![]() |
Metamath
Proof Explorer Theorem List (p. 395 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | cvrat42 39401* | Commuted version of cvrat4 39400. (Contributed by NM, 28-Jan-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋 ≠ 0 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑟 ∨ 𝑄)))) | ||
Theorem | 2atjm 39402 | The meet of a line (expressed with 2 atoms) and a lattice element. (Contributed by NM, 30-Jul-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) → ((𝑃 ∨ 𝑄) ∧ 𝑋) = 𝑃) | ||
Theorem | atbtwn 39403 | Property of a 3rd atom 𝑅 on a line 𝑃 ∨ 𝑄 intersecting element 𝑋 at 𝑃. (Contributed by NM, 30-Jul-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ≠ 𝑃 ↔ ¬ 𝑅 ≤ 𝑋)) | ||
Theorem | atbtwnexOLDN 39404* | There exists a 3rd atom 𝑟 on a line 𝑃 ∨ 𝑄 intersecting element 𝑋 at 𝑃, such that 𝑟 is different from 𝑄 and not in 𝑋. (Contributed by NM, 30-Jul-2012.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑄 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄))) | ||
Theorem | atbtwnex 39405* | Given atoms 𝑃 in 𝑋 and 𝑄 not in 𝑋, there exists an atom 𝑟 not in 𝑋 such that the line 𝑄 ∨ 𝑟 intersects 𝑋 at 𝑃. (Contributed by NM, 1-Aug-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋)) → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑄 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟))) | ||
Theorem | 3noncolr2 39406 | Two ways to express 3 non-colinear atoms (rotated right 2 places). (Contributed by NM, 12-Jul-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑄 ≠ 𝑅 ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅))) | ||
Theorem | 3noncolr1N 39407 | Two ways to express 3 non-colinear atoms (rotated right 1 place). (Contributed by NM, 12-Jul-2012.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ≠ 𝑃 ∧ ¬ 𝑄 ≤ (𝑅 ∨ 𝑃))) | ||
Theorem | hlatcon3 39408 | Atom exchange combined with contraposition. (Contributed by NM, 13-Jun-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) → ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) | ||
Theorem | hlatcon2 39409 | Atom exchange combined with contraposition. (Contributed by NM, 13-Jun-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) → ¬ 𝑃 ≤ (𝑅 ∨ 𝑄)) | ||
Theorem | 4noncolr3 39410 | A way to express 4 non-colinear atoms (rotated right 3 places). (Contributed by NM, 11-Jul-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) | ||
Theorem | 4noncolr2 39411 | A way to express 4 non-colinear atoms (rotated right 2 places). (Contributed by NM, 11-Jul-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑅 ≠ 𝑆 ∧ ¬ 𝑃 ≤ (𝑅 ∨ 𝑆) ∧ ¬ 𝑄 ≤ ((𝑅 ∨ 𝑆) ∨ 𝑃))) | ||
Theorem | 4noncolr1 39412 | A way to express 4 non-colinear atoms (rotated right 1 places). (Contributed by NM, 11-Jul-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑆 ≠ 𝑃 ∧ ¬ 𝑄 ≤ (𝑆 ∨ 𝑃) ∧ ¬ 𝑅 ≤ ((𝑆 ∨ 𝑃) ∨ 𝑄))) | ||
Theorem | athgt 39413* | A Hilbert lattice, whose height is at least 4, has a chain of 4 successively covering atom joins. (Contributed by NM, 3-May-2012.) |
⊢ ∨ = (join‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (𝐾 ∈ HL → ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝𝐶(𝑝 ∨ 𝑞) ∧ ∃𝑟 ∈ 𝐴 ((𝑝 ∨ 𝑞)𝐶((𝑝 ∨ 𝑞) ∨ 𝑟) ∧ ∃𝑠 ∈ 𝐴 ((𝑝 ∨ 𝑞) ∨ 𝑟)𝐶(((𝑝 ∨ 𝑞) ∨ 𝑟) ∨ 𝑠)))) | ||
Theorem | 3dim0 39414* | There exists a 3-dimensional (height-4) element i.e. a volume. (Contributed by NM, 25-Jul-2012.) |
⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (𝐾 ∈ HL → ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ ¬ 𝑠 ≤ ((𝑝 ∨ 𝑞) ∨ 𝑟))) | ||
Theorem | 3dimlem1 39415 | Lemma for 3dim1 39424. (Contributed by NM, 25-Jul-2012.) |
⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆)) ∧ 𝑃 = 𝑄) → (𝑃 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑅) ∧ ¬ 𝑇 ≤ ((𝑃 ∨ 𝑅) ∨ 𝑆))) | ||
Theorem | 3dimlem2 39416 | Lemma for 3dim1 39424. (Contributed by NM, 25-Jul-2012.) |
⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑃 ≤ (𝑄 ∨ 𝑅))) → (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑆))) | ||
Theorem | 3dimlem3a 39417 | Lemma for 3dim3 39426. (Contributed by NM, 27-Jul-2012.) |
⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) → ¬ 𝑇 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) | ||
Theorem | 3dimlem3 39418 | Lemma for 3dim1 39424. (Contributed by NM, 25-Jul-2012.) |
⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ ¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) → (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) | ||
Theorem | 3dimlem3OLDN 39419 | Lemma for 3dim1 39424. (Contributed by NM, 25-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ ¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) → (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) | ||
Theorem | 3dimlem4a 39420 | Lemma for 3dim3 39426. (Contributed by NM, 27-Jul-2012.) |
⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (¬ 𝑆 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) → ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) | ||
Theorem | 3dimlem4 39421 | Lemma for 3dim1 39424. (Contributed by NM, 25-Jul-2012.) |
⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) ∧ ¬ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆)) → (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) | ||
Theorem | 3dimlem4OLDN 39422 | Lemma for 3dim1 39424. (Contributed by NM, 25-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) ∧ ¬ 𝑃 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆)) → (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) | ||
Theorem | 3dim1lem5 39423* | Lemma for 3dim1 39424. (Contributed by NM, 26-Jul-2012.) |
⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (𝑃 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑃 ∨ 𝑢) ∧ ¬ 𝑤 ≤ ((𝑃 ∨ 𝑢) ∨ 𝑣))) → ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (𝑃 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑃 ∨ 𝑞) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑞) ∨ 𝑟))) | ||
Theorem | 3dim1 39424* | Construct a 3-dimensional volume (height-4 element) on top of a given atom 𝑃. (Contributed by NM, 25-Jul-2012.) |
⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (𝑃 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑃 ∨ 𝑞) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑞) ∨ 𝑟))) | ||
Theorem | 3dim2 39425* | Construct 2 new layers on top of 2 given atoms. (Contributed by NM, 27-Jul-2012.) |
⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐴 (¬ 𝑟 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑟))) | ||
Theorem | 3dim3 39426* | Construct a new layer on top of 3 given atoms. (Contributed by NM, 27-Jul-2012.) |
⊢ ∨ = (join‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ∃𝑠 ∈ 𝐴 ¬ 𝑠 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) | ||
Theorem | 2dim 39427* | Generate a height-3 element (2-dimensional plane) from an atom. (Contributed by NM, 3-May-2012.) |
⊢ ∨ = (join‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑃𝐶(𝑃 ∨ 𝑞) ∧ (𝑃 ∨ 𝑞)𝐶((𝑃 ∨ 𝑞) ∨ 𝑟))) | ||
Theorem | 1dimN 39428* | An atom is covered by a height-2 element (1-dimensional line). (Contributed by NM, 3-May-2012.) (New usage is discouraged.) |
⊢ ∨ = (join‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → ∃𝑞 ∈ 𝐴 𝑃𝐶(𝑃 ∨ 𝑞)) | ||
Theorem | 1cvrco 39429 | The orthocomplement of an element covered by 1 is an atom. (Contributed by NM, 7-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 1 = (1.‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋𝐶 1 ↔ ( ⊥ ‘𝑋) ∈ 𝐴)) | ||
Theorem | 1cvratex 39430* | There exists an atom less than an element covered by 1. (Contributed by NM, 7-May-2012.) (Revised by Mario Carneiro, 13-Jun-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 1 = (1.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋𝐶 1 ) → ∃𝑝 ∈ 𝐴 𝑝 < 𝑋) | ||
Theorem | 1cvratlt 39431 | An atom less than or equal to an element covered by 1 is less than the element. (Contributed by NM, 7-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 1 = (1.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋𝐶 1 ∧ 𝑃 ≤ 𝑋)) → 𝑃 < 𝑋) | ||
Theorem | 1cvrjat 39432 | An element covered by the lattice unity, when joined with an atom not under it, equals the lattice unity. (Contributed by NM, 30-Apr-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 1 = (1.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ (𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋)) → (𝑋 ∨ 𝑃) = 1 ) | ||
