HomeHome Metamath Proof Explorer
Theorem List (p. 417 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 41601-41700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremclsneibex 41601 If (pseudo-)closure and (pseudo-)neighborhood functions are related by the composite operator, 𝐻, then the base set exists. (Contributed by RP, 4-Jun-2021.)
𝐷 = (𝑃𝐵)    &   𝐻 = (𝐹𝐷)    &   (𝜑𝐾𝐻𝑁)       (𝜑𝐵 ∈ V)
 
Theoremclsneircomplex 41602 The relative complement of the class 𝑆 exists as a subset of the base set. (Contributed by RP, 26-Jun-2021.)
𝐷 = (𝑃𝐵)    &   𝐻 = (𝐹𝐷)    &   (𝜑𝐾𝐻𝑁)       (𝜑 → (𝐵𝑆) ∈ 𝒫 𝐵)
 
Theoremclsneif1o 41603* If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the 𝐻 operator, then the operator is a one-to-one, onto mapping. (Contributed by RP, 5-Jun-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))    &   𝐷 = (𝑃𝐵)    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   𝐻 = (𝐹𝐷)    &   (𝜑𝐾𝐻𝑁)       (𝜑𝐻:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵))
 
Theoremclsneicnv 41604* If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the 𝐻 operator, then the converse of the operator is known. (Contributed by RP, 5-Jun-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))    &   𝐷 = (𝑃𝐵)    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   𝐻 = (𝐹𝐷)    &   (𝜑𝐾𝐻𝑁)       (𝜑𝐻 = (𝐷 ∘ (𝐵𝑂𝒫 𝐵)))
 
Theoremclsneikex 41605* If closure and neighborhoods functions are related, the closure function exists. (Contributed by RP, 27-Jun-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))    &   𝐷 = (𝑃𝐵)    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   𝐻 = (𝐹𝐷)    &   (𝜑𝐾𝐻𝑁)       (𝜑𝐾 ∈ (𝒫 𝐵m 𝒫 𝐵))
 
Theoremclsneinex 41606* If closure and neighborhoods functions are related, the neighborhoods function exists. (Contributed by RP, 27-Jun-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))    &   𝐷 = (𝑃𝐵)    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   𝐻 = (𝐹𝐷)    &   (𝜑𝐾𝐻𝑁)       (𝜑𝑁 ∈ (𝒫 𝒫 𝐵m 𝐵))
 
Theoremclsneiel1 41607* If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the 𝐻 operator, then membership in the closure of a subset is equivalent to the complement of the subset not being a neighborhood of the point. (Contributed by RP, 7-Jun-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))    &   𝐷 = (𝑃𝐵)    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   𝐻 = (𝐹𝐷)    &   (𝜑𝐾𝐻𝑁)    &   (𝜑𝑋𝐵)    &   (𝜑𝑆 ∈ 𝒫 𝐵)       (𝜑 → (𝑋 ∈ (𝐾𝑆) ↔ ¬ (𝐵𝑆) ∈ (𝑁𝑋)))
 
Theoremclsneiel2 41608* If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the 𝐻 operator, then membership in the closure of the complement of a subset is equivalent to the subset not being a neighborhood of the point. (Contributed by RP, 7-Jun-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))    &   𝐷 = (𝑃𝐵)    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   𝐻 = (𝐹𝐷)    &   (𝜑𝐾𝐻𝑁)    &   (𝜑𝑋𝐵)    &   (𝜑𝑆 ∈ 𝒫 𝐵)       (𝜑 → (𝑋 ∈ (𝐾‘(𝐵𝑆)) ↔ ¬ 𝑆 ∈ (𝑁𝑋)))
 
Theoremclsneifv3 41609* Value of the neighborhoods (convergents) in terms of the closure (interior) function. (Contributed by RP, 27-Jun-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))    &   𝐷 = (𝑃𝐵)    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   𝐻 = (𝐹𝐷)    &   (𝜑𝐾𝐻𝑁)    &   (𝜑𝑋𝐵)       (𝜑 → (𝑁𝑋) = {𝑠 ∈ 𝒫 𝐵 ∣ ¬ 𝑋 ∈ (𝐾‘(𝐵𝑠))})
 
