Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  polfvalN Structured version   Visualization version   GIF version

Theorem polfvalN 37944
Description: The projective subspace polarity function. (Contributed by NM, 23-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
polfval.o = (oc‘𝐾)
polfval.a 𝐴 = (Atoms‘𝐾)
polfval.m 𝑀 = (pmap‘𝐾)
polfval.p 𝑃 = (⊥𝑃𝐾)
Assertion
Ref Expression
polfvalN (𝐾𝐵𝑃 = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝)))))
Distinct variable groups:   𝐴,𝑚   𝑚,𝑝,𝐾
Allowed substitution hints:   𝐴(𝑝)   𝐵(𝑚,𝑝)   𝑃(𝑚,𝑝)   𝑀(𝑚,𝑝)   (𝑚,𝑝)

Proof of Theorem polfvalN
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 elex 3452 . 2 (𝐾𝐵𝐾 ∈ V)
2 polfval.p . . 3 𝑃 = (⊥𝑃𝐾)
3 fveq2 6792 . . . . . . 7 ( = 𝐾 → (Atoms‘) = (Atoms‘𝐾))
4 polfval.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
53, 4eqtr4di 2791 . . . . . 6 ( = 𝐾 → (Atoms‘) = 𝐴)
65pweqd 4555 . . . . 5 ( = 𝐾 → 𝒫 (Atoms‘) = 𝒫 𝐴)
7 fveq2 6792 . . . . . . . . . 10 ( = 𝐾 → (pmap‘) = (pmap‘𝐾))
8 polfval.m . . . . . . . . . 10 𝑀 = (pmap‘𝐾)
97, 8eqtr4di 2791 . . . . . . . . 9 ( = 𝐾 → (pmap‘) = 𝑀)
10 fveq2 6792 . . . . . . . . . . 11 ( = 𝐾 → (oc‘) = (oc‘𝐾))
11 polfval.o . . . . . . . . . . 11 = (oc‘𝐾)
1210, 11eqtr4di 2791 . . . . . . . . . 10 ( = 𝐾 → (oc‘) = )
1312fveq1d 6794 . . . . . . . . 9 ( = 𝐾 → ((oc‘)‘𝑝) = ( 𝑝))
149, 13fveq12d 6799 . . . . . . . 8 ( = 𝐾 → ((pmap‘)‘((oc‘)‘𝑝)) = (𝑀‘( 𝑝)))
1514adantr 480 . . . . . . 7 (( = 𝐾𝑝𝑚) → ((pmap‘)‘((oc‘)‘𝑝)) = (𝑀‘( 𝑝)))
1615iineq2dv 4952 . . . . . 6 ( = 𝐾 𝑝𝑚 ((pmap‘)‘((oc‘)‘𝑝)) = 𝑝𝑚 (𝑀‘( 𝑝)))
175, 16ineq12d 4150 . . . . 5 ( = 𝐾 → ((Atoms‘) ∩ 𝑝𝑚 ((pmap‘)‘((oc‘)‘𝑝))) = (𝐴 𝑝𝑚 (𝑀‘( 𝑝))))
186, 17mpteq12dv 5168 . . . 4 ( = 𝐾 → (𝑚 ∈ 𝒫 (Atoms‘) ↦ ((Atoms‘) ∩ 𝑝𝑚 ((pmap‘)‘((oc‘)‘𝑝)))) = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝)))))
19 df-polarityN 37943 . . . 4 𝑃 = ( ∈ V ↦ (𝑚 ∈ 𝒫 (Atoms‘) ↦ ((Atoms‘) ∩ 𝑝𝑚 ((pmap‘)‘((oc‘)‘𝑝)))))
204fvexi 6806 . . . . . 6 𝐴 ∈ V
2120pwex 5306 . . . . 5 𝒫 𝐴 ∈ V
2221mptex 7119 . . . 4 (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝)))) ∈ V
2318, 19, 22fvmpt 6895 . . 3 (𝐾 ∈ V → (⊥𝑃𝐾) = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝)))))
242, 23eqtrid 2785 . 2 (𝐾 ∈ V → 𝑃 = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝)))))
251, 24syl 17 1 (𝐾𝐵𝑃 = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2101  Vcvv 3434  cin 3888  𝒫 cpw 4536   ciin 4928  cmpt 5160  cfv 6447  occoc 16998  Atomscatm 37303  pmapcpmap 37537  𝑃cpolN 37942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-rep 5212  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-iun 4929  df-iin 4930  df-br 5078  df-opab 5140  df-mpt 5161  df-id 5491  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-polarityN 37943
This theorem is referenced by:  polvalN  37945
  Copyright terms: Public domain W3C validator