Theorem | 1cvrat 39433 | Create an atom under an element covered by the lattice unity. Part of proof of Lemma B in [Crawley] p. 112. (Contributed by NM, 30-Apr-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 1 = (1.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ≠ 𝑄 ∧ 𝑋𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋)) → ((𝑃 ∨ 𝑄) ∧ 𝑋) ∈ 𝐴) | ||
Theorem | ps-1 39434 | The join of two atoms 𝑅 ∨ 𝑆 (specifying a projective geometry line) is determined uniquely by any two atoms (specifying two points) less than or equal to that join. Part of Lemma 16.4 of [MaedaMaeda] p. 69, showing projective space postulate PS1 in [MaedaMaeda] p. 67. (Contributed by NM, 15-Nov-2011.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆) ↔ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) | ||
Theorem | ps-2 39435* | Lattice analogue for the projective geometry axiom, "if a line intersects two sides of a triangle at different points then it also intersects the third side." Projective space condition PS2 in [MaedaMaeda] p. 68 and part of Theorem 16.4 in [MaedaMaeda] p. 69. (Contributed by NM, 1-Dec-2011.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ ((¬ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ 𝑆 ≠ 𝑇) ∧ (𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑄 ∨ 𝑅)))) → ∃𝑢 ∈ 𝐴 (𝑢 ≤ (𝑃 ∨ 𝑅) ∧ 𝑢 ≤ (𝑆 ∨ 𝑇))) | ||
Theorem | 2atjlej 39436 | Two atoms are different if their join majorizes the join of two different atoms. (Contributed by NM, 4-Jun-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆))) → 𝑅 ≠ 𝑆) | ||
Theorem | hlatexch3N 39437 | Rearrange join of atoms in an equality. (Contributed by NM, 29-Jul-2013.) (New usage is discouraged.) |
⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑅))) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑅)) | ||
Theorem | hlatexch4 39438 | Exchange 2 atoms. (Contributed by NM, 13-May-2013.) |
⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑅 ∧ 𝑄 ≠ 𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑆)) | ||
Theorem | ps-2b 39439 | Variation of projective geometry axiom ps-2 39435. (Contributed by NM, 3-Jul-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (¬ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ 𝑆 ≠ 𝑇 ∧ (𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑄 ∨ 𝑅)))) → ((𝑃 ∨ 𝑅) ∧ (𝑆 ∨ 𝑇)) ≠ 0 ) | ||
Theorem | 3atlem1 39440 | Lemma for 3at 39447. (Contributed by NM, 22-Jun-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑃 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ 𝑈)) | ||
Theorem | 3atlem2 39441 | Lemma for 3at 39447. (Contributed by NM, 22-Jun-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑃 ≠ 𝑈 ∧ 𝑃 ≤ (𝑇 ∨ 𝑈)) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ 𝑈)) | ||
Theorem | 3atlem3 39442 | Lemma for 3at 39447. (Contributed by NM, 23-Jun-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑈 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ 𝑈)) | ||
Theorem | 3atlem4 39443 | Lemma for 3at 39447. (Contributed by NM, 23-Jun-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑅)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ 𝑅)) | ||
Theorem | 3atlem5 39444 | Lemma for 3at 39447. (Contributed by NM, 23-Jun-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ 𝑈)) | ||
Theorem | 3atlem6 39445 | Lemma for 3at 39447. (Contributed by NM, 23-Jun-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄 ∧ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ 𝑈)) | ||
Theorem | 3atlem7 39446 | Lemma for 3at 39447. (Contributed by NM, 23-Jun-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ 𝑈)) | ||
Theorem | 3at 39447 | Any three non-colinear atoms in a (lattice) plane determine the plane uniquely. This is the 2-dimensional analogue of ps-1 39434 for lines and 4at 39570 for volumes. I could not find this proof in the literature on projective geometry (where it is either given as an axiom or stated as an unproved fact), but it is similar to Theorem 15 of Veblen, "The Foundations of Geometry" (1911), p. 18, which uses different axioms. This proof was written before I became aware of Veblen's, and it is possible that a shorter proof could be obtained by using Veblen's proof for hints. (Contributed by NM, 23-Jun-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) → (((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈) ↔ ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ 𝑈))) | ||
