Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  polfvalN Structured version   Visualization version   GIF version

Theorem polfvalN 38770
Description: The projective subspace polarity function. (Contributed by NM, 23-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
polfval.o βŠ₯ = (ocβ€˜πΎ)
polfval.a 𝐴 = (Atomsβ€˜πΎ)
polfval.m 𝑀 = (pmapβ€˜πΎ)
polfval.p 𝑃 = (βŠ₯π‘ƒβ€˜πΎ)
Assertion
Ref Expression
polfvalN (𝐾 ∈ 𝐡 β†’ 𝑃 = (π‘š ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ π‘š (π‘€β€˜( βŠ₯ β€˜π‘)))))
Distinct variable groups:   𝐴,π‘š   π‘š,𝑝,𝐾
Allowed substitution hints:   𝐴(𝑝)   𝐡(π‘š,𝑝)   𝑃(π‘š,𝑝)   𝑀(π‘š,𝑝)   βŠ₯ (π‘š,𝑝)

Proof of Theorem polfvalN
Dummy variable β„Ž is distinct from all other variables.
StepHypRef Expression
1 elex 3492 . 2 (𝐾 ∈ 𝐡 β†’ 𝐾 ∈ V)
2 polfval.p . . 3 𝑃 = (βŠ₯π‘ƒβ€˜πΎ)
3 fveq2 6891 . . . . . . 7 (β„Ž = 𝐾 β†’ (Atomsβ€˜β„Ž) = (Atomsβ€˜πΎ))
4 polfval.a . . . . . . 7 𝐴 = (Atomsβ€˜πΎ)
53, 4eqtr4di 2790 . . . . . 6 (β„Ž = 𝐾 β†’ (Atomsβ€˜β„Ž) = 𝐴)
65pweqd 4619 . . . . 5 (β„Ž = 𝐾 β†’ 𝒫 (Atomsβ€˜β„Ž) = 𝒫 𝐴)
7 fveq2 6891 . . . . . . . . . 10 (β„Ž = 𝐾 β†’ (pmapβ€˜β„Ž) = (pmapβ€˜πΎ))
8 polfval.m . . . . . . . . . 10 𝑀 = (pmapβ€˜πΎ)
97, 8eqtr4di 2790 . . . . . . . . 9 (β„Ž = 𝐾 β†’ (pmapβ€˜β„Ž) = 𝑀)
10 fveq2 6891 . . . . . . . . . . 11 (β„Ž = 𝐾 β†’ (ocβ€˜β„Ž) = (ocβ€˜πΎ))
11 polfval.o . . . . . . . . . . 11 βŠ₯ = (ocβ€˜πΎ)
1210, 11eqtr4di 2790 . . . . . . . . . 10 (β„Ž = 𝐾 β†’ (ocβ€˜β„Ž) = βŠ₯ )
1312fveq1d 6893 . . . . . . . . 9 (β„Ž = 𝐾 β†’ ((ocβ€˜β„Ž)β€˜π‘) = ( βŠ₯ β€˜π‘))
149, 13fveq12d 6898 . . . . . . . 8 (β„Ž = 𝐾 β†’ ((pmapβ€˜β„Ž)β€˜((ocβ€˜β„Ž)β€˜π‘)) = (π‘€β€˜( βŠ₯ β€˜π‘)))
1514adantr 481 . . . . . . 7 ((β„Ž = 𝐾 ∧ 𝑝 ∈ π‘š) β†’ ((pmapβ€˜β„Ž)β€˜((ocβ€˜β„Ž)β€˜π‘)) = (π‘€β€˜( βŠ₯ β€˜π‘)))
1615iineq2dv 5022 . . . . . 6 (β„Ž = 𝐾 β†’ ∩ 𝑝 ∈ π‘š ((pmapβ€˜β„Ž)β€˜((ocβ€˜β„Ž)β€˜π‘)) = ∩ 𝑝 ∈ π‘š (π‘€β€˜( βŠ₯ β€˜π‘)))
175, 16ineq12d 4213 . . . . 5 (β„Ž = 𝐾 β†’ ((Atomsβ€˜β„Ž) ∩ ∩ 𝑝 ∈ π‘š ((pmapβ€˜β„Ž)β€˜((ocβ€˜β„Ž)β€˜π‘))) = (𝐴 ∩ ∩ 𝑝 ∈ π‘š (π‘€β€˜( βŠ₯ β€˜π‘))))
186, 17mpteq12dv 5239 . . . 4 (β„Ž = 𝐾 β†’ (π‘š ∈ 𝒫 (Atomsβ€˜β„Ž) ↦ ((Atomsβ€˜β„Ž) ∩ ∩ 𝑝 ∈ π‘š ((pmapβ€˜β„Ž)β€˜((ocβ€˜β„Ž)β€˜π‘)))) = (π‘š ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ π‘š (π‘€β€˜( βŠ₯ β€˜π‘)))))
19 df-polarityN 38769 . . . 4 βŠ₯𝑃 = (β„Ž ∈ V ↦ (π‘š ∈ 𝒫 (Atomsβ€˜β„Ž) ↦ ((Atomsβ€˜β„Ž) ∩ ∩ 𝑝 ∈ π‘š ((pmapβ€˜β„Ž)β€˜((ocβ€˜β„Ž)β€˜π‘)))))
204fvexi 6905 . . . . . 6 𝐴 ∈ V
2120pwex 5378 . . . . 5 𝒫 𝐴 ∈ V
2221mptex 7224 . . . 4 (π‘š ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ π‘š (π‘€β€˜( βŠ₯ β€˜π‘)))) ∈ V
2318, 19, 22fvmpt 6998 . . 3 (𝐾 ∈ V β†’ (βŠ₯π‘ƒβ€˜πΎ) = (π‘š ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ π‘š (π‘€β€˜( βŠ₯ β€˜π‘)))))
242, 23eqtrid 2784 . 2 (𝐾 ∈ V β†’ 𝑃 = (π‘š ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ π‘š (π‘€β€˜( βŠ₯ β€˜π‘)))))
251, 24syl 17 1 (𝐾 ∈ 𝐡 β†’ 𝑃 = (π‘š ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ π‘š (π‘€β€˜( βŠ₯ β€˜π‘)))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  Vcvv 3474   ∩ cin 3947  π’« cpw 4602  βˆ© ciin 4998   ↦ cmpt 5231  β€˜cfv 6543  occoc 17204  Atomscatm 38128  pmapcpmap 38363  βŠ₯𝑃cpolN 38768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-polarityN 38769
This theorem is referenced by:  polvalN  38771
  Copyright terms: Public domain W3C validator