Theoremclsneifv4 41610* Value of the closure (interior) function in terms of the neighborhoods (convergents) function. (Contributed by RP, 27-Jun-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))    &   𝐷 = (𝑃𝐵)    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   𝐻 = (𝐹𝐷)    &   (𝜑𝐾𝐻𝑁)    &   (𝜑𝑆 ∈ 𝒫 𝐵)       (𝜑 → (𝐾𝑆) = {𝑥𝐵 ∣ ¬ (𝐵𝑆) ∈ (𝑁𝑥)})
 
Theoremneicvgbex 41611 If (pseudo-)neighborhood and (pseudo-)convergent functions are related by the composite operator, 𝐻, then the base set exists. (Contributed by RP, 4-Jun-2021.)
𝐷 = (𝑃𝐵)    &   𝐻 = (𝐹 ∘ (𝐷𝐺))    &   (𝜑𝑁𝐻𝑀)       (𝜑𝐵 ∈ V)
 
Theoremneicvgrcomplex 41612 The relative complement of the class 𝑆 exists as a subset of the base set. (Contributed by RP, 26-Jun-2021.)
𝐷 = (𝑃𝐵)    &   𝐻 = (𝐹 ∘ (𝐷𝐺))    &   (𝜑𝑁𝐻𝑀)       (𝜑 → (𝐵𝑆) ∈ 𝒫 𝐵)
 
Theoremneicvgf1o 41613* If neighborhood and convergent functions are related by operator 𝐻, it is a one-to-one onto relation. (Contributed by RP, 11-Jun-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))    &   𝐷 = (𝑃𝐵)    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   𝐺 = (𝐵𝑂𝒫 𝐵)    &   𝐻 = (𝐹 ∘ (𝐷𝐺))    &   (𝜑𝑁𝐻𝑀)       (𝜑𝐻:(𝒫 𝒫 𝐵m 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵))
 
Theoremneicvgnvo 41614* If neighborhood and convergent functions are related by operator 𝐻, it is its own converse function. (Contributed by RP, 11-Jun-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))    &   𝐷 = (𝑃𝐵)    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   𝐺 = (𝐵𝑂𝒫 𝐵)    &   𝐻 = (𝐹 ∘ (𝐷𝐺))    &   (𝜑𝑁𝐻𝑀)       (𝜑𝐻 = 𝐻)
 
Theoremneicvgnvor 41615* If neighborhood and convergent functions are related by operator 𝐻, the relationship holds with the functions swapped. (Contributed by RP, 11-Jun-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))    &   𝐷 = (𝑃𝐵)    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   𝐺 = (𝐵𝑂𝒫 𝐵)    &   𝐻 = (𝐹 ∘ (𝐷𝐺))    &   (𝜑𝑁𝐻𝑀)       (𝜑𝑀𝐻𝑁)
 
Theoremneicvgmex 41616* If the neighborhoods and convergents functions are related, the convergents function exists. (Contributed by RP, 27-Jun-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))    &   𝐷 = (𝑃𝐵)    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   𝐺 = (𝐵𝑂𝒫 𝐵)    &   𝐻 = (𝐹 ∘ (𝐷𝐺))    &   (𝜑𝑁𝐻𝑀)       (𝜑𝑀 ∈ (𝒫 𝒫 𝐵m 𝐵))
 
Theoremneicvgnex 41617* If the neighborhoods and convergents functions are related, the neighborhoods function exists. (Contributed by RP, 27-Jun-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))    &   𝐷 = (𝑃𝐵)    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   𝐺 = (𝐵𝑂𝒫 𝐵)    &   𝐻 = (𝐹 ∘ (𝐷𝐺))    &   (𝜑𝑁𝐻𝑀)       (𝜑𝑁 ∈ (𝒫 𝒫 𝐵m 𝐵))
 