Syntax | clln 39448 | Extend class notation with set of all "lattice lines" (lattice elements which cover an atom) in a Hilbert lattice. |
class LLines | ||
Syntax | clpl 39449 | Extend class notation with set of all "lattice planes" (lattice elements which cover a line) in a Hilbert lattice. |
class LPlanes | ||
Syntax | clvol 39450 | Extend class notation with set of all 3-dimensional "lattice volumes" (lattice elements which cover a plane) in a Hilbert lattice. |
class LVols | ||
Syntax | clines 39451 | Extend class notation with set of all projective lines for a Hilbert lattice. |
class Lines | ||
Syntax | cpointsN 39452 | Extend class notation with set of all projective points. |
class Points | ||
Syntax | cpsubsp 39453 | Extend class notation with set of all projective subspaces. |
class PSubSp | ||
Syntax | cpmap 39454 | Extend class notation with projective map. |
class pmap | ||
Definition | df-llines 39455* | Define the set of all "lattice lines" (lattice elements which cover an atom) in a Hilbert lattice 𝑘, in other words all elements of height 2 (or lattice dimension 2 or projective dimension 1). (Contributed by NM, 16-Jun-2012.) |
⊢ LLines = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑝 ∈ (Atoms‘𝑘)𝑝( ⋖ ‘𝑘)𝑥}) | ||
Definition | df-lplanes 39456* | Define the set of all "lattice planes" (lattice elements which cover a line) in a Hilbert lattice 𝑘, in other words all elements of height 3 (or lattice dimension 3 or projective dimension 2). (Contributed by NM, 16-Jun-2012.) |
⊢ LPlanes = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑝 ∈ (LLines‘𝑘)𝑝( ⋖ ‘𝑘)𝑥}) | ||
Definition | df-lvols 39457* | Define the set of all 3-dimensional "lattice volumes" (lattice elements which cover a plane) in a Hilbert lattice 𝑘, in other words all elements of height 4 (or lattice dimension 4 or projective dimension 3). (Contributed by NM, 1-Jul-2012.) |
⊢ LVols = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑝 ∈ (LPlanes‘𝑘)𝑝( ⋖ ‘𝑘)𝑥}) | ||
Definition | df-lines 39458* | Define set of all projective lines for a Hilbert lattice (actually in any set at all, for simplicity). The join of two distinct atoms equals a line. Definition of lines in item 1 of [Holland95] p. 222. (Contributed by NM, 19-Sep-2011.) |
⊢ Lines = (𝑘 ∈ V ↦ {𝑠 ∣ ∃𝑞 ∈ (Atoms‘𝑘)∃𝑟 ∈ (Atoms‘𝑘)(𝑞 ≠ 𝑟 ∧ 𝑠 = {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)})}) | ||
Definition | df-pointsN 39459* | Define set of all projective points in a Hilbert lattice (actually in any set at all, for simplicity). A projective point is the singleton of a lattice atom. Definition 15.1 of [MaedaMaeda] p. 61. Note that item 1 in [Holland95] p. 222 defines a point as the atom itself, but this leads to a complicated subspace ordering that may be either membership or inclusion based on its arguments. (Contributed by NM, 2-Oct-2011.) |
⊢ Points = (𝑘 ∈ V ↦ {𝑞 ∣ ∃𝑝 ∈ (Atoms‘𝑘)𝑞 = {𝑝}}) | ||
Definition | df-psubsp 39460* | Define set of all projective subspaces. Based on definition of subspace in [Holland95] p. 212. (Contributed by NM, 2-Oct-2011.) |
⊢ PSubSp = (𝑘 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧ ∀𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ∀𝑟 ∈ (Atoms‘𝑘)(𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟 ∈ 𝑠))}) | ||
Definition | df-pmap 39461* | Define projective map for 𝑘 at 𝑎. Definition in Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 2-Oct-2011.) |
⊢ pmap = (𝑘 ∈ V ↦ (𝑎 ∈ (Base‘𝑘) ↦ {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)𝑎})) | ||
Theorem | llnset 39462* | The set of lattice lines in a Hilbert lattice. (Contributed by NM, 16-Jun-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐷 → 𝑁 = {𝑥 ∈ 𝐵 ∣ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑥}) | ||
Theorem | islln 39463* | The predicate "is a lattice line". (Contributed by NM, 16-Jun-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑋))) | ||
Theorem | islln4 39464* | The predicate "is a lattice line". (Contributed by NM, 16-Jun-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑋)) | ||
