Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-prjspn | Structured version Visualization version GIF version |
Description: Define the n-dimensional projective space function. A projective space of dimension 1 is a projective line, and a projective space of dimension 2 is a projective plane. Compare df-ehl 24578. This space is considered n-dimensional because the vector space (𝑘 freeLMod (0...𝑛)) is (n+1)-dimensional and the ℙ𝕣𝕠𝕛 function returns equivalence classes with respect to a linear (1-dimensional) relation. (Contributed by BJ and Steven Nguyen, 29-Apr-2023.) |
Ref | Expression |
---|---|
df-prjspn | ⊢ ℙ𝕣𝕠𝕛n = (𝑛 ∈ ℕ0, 𝑘 ∈ DivRing ↦ (ℙ𝕣𝕠𝕛‘(𝑘 freeLMod (0...𝑛)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cprjspn 40476 | . 2 class ℙ𝕣𝕠𝕛n | |
2 | vn | . . 3 setvar 𝑛 | |
3 | vk | . . 3 setvar 𝑘 | |
4 | cn0 12261 | . . 3 class ℕ0 | |
5 | cdr 20019 | . . 3 class DivRing | |
6 | 3 | cv 1536 | . . . . 5 class 𝑘 |
7 | cc0 10899 | . . . . . 6 class 0 | |
8 | 2 | cv 1536 | . . . . . 6 class 𝑛 |
9 | cfz 13267 | . . . . . 6 class ... | |
10 | 7, 8, 9 | co 7295 | . . . . 5 class (0...𝑛) |
11 | cfrlm 20981 | . . . . 5 class freeLMod | |
12 | 6, 10, 11 | co 7295 | . . . 4 class (𝑘 freeLMod (0...𝑛)) |
13 | cprjsp 40463 | . . . 4 class ℙ𝕣𝕠𝕛 | |
14 | 12, 13 | cfv 6447 | . . 3 class (ℙ𝕣𝕠𝕛‘(𝑘 freeLMod (0...𝑛))) |
15 | 2, 3, 4, 5, 14 | cmpo 7297 | . 2 class (𝑛 ∈ ℕ0, 𝑘 ∈ DivRing ↦ (ℙ𝕣𝕠𝕛‘(𝑘 freeLMod (0...𝑛)))) |
16 | 1, 15 | wceq 1537 | 1 wff ℙ𝕣𝕠𝕛n = (𝑛 ∈ ℕ0, 𝑘 ∈ DivRing ↦ (ℙ𝕣𝕠𝕛‘(𝑘 freeLMod (0...𝑛)))) |
Colors of variables: wff setvar class |
This definition is referenced by: prjspnval 40478 |
Copyright terms: Public domain | W3C validator |