| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-prjspn | Structured version Visualization version GIF version | ||
| Description: Define the n-dimensional projective space function. A projective space of dimension 1 is a projective line, and a projective space of dimension 2 is a projective plane. Compare df-ehl 25420. This space is considered n-dimensional because the vector space (𝑘 freeLMod (0...𝑛)) is (n+1)-dimensional and the ℙ𝕣𝕠𝕛 function returns equivalence classes with respect to a linear (1-dimensional) relation. (Contributed by BJ and Steven Nguyen, 29-Apr-2023.) |
| Ref | Expression |
|---|---|
| df-prjspn | ⊢ ℙ𝕣𝕠𝕛n = (𝑛 ∈ ℕ0, 𝑘 ∈ DivRing ↦ (ℙ𝕣𝕠𝕛‘(𝑘 freeLMod (0...𝑛)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cprjspn 42624 | . 2 class ℙ𝕣𝕠𝕛n | |
| 2 | vn | . . 3 setvar 𝑛 | |
| 3 | vk | . . 3 setvar 𝑘 | |
| 4 | cn0 12526 | . . 3 class ℕ0 | |
| 5 | cdr 20729 | . . 3 class DivRing | |
| 6 | 3 | cv 1539 | . . . . 5 class 𝑘 |
| 7 | cc0 11155 | . . . . . 6 class 0 | |
| 8 | 2 | cv 1539 | . . . . . 6 class 𝑛 |
| 9 | cfz 13547 | . . . . . 6 class ... | |
| 10 | 7, 8, 9 | co 7431 | . . . . 5 class (0...𝑛) |
| 11 | cfrlm 21766 | . . . . 5 class freeLMod | |
| 12 | 6, 10, 11 | co 7431 | . . . 4 class (𝑘 freeLMod (0...𝑛)) |
| 13 | cprjsp 42611 | . . . 4 class ℙ𝕣𝕠𝕛 | |
| 14 | 12, 13 | cfv 6561 | . . 3 class (ℙ𝕣𝕠𝕛‘(𝑘 freeLMod (0...𝑛))) |
| 15 | 2, 3, 4, 5, 14 | cmpo 7433 | . 2 class (𝑛 ∈ ℕ0, 𝑘 ∈ DivRing ↦ (ℙ𝕣𝕠𝕛‘(𝑘 freeLMod (0...𝑛)))) |
| 16 | 1, 15 | wceq 1540 | 1 wff ℙ𝕣𝕠𝕛n = (𝑛 ∈ ℕ0, 𝑘 ∈ DivRing ↦ (ℙ𝕣𝕠𝕛‘(𝑘 freeLMod (0...𝑛)))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: prjspnval 42626 |
| Copyright terms: Public domain | W3C validator |