Theorem | llni 39465 | Condition implying a lattice line. (Contributed by NM, 17-Jun-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃𝐶𝑋) → 𝑋 ∈ 𝑁) | ||
Theorem | llnbase 39466 | A lattice line is a lattice element. (Contributed by NM, 16-Jun-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ (𝑋 ∈ 𝑁 → 𝑋 ∈ 𝐵) | ||
Theorem | islln3 39467* | The predicate "is a lattice line". (Contributed by NM, 17-Jun-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝 ∨ 𝑞)))) | ||
Theorem | islln2 39468* | The predicate "is a lattice line". (Contributed by NM, 23-Jun-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ (𝐾 ∈ HL → (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝 ∨ 𝑞))))) | ||
Theorem | llni2 39469 | The join of two different atoms is a lattice line. (Contributed by NM, 26-Jun-2012.) |
⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∨ 𝑄) ∈ 𝑁) | ||
Theorem | llnnleat 39470 | An atom cannot majorize a lattice line. (Contributed by NM, 8-Jul-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑃 ∈ 𝐴) → ¬ 𝑋 ≤ 𝑃) | ||
Theorem | llnneat 39471 | A lattice line is not an atom. (Contributed by NM, 19-Jun-2012.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) → ¬ 𝑋 ∈ 𝐴) | ||
Theorem | 2atneat 39472 | The join of two distinct atoms is not an atom. (Contributed by NM, 12-Oct-2012.) |
⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → ¬ (𝑃 ∨ 𝑄) ∈ 𝐴) | ||
Theorem | llnn0 39473 | A lattice line is nonzero. (Contributed by NM, 15-Jul-2012.) |
⊢ 0 = (0.‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) → 𝑋 ≠ 0 ) | ||
Theorem | islln2a 39474 | The predicate "is a lattice line" in terms of atoms. (Contributed by NM, 15-Jul-2012.) |
⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ((𝑃 ∨ 𝑄) ∈ 𝑁 ↔ 𝑃 ≠ 𝑄)) | ||
Theorem | llnle 39475* | Any element greater than 0 and not an atom majorizes a lattice line. (Contributed by NM, 28-Jun-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑋 ≠ 0 ∧ ¬ 𝑋 ∈ 𝐴)) → ∃𝑦 ∈ 𝑁 𝑦 ≤ 𝑋) | ||
Theorem | atcvrlln2 39476 | An atom under a line is covered by it. (Contributed by NM, 2-Jul-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁) ∧ 𝑃 ≤ 𝑋) → 𝑃𝐶𝑋) | ||
Theorem | atcvrlln 39477 | An element covering an atom is a lattice line and vice-versa. (Contributed by NM, 18-Jun-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → (𝑋 ∈ 𝐴 ↔ 𝑌 ∈ 𝑁)) | ||
Theorem | llnexatN 39478* | Given an atom on a line, there is another atom whose join equals the line. (Contributed by NM, 26-Jun-2012.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → ∃𝑞 ∈ 𝐴 (𝑃 ≠ 𝑞 ∧ 𝑋 = (𝑃 ∨ 𝑞))) | ||
Theorem | llncmp 39479 | If two lattice lines are comparable, they are equal. (Contributed by NM, 19-Jun-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) → (𝑋 ≤ 𝑌 ↔ 𝑋 = 𝑌)) | ||
Theorem | llnnlt 39480 | Two lattice lines cannot satisfy the less than relation. (Contributed by NM, 26-Jun-2012.) |
⊢ < = (lt‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) → ¬ 𝑋 < 𝑌) | ||
Theorem | 2llnmat 39481 | Two intersecting lines intersect at an atom. (Contributed by NM, 30-Apr-2012.) |
⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑋 ≠ 𝑌 ∧ (𝑋 ∧ 𝑌) ≠ 0 )) → (𝑋 ∧ 𝑌) ∈ 𝐴) | ||
Theorem | 2at0mat0 39482 | Special case of 2atmat0 39483 where one atom could be zero. (Contributed by NM, 30-May-2013.) |
⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = 0 )) | ||
Theorem | 2atmat0 39483 | The meet of two unequal lines (expressed as joins of atoms) is an atom or zero. (Contributed by NM, 2-Dec-2012.) |
⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = 0 )) | ||
Theorem | 2atm 39484 | An atom majorized by two different atom joins (which could be atoms or lines) is equal to their intersection. (Contributed by NM, 30-Jun-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑅 ∨ 𝑆) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → 𝑇 = ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆))) | ||
Theorem | ps-2c 39485 | Variation of projective geometry axiom ps-2 39435. (Contributed by NM, 3-Jul-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ ((¬ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ 𝑆 ≠ 𝑇) ∧ (𝑃 ∨ 𝑅) ≠ (𝑆 ∨ 𝑇) ∧ (𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑇 ≤ (𝑄 ∨ 𝑅)))) → ((𝑃 ∨ 𝑅) ∧ (𝑆 ∨ 𝑇)) ∈ 𝐴) | ||
