Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjspnval Structured version   Visualization version   GIF version

Theorem prjspnval 42649
Description: Value of the n-dimensional projective space function. (Contributed by Steven Nguyen, 1-May-2023.)
Assertion
Ref Expression
prjspnval ((𝑁 ∈ ℕ0𝐾 ∈ DivRing) → (𝑁ℙ𝕣𝕠𝕛n𝐾) = (ℙ𝕣𝕠𝕛‘(𝐾 freeLMod (0...𝑁))))

Proof of Theorem prjspnval
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7349 . . . 4 (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁))
21oveq2d 7357 . . 3 (𝑛 = 𝑁 → (𝑘 freeLMod (0...𝑛)) = (𝑘 freeLMod (0...𝑁)))
32fveq2d 6821 . 2 (𝑛 = 𝑁 → (ℙ𝕣𝕠𝕛‘(𝑘 freeLMod (0...𝑛))) = (ℙ𝕣𝕠𝕛‘(𝑘 freeLMod (0...𝑁))))
4 fvoveq1 7364 . 2 (𝑘 = 𝐾 → (ℙ𝕣𝕠𝕛‘(𝑘 freeLMod (0...𝑁))) = (ℙ𝕣𝕠𝕛‘(𝐾 freeLMod (0...𝑁))))
5 df-prjspn 42648 . 2 ℙ𝕣𝕠𝕛n = (𝑛 ∈ ℕ0, 𝑘 ∈ DivRing ↦ (ℙ𝕣𝕠𝕛‘(𝑘 freeLMod (0...𝑛))))
6 fvex 6830 . 2 (ℙ𝕣𝕠𝕛‘(𝐾 freeLMod (0...𝑁))) ∈ V
73, 4, 5, 6ovmpo 7501 1 ((𝑁 ∈ ℕ0𝐾 ∈ DivRing) → (𝑁ℙ𝕣𝕠𝕛n𝐾) = (ℙ𝕣𝕠𝕛‘(𝐾 freeLMod (0...𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cfv 6476  (class class class)co 7341  0cc0 11001  0cn0 12376  ...cfz 13402  DivRingcdr 20639   freeLMod cfrlm 21678  ℙ𝕣𝕠𝕛cprjsp 42634  ℙ𝕣𝕠𝕛ncprjspn 42647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-iota 6432  df-fun 6478  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-prjspn 42648
This theorem is referenced by:  prjspnval2  42651
  Copyright terms: Public domain W3C validator