Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjspnval Structured version   Visualization version   GIF version

Theorem prjspnval 40463
Description: Value of the n-dimensional projective space function. (Contributed by Steven Nguyen, 1-May-2023.)
Assertion
Ref Expression
prjspnval ((𝑁 ∈ ℕ0𝐾 ∈ DivRing) → (𝑁ℙ𝕣𝕠𝕛n𝐾) = (ℙ𝕣𝕠𝕛‘(𝐾 freeLMod (0...𝑁))))

Proof of Theorem prjspnval
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7275 . . . 4 (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁))
21oveq2d 7283 . . 3 (𝑛 = 𝑁 → (𝑘 freeLMod (0...𝑛)) = (𝑘 freeLMod (0...𝑁)))
32fveq2d 6770 . 2 (𝑛 = 𝑁 → (ℙ𝕣𝕠𝕛‘(𝑘 freeLMod (0...𝑛))) = (ℙ𝕣𝕠𝕛‘(𝑘 freeLMod (0...𝑁))))
4 fvoveq1 7290 . 2 (𝑘 = 𝐾 → (ℙ𝕣𝕠𝕛‘(𝑘 freeLMod (0...𝑁))) = (ℙ𝕣𝕠𝕛‘(𝐾 freeLMod (0...𝑁))))
5 df-prjspn 40462 . 2 ℙ𝕣𝕠𝕛n = (𝑛 ∈ ℕ0, 𝑘 ∈ DivRing ↦ (ℙ𝕣𝕠𝕛‘(𝑘 freeLMod (0...𝑛))))
6 fvex 6779 . 2 (ℙ𝕣𝕠𝕛‘(𝐾 freeLMod (0...𝑁))) ∈ V
73, 4, 5, 6ovmpo 7423 1 ((𝑁 ∈ ℕ0𝐾 ∈ DivRing) → (𝑁ℙ𝕣𝕠𝕛n𝐾) = (ℙ𝕣𝕠𝕛‘(𝐾 freeLMod (0...𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cfv 6426  (class class class)co 7267  0cc0 10881  0cn0 12243  ...cfz 13249  DivRingcdr 20001   freeLMod cfrlm 20963  ℙ𝕣𝕠𝕛cprjsp 40448  ℙ𝕣𝕠𝕛ncprjspn 40461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5221  ax-nul 5228  ax-pr 5350
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3431  df-sbc 3716  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5074  df-opab 5136  df-id 5484  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-iota 6384  df-fun 6428  df-fv 6434  df-ov 7270  df-oprab 7271  df-mpo 7272  df-prjspn 40462
This theorem is referenced by:  prjspnval2  40465  prjcrv0  40478
  Copyright terms: Public domain W3C validator