Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  polfvalN Structured version   Visualization version   GIF version

Theorem polfvalN 37145
Description: The projective subspace polarity function. (Contributed by NM, 23-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
polfval.o = (oc‘𝐾)
polfval.a 𝐴 = (Atoms‘𝐾)
polfval.m 𝑀 = (pmap‘𝐾)
polfval.p 𝑃 = (⊥𝑃𝐾)
Assertion
Ref Expression
polfvalN (𝐾𝐵𝑃 = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝)))))
Distinct variable groups:   𝐴,𝑚   𝑚,𝑝,𝐾
Allowed substitution hints:   𝐴(𝑝)   𝐵(𝑚,𝑝)   𝑃(𝑚,𝑝)   𝑀(𝑚,𝑝)   (𝑚,𝑝)

Proof of Theorem polfvalN
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 elex 3498 . 2 (𝐾𝐵𝐾 ∈ V)
2 polfval.p . . 3 𝑃 = (⊥𝑃𝐾)
3 fveq2 6661 . . . . . . 7 ( = 𝐾 → (Atoms‘) = (Atoms‘𝐾))
4 polfval.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
53, 4syl6eqr 2877 . . . . . 6 ( = 𝐾 → (Atoms‘) = 𝐴)
65pweqd 4541 . . . . 5 ( = 𝐾 → 𝒫 (Atoms‘) = 𝒫 𝐴)
7 fveq2 6661 . . . . . . . . . 10 ( = 𝐾 → (pmap‘) = (pmap‘𝐾))
8 polfval.m . . . . . . . . . 10 𝑀 = (pmap‘𝐾)
97, 8syl6eqr 2877 . . . . . . . . 9 ( = 𝐾 → (pmap‘) = 𝑀)
10 fveq2 6661 . . . . . . . . . . 11 ( = 𝐾 → (oc‘) = (oc‘𝐾))
11 polfval.o . . . . . . . . . . 11 = (oc‘𝐾)
1210, 11syl6eqr 2877 . . . . . . . . . 10 ( = 𝐾 → (oc‘) = )
1312fveq1d 6663 . . . . . . . . 9 ( = 𝐾 → ((oc‘)‘𝑝) = ( 𝑝))
149, 13fveq12d 6668 . . . . . . . 8 ( = 𝐾 → ((pmap‘)‘((oc‘)‘𝑝)) = (𝑀‘( 𝑝)))
1514adantr 484 . . . . . . 7 (( = 𝐾𝑝𝑚) → ((pmap‘)‘((oc‘)‘𝑝)) = (𝑀‘( 𝑝)))
1615iineq2dv 4930 . . . . . 6 ( = 𝐾 𝑝𝑚 ((pmap‘)‘((oc‘)‘𝑝)) = 𝑝𝑚 (𝑀‘( 𝑝)))
175, 16ineq12d 4175 . . . . 5 ( = 𝐾 → ((Atoms‘) ∩ 𝑝𝑚 ((pmap‘)‘((oc‘)‘𝑝))) = (𝐴 𝑝𝑚 (𝑀‘( 𝑝))))
186, 17mpteq12dv 5137 . . . 4 ( = 𝐾 → (𝑚 ∈ 𝒫 (Atoms‘) ↦ ((Atoms‘) ∩ 𝑝𝑚 ((pmap‘)‘((oc‘)‘𝑝)))) = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝)))))
19 df-polarityN 37144 . . . 4 𝑃 = ( ∈ V ↦ (𝑚 ∈ 𝒫 (Atoms‘) ↦ ((Atoms‘) ∩ 𝑝𝑚 ((pmap‘)‘((oc‘)‘𝑝)))))
204fvexi 6675 . . . . . 6 𝐴 ∈ V
2120pwex 5268 . . . . 5 𝒫 𝐴 ∈ V
2221mptex 6977 . . . 4 (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝)))) ∈ V
2318, 19, 22fvmpt 6759 . . 3 (𝐾 ∈ V → (⊥𝑃𝐾) = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝)))))
242, 23syl5eq 2871 . 2 (𝐾 ∈ V → 𝑃 = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝)))))
251, 24syl 17 1 (𝐾𝐵𝑃 = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2115  Vcvv 3480  cin 3918  𝒫 cpw 4522   ciin 4906  cmpt 5132  cfv 6343  occoc 16573  Atomscatm 36504  pmapcpmap 36738  𝑃cpolN 37143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-iin 4908  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-polarityN 37144
This theorem is referenced by:  polvalN  37146
  Copyright terms: Public domain W3C validator