![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prjspnval | Structured version Visualization version GIF version |
Description: Value of the n-dimensional projective space function. (Contributed by Steven Nguyen, 1-May-2023.) |
Ref | Expression |
---|---|
prjspnval | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ DivRing) → (𝑁ℙ𝕣𝕠𝕛n𝐾) = (ℙ𝕣𝕠𝕛‘(𝐾 freeLMod (0...𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7419 | . . . 4 ⊢ (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁)) | |
2 | 1 | oveq2d 7427 | . . 3 ⊢ (𝑛 = 𝑁 → (𝑘 freeLMod (0...𝑛)) = (𝑘 freeLMod (0...𝑁))) |
3 | 2 | fveq2d 6895 | . 2 ⊢ (𝑛 = 𝑁 → (ℙ𝕣𝕠𝕛‘(𝑘 freeLMod (0...𝑛))) = (ℙ𝕣𝕠𝕛‘(𝑘 freeLMod (0...𝑁)))) |
4 | fvoveq1 7434 | . 2 ⊢ (𝑘 = 𝐾 → (ℙ𝕣𝕠𝕛‘(𝑘 freeLMod (0...𝑁))) = (ℙ𝕣𝕠𝕛‘(𝐾 freeLMod (0...𝑁)))) | |
5 | df-prjspn 41439 | . 2 ⊢ ℙ𝕣𝕠𝕛n = (𝑛 ∈ ℕ0, 𝑘 ∈ DivRing ↦ (ℙ𝕣𝕠𝕛‘(𝑘 freeLMod (0...𝑛)))) | |
6 | fvex 6904 | . 2 ⊢ (ℙ𝕣𝕠𝕛‘(𝐾 freeLMod (0...𝑁))) ∈ V | |
7 | 3, 4, 5, 6 | ovmpo 7570 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ DivRing) → (𝑁ℙ𝕣𝕠𝕛n𝐾) = (ℙ𝕣𝕠𝕛‘(𝐾 freeLMod (0...𝑁)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ‘cfv 6543 (class class class)co 7411 0cc0 11112 ℕ0cn0 12474 ...cfz 13486 DivRingcdr 20361 freeLMod cfrlm 21307 ℙ𝕣𝕠𝕛cprjsp 41425 ℙ𝕣𝕠𝕛ncprjspn 41438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-prjspn 41439 |
This theorem is referenced by: prjspnval2 41442 |
Copyright terms: Public domain | W3C validator |