Theorem | lplnset 39486* | The set of lattice planes in a Hilbert lattice. (Contributed by NM, 16-Jun-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) & ⊢ 𝑃 = (LPlanes‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐴 → 𝑃 = {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑥}) | ||
Theorem | islpln 39487* | The predicate "is a lattice plane". (Contributed by NM, 16-Jun-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) & ⊢ 𝑃 = (LPlanes‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐴 → (𝑋 ∈ 𝑃 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑋))) | ||
Theorem | islpln4 39488* | The predicate "is a lattice plane". (Contributed by NM, 17-Jun-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) & ⊢ 𝑃 = (LPlanes‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑃 ↔ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑋)) | ||
Theorem | lplni 39489 | Condition implying a lattice plane. (Contributed by NM, 20-Jun-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) & ⊢ 𝑃 = (LPlanes‘𝐾) ⇒ ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝑁) ∧ 𝑋𝐶𝑌) → 𝑌 ∈ 𝑃) | ||
Theorem | islpln3 39490* | The predicate "is a lattice plane". (Contributed by NM, 17-Jun-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) & ⊢ 𝑃 = (LPlanes‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑃 ↔ ∃𝑦 ∈ 𝑁 ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑝)))) | ||
Theorem | lplnbase 39491 | A lattice plane is a lattice element. (Contributed by NM, 17-Jun-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑃 = (LPlanes‘𝐾) ⇒ ⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ 𝐵) | ||
Theorem | islpln5 39492* | The predicate "is a lattice plane" in terms of atoms. (Contributed by NM, 24-Jun-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑃 = (LPlanes‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑃 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ 𝑋 = ((𝑝 ∨ 𝑞) ∨ 𝑟)))) | ||
Theorem | islpln2 39493* | The predicate "is a lattice plane" in terms of atoms. (Contributed by NM, 25-Jun-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑃 = (LPlanes‘𝐾) ⇒ ⊢ (𝐾 ∈ HL → (𝑋 ∈ 𝑃 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ 𝑋 = ((𝑝 ∨ 𝑞) ∨ 𝑟))))) | ||
Theorem | lplni2 39494 | The join of 3 different atoms is a lattice plane. (Contributed by NM, 4-Jul-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑃 = (LPlanes‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅))) → ((𝑄 ∨ 𝑅) ∨ 𝑆) ∈ 𝑃) | ||
Theorem | lvolex3N 39495* | There is an atom outside of a lattice plane i.e. a 3-dimensional lattice volume exists. (Contributed by NM, 28-Jul-2012.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑃 = (LPlanes‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃) → ∃𝑞 ∈ 𝐴 ¬ 𝑞 ≤ 𝑋) | ||
Theorem | llnmlplnN 39496 | The intersection of a line with a plane not containing it is an atom. (Contributed by NM, 29-Jun-2012.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) & ⊢ 𝑃 = (LPlanes‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑃) ∧ (¬ 𝑋 ≤ 𝑌 ∧ (𝑋 ∧ 𝑌) ≠ 0 )) → (𝑋 ∧ 𝑌) ∈ 𝐴) | ||
Theorem | lplnle 39497* | Any element greater than 0 and not an atom and not a lattice line majorizes a lattice plane. (Contributed by NM, 28-Jun-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) & ⊢ 𝑃 = (LPlanes‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑋 ≠ 0 ∧ ¬ 𝑋 ∈ 𝐴 ∧ ¬ 𝑋 ∈ 𝑁)) → ∃𝑦 ∈ 𝑃 𝑦 ≤ 𝑋) | ||
Theorem | lplnnle2at 39498 | A lattice line (or atom) cannot majorize a lattice plane. (Contributed by NM, 8-Jul-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑃 = (LPlanes‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ¬ 𝑋 ≤ (𝑄 ∨ 𝑅)) | ||
Theorem | lplnnleat 39499 | A lattice plane cannot majorize an atom. (Contributed by NM, 14-Jul-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑃 = (LPlanes‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) → ¬ 𝑋 ≤ 𝑄) | ||
Theorem | lplnnlelln 39500 | A lattice plane is not less than or equal to a lattice line. (Contributed by NM, 14-Jul-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) & ⊢ 𝑃 = (LPlanes‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) → ¬ 𝑋 ≤ 𝑌) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |