Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > polfvalN | Structured version Visualization version GIF version |
Description: The projective subspace polarity function. (Contributed by NM, 23-Oct-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
polfval.o | ⊢ ⊥ = (oc‘𝐾) |
polfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
polfval.m | ⊢ 𝑀 = (pmap‘𝐾) |
polfval.p | ⊢ 𝑃 = (⊥𝑃‘𝐾) |
Ref | Expression |
---|---|
polfvalN | ⊢ (𝐾 ∈ 𝐵 → 𝑃 = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3452 | . 2 ⊢ (𝐾 ∈ 𝐵 → 𝐾 ∈ V) | |
2 | polfval.p | . . 3 ⊢ 𝑃 = (⊥𝑃‘𝐾) | |
3 | fveq2 6792 | . . . . . . 7 ⊢ (ℎ = 𝐾 → (Atoms‘ℎ) = (Atoms‘𝐾)) | |
4 | polfval.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 3, 4 | eqtr4di 2791 | . . . . . 6 ⊢ (ℎ = 𝐾 → (Atoms‘ℎ) = 𝐴) |
6 | 5 | pweqd 4555 | . . . . 5 ⊢ (ℎ = 𝐾 → 𝒫 (Atoms‘ℎ) = 𝒫 𝐴) |
7 | fveq2 6792 | . . . . . . . . . 10 ⊢ (ℎ = 𝐾 → (pmap‘ℎ) = (pmap‘𝐾)) | |
8 | polfval.m | . . . . . . . . . 10 ⊢ 𝑀 = (pmap‘𝐾) | |
9 | 7, 8 | eqtr4di 2791 | . . . . . . . . 9 ⊢ (ℎ = 𝐾 → (pmap‘ℎ) = 𝑀) |
10 | fveq2 6792 | . . . . . . . . . . 11 ⊢ (ℎ = 𝐾 → (oc‘ℎ) = (oc‘𝐾)) | |
11 | polfval.o | . . . . . . . . . . 11 ⊢ ⊥ = (oc‘𝐾) | |
12 | 10, 11 | eqtr4di 2791 | . . . . . . . . . 10 ⊢ (ℎ = 𝐾 → (oc‘ℎ) = ⊥ ) |
13 | 12 | fveq1d 6794 | . . . . . . . . 9 ⊢ (ℎ = 𝐾 → ((oc‘ℎ)‘𝑝) = ( ⊥ ‘𝑝)) |
14 | 9, 13 | fveq12d 6799 | . . . . . . . 8 ⊢ (ℎ = 𝐾 → ((pmap‘ℎ)‘((oc‘ℎ)‘𝑝)) = (𝑀‘( ⊥ ‘𝑝))) |
15 | 14 | adantr 480 | . . . . . . 7 ⊢ ((ℎ = 𝐾 ∧ 𝑝 ∈ 𝑚) → ((pmap‘ℎ)‘((oc‘ℎ)‘𝑝)) = (𝑀‘( ⊥ ‘𝑝))) |
16 | 15 | iineq2dv 4952 | . . . . . 6 ⊢ (ℎ = 𝐾 → ∩ 𝑝 ∈ 𝑚 ((pmap‘ℎ)‘((oc‘ℎ)‘𝑝)) = ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝))) |
17 | 5, 16 | ineq12d 4150 | . . . . 5 ⊢ (ℎ = 𝐾 → ((Atoms‘ℎ) ∩ ∩ 𝑝 ∈ 𝑚 ((pmap‘ℎ)‘((oc‘ℎ)‘𝑝))) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝)))) |
18 | 6, 17 | mpteq12dv 5168 | . . . 4 ⊢ (ℎ = 𝐾 → (𝑚 ∈ 𝒫 (Atoms‘ℎ) ↦ ((Atoms‘ℎ) ∩ ∩ 𝑝 ∈ 𝑚 ((pmap‘ℎ)‘((oc‘ℎ)‘𝑝)))) = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝))))) |
19 | df-polarityN 37943 | . . . 4 ⊢ ⊥𝑃 = (ℎ ∈ V ↦ (𝑚 ∈ 𝒫 (Atoms‘ℎ) ↦ ((Atoms‘ℎ) ∩ ∩ 𝑝 ∈ 𝑚 ((pmap‘ℎ)‘((oc‘ℎ)‘𝑝))))) | |
20 | 4 | fvexi 6806 | . . . . . 6 ⊢ 𝐴 ∈ V |
21 | 20 | pwex 5306 | . . . . 5 ⊢ 𝒫 𝐴 ∈ V |
22 | 21 | mptex 7119 | . . . 4 ⊢ (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝)))) ∈ V |
23 | 18, 19, 22 | fvmpt 6895 | . . 3 ⊢ (𝐾 ∈ V → (⊥𝑃‘𝐾) = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝))))) |
24 | 2, 23 | eqtrid 2785 | . 2 ⊢ (𝐾 ∈ V → 𝑃 = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝))))) |
25 | 1, 24 | syl 17 | 1 ⊢ (𝐾 ∈ 𝐵 → 𝑃 = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2101 Vcvv 3434 ∩ cin 3888 𝒫 cpw 4536 ∩ ciin 4928 ↦ cmpt 5160 ‘cfv 6447 occoc 16998 Atomscatm 37303 pmapcpmap 37537 ⊥𝑃cpolN 37942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-iun 4929 df-iin 4930 df-br 5078 df-opab 5140 df-mpt 5161 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-polarityN 37943 |
This theorem is referenced by: polvalN 37945 |
Copyright terms: Public domain | W3C validator |