Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > polfvalN | Structured version Visualization version GIF version |
Description: The projective subspace polarity function. (Contributed by NM, 23-Oct-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
polfval.o | ⊢ ⊥ = (oc‘𝐾) |
polfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
polfval.m | ⊢ 𝑀 = (pmap‘𝐾) |
polfval.p | ⊢ 𝑃 = (⊥𝑃‘𝐾) |
Ref | Expression |
---|---|
polfvalN | ⊢ (𝐾 ∈ 𝐵 → 𝑃 = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3440 | . 2 ⊢ (𝐾 ∈ 𝐵 → 𝐾 ∈ V) | |
2 | polfval.p | . . 3 ⊢ 𝑃 = (⊥𝑃‘𝐾) | |
3 | fveq2 6756 | . . . . . . 7 ⊢ (ℎ = 𝐾 → (Atoms‘ℎ) = (Atoms‘𝐾)) | |
4 | polfval.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 3, 4 | eqtr4di 2797 | . . . . . 6 ⊢ (ℎ = 𝐾 → (Atoms‘ℎ) = 𝐴) |
6 | 5 | pweqd 4549 | . . . . 5 ⊢ (ℎ = 𝐾 → 𝒫 (Atoms‘ℎ) = 𝒫 𝐴) |
7 | fveq2 6756 | . . . . . . . . . 10 ⊢ (ℎ = 𝐾 → (pmap‘ℎ) = (pmap‘𝐾)) | |
8 | polfval.m | . . . . . . . . . 10 ⊢ 𝑀 = (pmap‘𝐾) | |
9 | 7, 8 | eqtr4di 2797 | . . . . . . . . 9 ⊢ (ℎ = 𝐾 → (pmap‘ℎ) = 𝑀) |
10 | fveq2 6756 | . . . . . . . . . . 11 ⊢ (ℎ = 𝐾 → (oc‘ℎ) = (oc‘𝐾)) | |
11 | polfval.o | . . . . . . . . . . 11 ⊢ ⊥ = (oc‘𝐾) | |
12 | 10, 11 | eqtr4di 2797 | . . . . . . . . . 10 ⊢ (ℎ = 𝐾 → (oc‘ℎ) = ⊥ ) |
13 | 12 | fveq1d 6758 | . . . . . . . . 9 ⊢ (ℎ = 𝐾 → ((oc‘ℎ)‘𝑝) = ( ⊥ ‘𝑝)) |
14 | 9, 13 | fveq12d 6763 | . . . . . . . 8 ⊢ (ℎ = 𝐾 → ((pmap‘ℎ)‘((oc‘ℎ)‘𝑝)) = (𝑀‘( ⊥ ‘𝑝))) |
15 | 14 | adantr 480 | . . . . . . 7 ⊢ ((ℎ = 𝐾 ∧ 𝑝 ∈ 𝑚) → ((pmap‘ℎ)‘((oc‘ℎ)‘𝑝)) = (𝑀‘( ⊥ ‘𝑝))) |
16 | 15 | iineq2dv 4946 | . . . . . 6 ⊢ (ℎ = 𝐾 → ∩ 𝑝 ∈ 𝑚 ((pmap‘ℎ)‘((oc‘ℎ)‘𝑝)) = ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝))) |
17 | 5, 16 | ineq12d 4144 | . . . . 5 ⊢ (ℎ = 𝐾 → ((Atoms‘ℎ) ∩ ∩ 𝑝 ∈ 𝑚 ((pmap‘ℎ)‘((oc‘ℎ)‘𝑝))) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝)))) |
18 | 6, 17 | mpteq12dv 5161 | . . . 4 ⊢ (ℎ = 𝐾 → (𝑚 ∈ 𝒫 (Atoms‘ℎ) ↦ ((Atoms‘ℎ) ∩ ∩ 𝑝 ∈ 𝑚 ((pmap‘ℎ)‘((oc‘ℎ)‘𝑝)))) = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝))))) |
19 | df-polarityN 37844 | . . . 4 ⊢ ⊥𝑃 = (ℎ ∈ V ↦ (𝑚 ∈ 𝒫 (Atoms‘ℎ) ↦ ((Atoms‘ℎ) ∩ ∩ 𝑝 ∈ 𝑚 ((pmap‘ℎ)‘((oc‘ℎ)‘𝑝))))) | |
20 | 4 | fvexi 6770 | . . . . . 6 ⊢ 𝐴 ∈ V |
21 | 20 | pwex 5298 | . . . . 5 ⊢ 𝒫 𝐴 ∈ V |
22 | 21 | mptex 7081 | . . . 4 ⊢ (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝)))) ∈ V |
23 | 18, 19, 22 | fvmpt 6857 | . . 3 ⊢ (𝐾 ∈ V → (⊥𝑃‘𝐾) = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝))))) |
24 | 2, 23 | syl5eq 2791 | . 2 ⊢ (𝐾 ∈ V → 𝑃 = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝))))) |
25 | 1, 24 | syl 17 | 1 ⊢ (𝐾 ∈ 𝐵 → 𝑃 = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∩ cin 3882 𝒫 cpw 4530 ∩ ciin 4922 ↦ cmpt 5153 ‘cfv 6418 occoc 16896 Atomscatm 37204 pmapcpmap 37438 ⊥𝑃cpolN 37843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-polarityN 37844 |
This theorem is referenced by: polvalN 37846 |
Copyright terms: Public domain | W3C validator |