| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > polfvalN | Structured version Visualization version GIF version | ||
| Description: The projective subspace polarity function. (Contributed by NM, 23-Oct-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| polfval.o | ⊢ ⊥ = (oc‘𝐾) |
| polfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| polfval.m | ⊢ 𝑀 = (pmap‘𝐾) |
| polfval.p | ⊢ 𝑃 = (⊥𝑃‘𝐾) |
| Ref | Expression |
|---|---|
| polfvalN | ⊢ (𝐾 ∈ 𝐵 → 𝑃 = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3468 | . 2 ⊢ (𝐾 ∈ 𝐵 → 𝐾 ∈ V) | |
| 2 | polfval.p | . . 3 ⊢ 𝑃 = (⊥𝑃‘𝐾) | |
| 3 | fveq2 6858 | . . . . . . 7 ⊢ (ℎ = 𝐾 → (Atoms‘ℎ) = (Atoms‘𝐾)) | |
| 4 | polfval.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | 3, 4 | eqtr4di 2782 | . . . . . 6 ⊢ (ℎ = 𝐾 → (Atoms‘ℎ) = 𝐴) |
| 6 | 5 | pweqd 4580 | . . . . 5 ⊢ (ℎ = 𝐾 → 𝒫 (Atoms‘ℎ) = 𝒫 𝐴) |
| 7 | fveq2 6858 | . . . . . . . . . 10 ⊢ (ℎ = 𝐾 → (pmap‘ℎ) = (pmap‘𝐾)) | |
| 8 | polfval.m | . . . . . . . . . 10 ⊢ 𝑀 = (pmap‘𝐾) | |
| 9 | 7, 8 | eqtr4di 2782 | . . . . . . . . 9 ⊢ (ℎ = 𝐾 → (pmap‘ℎ) = 𝑀) |
| 10 | fveq2 6858 | . . . . . . . . . . 11 ⊢ (ℎ = 𝐾 → (oc‘ℎ) = (oc‘𝐾)) | |
| 11 | polfval.o | . . . . . . . . . . 11 ⊢ ⊥ = (oc‘𝐾) | |
| 12 | 10, 11 | eqtr4di 2782 | . . . . . . . . . 10 ⊢ (ℎ = 𝐾 → (oc‘ℎ) = ⊥ ) |
| 13 | 12 | fveq1d 6860 | . . . . . . . . 9 ⊢ (ℎ = 𝐾 → ((oc‘ℎ)‘𝑝) = ( ⊥ ‘𝑝)) |
| 14 | 9, 13 | fveq12d 6865 | . . . . . . . 8 ⊢ (ℎ = 𝐾 → ((pmap‘ℎ)‘((oc‘ℎ)‘𝑝)) = (𝑀‘( ⊥ ‘𝑝))) |
| 15 | 14 | adantr 480 | . . . . . . 7 ⊢ ((ℎ = 𝐾 ∧ 𝑝 ∈ 𝑚) → ((pmap‘ℎ)‘((oc‘ℎ)‘𝑝)) = (𝑀‘( ⊥ ‘𝑝))) |
| 16 | 15 | iineq2dv 4981 | . . . . . 6 ⊢ (ℎ = 𝐾 → ∩ 𝑝 ∈ 𝑚 ((pmap‘ℎ)‘((oc‘ℎ)‘𝑝)) = ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝))) |
| 17 | 5, 16 | ineq12d 4184 | . . . . 5 ⊢ (ℎ = 𝐾 → ((Atoms‘ℎ) ∩ ∩ 𝑝 ∈ 𝑚 ((pmap‘ℎ)‘((oc‘ℎ)‘𝑝))) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝)))) |
| 18 | 6, 17 | mpteq12dv 5194 | . . . 4 ⊢ (ℎ = 𝐾 → (𝑚 ∈ 𝒫 (Atoms‘ℎ) ↦ ((Atoms‘ℎ) ∩ ∩ 𝑝 ∈ 𝑚 ((pmap‘ℎ)‘((oc‘ℎ)‘𝑝)))) = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝))))) |
| 19 | df-polarityN 39897 | . . . 4 ⊢ ⊥𝑃 = (ℎ ∈ V ↦ (𝑚 ∈ 𝒫 (Atoms‘ℎ) ↦ ((Atoms‘ℎ) ∩ ∩ 𝑝 ∈ 𝑚 ((pmap‘ℎ)‘((oc‘ℎ)‘𝑝))))) | |
| 20 | 4 | fvexi 6872 | . . . . . 6 ⊢ 𝐴 ∈ V |
| 21 | 20 | pwex 5335 | . . . . 5 ⊢ 𝒫 𝐴 ∈ V |
| 22 | 21 | mptex 7197 | . . . 4 ⊢ (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝)))) ∈ V |
| 23 | 18, 19, 22 | fvmpt 6968 | . . 3 ⊢ (𝐾 ∈ V → (⊥𝑃‘𝐾) = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝))))) |
| 24 | 2, 23 | eqtrid 2776 | . 2 ⊢ (𝐾 ∈ V → 𝑃 = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝))))) |
| 25 | 1, 24 | syl 17 | 1 ⊢ (𝐾 ∈ 𝐵 → 𝑃 = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∩ cin 3913 𝒫 cpw 4563 ∩ ciin 4956 ↦ cmpt 5188 ‘cfv 6511 occoc 17228 Atomscatm 39256 pmapcpmap 39491 ⊥𝑃cpolN 39896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-polarityN 39897 |
| This theorem is referenced by: polvalN 39899 |
| Copyright terms: Public domain | W3C validator |