Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prjspnval | Structured version Visualization version GIF version |
Description: Value of the n-dimensional projective space function. (Contributed by Steven Nguyen, 1-May-2023.) |
Ref | Expression |
---|---|
prjspnval | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ DivRing) → (𝑁ℙ𝕣𝕠𝕛n𝐾) = (ℙ𝕣𝕠𝕛‘(𝐾 freeLMod (0...𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7263 | . . . 4 ⊢ (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁)) | |
2 | 1 | oveq2d 7271 | . . 3 ⊢ (𝑛 = 𝑁 → (𝑘 freeLMod (0...𝑛)) = (𝑘 freeLMod (0...𝑁))) |
3 | 2 | fveq2d 6760 | . 2 ⊢ (𝑛 = 𝑁 → (ℙ𝕣𝕠𝕛‘(𝑘 freeLMod (0...𝑛))) = (ℙ𝕣𝕠𝕛‘(𝑘 freeLMod (0...𝑁)))) |
4 | fvoveq1 7278 | . 2 ⊢ (𝑘 = 𝐾 → (ℙ𝕣𝕠𝕛‘(𝑘 freeLMod (0...𝑁))) = (ℙ𝕣𝕠𝕛‘(𝐾 freeLMod (0...𝑁)))) | |
5 | df-prjspn 40375 | . 2 ⊢ ℙ𝕣𝕠𝕛n = (𝑛 ∈ ℕ0, 𝑘 ∈ DivRing ↦ (ℙ𝕣𝕠𝕛‘(𝑘 freeLMod (0...𝑛)))) | |
6 | fvex 6769 | . 2 ⊢ (ℙ𝕣𝕠𝕛‘(𝐾 freeLMod (0...𝑁))) ∈ V | |
7 | 3, 4, 5, 6 | ovmpo 7411 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ DivRing) → (𝑁ℙ𝕣𝕠𝕛n𝐾) = (ℙ𝕣𝕠𝕛‘(𝐾 freeLMod (0...𝑁)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 0cc0 10802 ℕ0cn0 12163 ...cfz 13168 DivRingcdr 19906 freeLMod cfrlm 20863 ℙ𝕣𝕠𝕛cprjsp 40361 ℙ𝕣𝕠𝕛ncprjspn 40374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-prjspn 40375 |
This theorem is referenced by: prjspnval2 40378 |
Copyright terms: Public domain | W3C validator |