Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-prjspn Structured version   Visualization version   GIF version

Definition df-prjspn 40477
Description: Define the n-dimensional projective space function. A projective space of dimension 1 is a projective line, and a projective space of dimension 2 is a projective plane. Compare df-ehl 24578. This space is considered n-dimensional because the vector space (𝑘 freeLMod (0...𝑛)) is (n+1)-dimensional and the ℙ𝕣𝕠𝕛 function returns equivalence classes with respect to a linear (1-dimensional) relation. (Contributed by BJ and Steven Nguyen, 29-Apr-2023.)
Assertion
Ref Expression
df-prjspn ℙ𝕣𝕠𝕛n = (𝑛 ∈ ℕ0, 𝑘 ∈ DivRing ↦ (ℙ𝕣𝕠𝕛‘(𝑘 freeLMod (0...𝑛))))
Distinct variable group:   𝑘,𝑛

Detailed syntax breakdown of Definition df-prjspn
StepHypRef Expression
1 cprjspn 40476 . 2 class ℙ𝕣𝕠𝕛n
2 vn . . 3 setvar 𝑛
3 vk . . 3 setvar 𝑘
4 cn0 12261 . . 3 class 0
5 cdr 20019 . . 3 class DivRing
63cv 1536 . . . . 5 class 𝑘
7 cc0 10899 . . . . . 6 class 0
82cv 1536 . . . . . 6 class 𝑛
9 cfz 13267 . . . . . 6 class ...
107, 8, 9co 7295 . . . . 5 class (0...𝑛)
11 cfrlm 20981 . . . . 5 class freeLMod
126, 10, 11co 7295 . . . 4 class (𝑘 freeLMod (0...𝑛))
13 cprjsp 40463 . . . 4 class ℙ𝕣𝕠𝕛
1412, 13cfv 6447 . . 3 class (ℙ𝕣𝕠𝕛‘(𝑘 freeLMod (0...𝑛)))
152, 3, 4, 5, 14cmpo 7297 . 2 class (𝑛 ∈ ℕ0, 𝑘 ∈ DivRing ↦ (ℙ𝕣𝕠𝕛‘(𝑘 freeLMod (0...𝑛))))
161, 15wceq 1537 1 wff ℙ𝕣𝕠𝕛n = (𝑛 ∈ ℕ0, 𝑘 ∈ DivRing ↦ (ℙ𝕣𝕠𝕛‘(𝑘 freeLMod (0...𝑛))))
Colors of variables: wff setvar class
This definition is referenced by:  prjspnval  40478
  Copyright terms: Public domain W3C validator