | ||
| Theorem | 1cvrat 39477 | Create an atom under an element covered by the lattice unity. Part of proof of Lemma B in [Crawley] p. 112. (Contributed by NM, 30-Apr-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 1 = (1.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≠ 𝑄 ∧ 𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋)) → ((𝑃 ∨ 𝑄) ∧ 𝑋) ∈ 𝐴) | ||
| Theorem | ps-1 39478 | The join of two atoms 𝑅 ∨ 𝑆 (specifying a projective geometry line) is determined uniquely by any two atoms (specifying two points) less than or equal to that join. Part of Lemma 16.4 of [MaedaMaeda] p. 69, showing projective space postulate PS1 in [MaedaMaeda] p. 67. (Contributed by NM, 15-Nov-2011.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆) ↔ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) | ||
| Theorem | ps-2 39479* | Lattice analogue for the projective geometry axiom, "if a line intersects two sides of a triangle at different points then it also intersects the third side." Projective space condition PS2 in [MaedaMaeda] p. 68 and part of Theorem 16.4 in [MaedaMaeda] p. 69. (Contributed by NM, 1-Dec-2011.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((¬ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑄 ∨ 𝑅)))) → ∃𝑢 ∈ 𝐴 (𝑢 ≤ (𝑃 ∨ 𝑅) ∧ 𝑢 ≤ (𝑆 ∨ 𝑇))) | ||
| Theorem | 2atjlej 39480 | Two atoms are different if their join majorizes the join of two different atoms. (Contributed by NM, 4-Jun-2013.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆))) → 𝑅 ≠ 𝑆) | ||
| Theorem | hlatexch3N 39481 | Rearrange join of atoms in an equality. (Contributed by NM, 29-Jul-2013.) (New usage is discouraged.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑅))) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑅)) | ||
| Theorem | hlatexch4 39482 | Exchange 2 atoms. (Contributed by NM, 13-May-2013.) |
| ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑅 ∧ 𝑄 ≠ 𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑆)) | ||
| Theorem | ps-2b 39483 | Variation of projective geometry axiom ps-2 39479. (Contributed by NM, 3-Jul-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (¬ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ 𝑆 ≠ 𝑇 ∧ (𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑄 ∨ 𝑅)))) → ((𝑃 ∨ 𝑅) ∧ (𝑆 ∨ 𝑇)) ≠ 0 ) | ||
| Theorem | 3atlem1 39484 | Lemma for 3at 39491. (Contributed by NM, 22-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑃 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ 𝑈)) | ||
| Theorem | 3atlem2 39485 | Lemma for 3at 39491. (Contributed by NM, 22-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑃 ≠ 𝑈 ∧ 𝑃 ≤ (𝑇 ∨ 𝑈)) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ 𝑈)) | ||
| Theorem | 3atlem3 39486 | Lemma for 3at 39491. (Contributed by NM, 23-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑈 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ 𝑈)) | ||
| Theorem | 3atlem4 39487 | Lemma for 3at 39491. (Contributed by NM, 23-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑅)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ 𝑅)) | ||
| Theorem | 3atlem5 39488 | Lemma for 3at 39491. (Contributed by NM, 23-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ 𝑈)) | ||
| Theorem | 3atlem6 39489 | Lemma for 3at 39491. (Contributed by NM, 23-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄 ∧ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ 𝑈)) | ||
| Theorem | 3atlem7 39490 | Lemma for 3at 39491. (Contributed by NM, 23-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ 𝑈)) | ||
| Theorem | 3at 39491 | Any three non-colinear atoms in a (lattice) plane determine the plane uniquely. This is the 2-dimensional analogue of ps-1 39478 for lines and 4at 39614 for volumes. I could not find this proof in the literature on projective geometry (where it is either given as an axiom or stated as an unproved fact), but it is similar to Theorem 15 of Veblen, "The Foundations of Geometry" (1911), p. 18, which uses different axioms. This proof was written before I became aware of Veblen's, and it is possible that a shorter proof could be obtained by using Veblen's proof for hints. (Contributed by NM, 23-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) → (((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈) ↔ ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ 𝑈))) | ||
| Syntax | clln 39492 | Extend class notation with set of all "lattice lines" (lattice elements which cover an atom) in a Hilbert lattice. |
| class LLines | ||
| Syntax | clpl 39493 | Extend class notation with set of all "lattice planes" (lattice elements which cover a line) in a Hilbert lattice. |
| class LPlanes | ||
| Syntax | clvol 39494 | Extend class notation with set of all 3-dimensional "lattice volumes" (lattice elements which cover a plane) in a Hilbert lattice. |
| class LVols | ||
| Syntax | clines 39495 | Extend class notation with set of all projective lines for a Hilbert lattice. |
| class Lines | ||
| Syntax | cpointsN 39496 | Extend class notation with set of all projective points. |
| class Points | ||
| Syntax | cpsubsp 39497 | Extend class notation with set of all projective subspaces. |
| class PSubSp | ||
| Syntax | cpmap 39498 | Extend class notation with projective map. |
| class pmap | ||
| Definition | df-llines 39499* | Define the set of all "lattice lines" (lattice elements which cover an atom) in a Hilbert lattice 𝑘, in other words all elements of height 2 (or lattice dimension 2 or projective dimension 1). (Contributed by NM, 16-Jun-2012.) |
| ⊢ LLines = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑝 ∈ (Atoms‘𝑘)𝑝( ⋖ ‘𝑘)𝑥}) | ||
| Definition | df-lplanes 39500* | Define the set of all "lattice planes" (lattice elements which cover a line) in a Hilbert lattice 𝑘, in other words all elements of height 3 (or lattice dimension 3 or projective dimension 2). (Contributed by NM, 16-Jun-2012.) |
| ⊢ LPlanes = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑝 ∈ (LLines‘𝑘)𝑝( ⋖ ‘𝑘)𝑥}) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |