Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  polfvalN Structured version   Visualization version   GIF version

Theorem polfvalN 37845
Description: The projective subspace polarity function. (Contributed by NM, 23-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
polfval.o = (oc‘𝐾)
polfval.a 𝐴 = (Atoms‘𝐾)
polfval.m 𝑀 = (pmap‘𝐾)
polfval.p 𝑃 = (⊥𝑃𝐾)
Assertion
Ref Expression
polfvalN (𝐾𝐵𝑃 = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝)))))
Distinct variable groups:   𝐴,𝑚   𝑚,𝑝,𝐾
Allowed substitution hints:   𝐴(𝑝)   𝐵(𝑚,𝑝)   𝑃(𝑚,𝑝)   𝑀(𝑚,𝑝)   (𝑚,𝑝)

Proof of Theorem polfvalN
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 elex 3440 . 2 (𝐾𝐵𝐾 ∈ V)
2 polfval.p . . 3 𝑃 = (⊥𝑃𝐾)
3 fveq2 6756 . . . . . . 7 ( = 𝐾 → (Atoms‘) = (Atoms‘𝐾))
4 polfval.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
53, 4eqtr4di 2797 . . . . . 6 ( = 𝐾 → (Atoms‘) = 𝐴)
65pweqd 4549 . . . . 5 ( = 𝐾 → 𝒫 (Atoms‘) = 𝒫 𝐴)
7 fveq2 6756 . . . . . . . . . 10 ( = 𝐾 → (pmap‘) = (pmap‘𝐾))
8 polfval.m . . . . . . . . . 10 𝑀 = (pmap‘𝐾)
97, 8eqtr4di 2797 . . . . . . . . 9 ( = 𝐾 → (pmap‘) = 𝑀)
10 fveq2 6756 . . . . . . . . . . 11 ( = 𝐾 → (oc‘) = (oc‘𝐾))
11 polfval.o . . . . . . . . . . 11 = (oc‘𝐾)
1210, 11eqtr4di 2797 . . . . . . . . . 10 ( = 𝐾 → (oc‘) = )
1312fveq1d 6758 . . . . . . . . 9 ( = 𝐾 → ((oc‘)‘𝑝) = ( 𝑝))
149, 13fveq12d 6763 . . . . . . . 8 ( = 𝐾 → ((pmap‘)‘((oc‘)‘𝑝)) = (𝑀‘( 𝑝)))
1514adantr 480 . . . . . . 7 (( = 𝐾𝑝𝑚) → ((pmap‘)‘((oc‘)‘𝑝)) = (𝑀‘( 𝑝)))
1615iineq2dv 4946 . . . . . 6 ( = 𝐾 𝑝𝑚 ((pmap‘)‘((oc‘)‘𝑝)) = 𝑝𝑚 (𝑀‘( 𝑝)))
175, 16ineq12d 4144 . . . . 5 ( = 𝐾 → ((Atoms‘) ∩ 𝑝𝑚 ((pmap‘)‘((oc‘)‘𝑝))) = (𝐴 𝑝𝑚 (𝑀‘( 𝑝))))
186, 17mpteq12dv 5161 . . . 4 ( = 𝐾 → (𝑚 ∈ 𝒫 (Atoms‘) ↦ ((Atoms‘) ∩ 𝑝𝑚 ((pmap‘)‘((oc‘)‘𝑝)))) = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝)))))
19 df-polarityN 37844 . . . 4 𝑃 = ( ∈ V ↦ (𝑚 ∈ 𝒫 (Atoms‘) ↦ ((Atoms‘) ∩ 𝑝𝑚 ((pmap‘)‘((oc‘)‘𝑝)))))
204fvexi 6770 . . . . . 6 𝐴 ∈ V
2120pwex 5298 . . . . 5 𝒫 𝐴 ∈ V
2221mptex 7081 . . . 4 (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝)))) ∈ V
2318, 19, 22fvmpt 6857 . . 3 (𝐾 ∈ V → (⊥𝑃𝐾) = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝)))))
242, 23syl5eq 2791 . 2 (𝐾 ∈ V → 𝑃 = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝)))))
251, 24syl 17 1 (𝐾𝐵𝑃 = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  cin 3882  𝒫 cpw 4530   ciin 4922  cmpt 5153  cfv 6418  occoc 16896  Atomscatm 37204  pmapcpmap 37438  𝑃cpolN 37843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-polarityN 37844
This theorem is referenced by:  polvalN  37846
  Copyright terms: Public domain W3C validator