Theoremneicvgel1 41618* A subset being an element of a neighborhood of a point is equivalent to the complement of that subset not being a element of the convergent of that point. (Contributed by RP, 12-Jun-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))    &   𝐷 = (𝑃𝐵)    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   𝐺 = (𝐵𝑂𝒫 𝐵)    &   𝐻 = (𝐹 ∘ (𝐷𝐺))    &   (𝜑𝑁𝐻𝑀)    &   (𝜑𝑋𝐵)    &   (𝜑𝑆 ∈ 𝒫 𝐵)       (𝜑 → (𝑆 ∈ (𝑁𝑋) ↔ ¬ (𝐵𝑆) ∈ (𝑀𝑋)))
 
Theoremneicvgel2 41619* The complement of a subset being an element of a neighborhood at a point is equivalent to that subset not being a element of the convergent at that point. (Contributed by RP, 12-Jun-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))    &   𝐷 = (𝑃𝐵)    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   𝐺 = (𝐵𝑂𝒫 𝐵)    &   𝐻 = (𝐹 ∘ (𝐷𝐺))    &   (𝜑𝑁𝐻𝑀)    &   (𝜑𝑋𝐵)    &   (𝜑𝑆 ∈ 𝒫 𝐵)       (𝜑 → ((𝐵𝑆) ∈ (𝑁𝑋) ↔ ¬ 𝑆 ∈ (𝑀𝑋)))
 
Theoremneicvgfv 41620* The value of the neighborhoods (convergents) in terms of the the convergents (neighborhoods) function. (Contributed by RP, 27-Jun-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))    &   𝐷 = (𝑃𝐵)    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   𝐺 = (𝐵𝑂𝒫 𝐵)    &   𝐻 = (𝐹 ∘ (𝐷𝐺))    &   (𝜑𝑁𝐻𝑀)    &   (𝜑𝑋𝐵)       (𝜑 → (𝑁𝑋) = {𝑠 ∈ 𝒫 𝐵 ∣ ¬ (𝐵𝑠) ∈ (𝑀𝑋)})
 
Theoremntrrn 41621 The range of the interior function of a topology a subset of the open sets of the topology. (Contributed by RP, 22-Apr-2021.)
𝑋 = 𝐽    &   𝐼 = (int‘𝐽)       (𝐽 ∈ Top → ran 𝐼𝐽)
 
Theoremntrf 41622 The interior function of a topology is a map from the powerset of the base set to the open sets of the topology. (Contributed by RP, 22-Apr-2021.)
𝑋 = 𝐽    &   𝐼 = (int‘𝐽)       (𝐽 ∈ Top → 𝐼:𝒫 𝑋𝐽)
 
Theoremntrf2 41623 The interior function is a map from the powerset of the base set to itself. (Contributed by RP, 22-Apr-2021.)
𝑋 = 𝐽    &   𝐼 = (int‘𝐽)       (𝐽 ∈ Top → 𝐼:𝒫 𝑋⟶𝒫 𝑋)
 
Theoremntrelmap 41624 The interior function is a map from the powerset of the base set to itself. (Contributed by RP, 22-Apr-2021.)
𝑋 = 𝐽    &   𝐼 = (int‘𝐽)       (𝐽 ∈ Top → 𝐼 ∈ (𝒫 𝑋m 𝒫 𝑋))
 
Theoremclsf2 41625 The closure function is a map from the powerset of the base set to itself. This is less precise than clsf 22107. (Contributed by RP, 22-Apr-2021.)
𝑋 = 𝐽    &   𝐾 = (cls‘𝐽)       (𝐽 ∈ Top → 𝐾:𝒫 𝑋⟶𝒫 𝑋)
 
Theoremclselmap 41626 The closure function is a map from the powerset of the base set to itself. (Contributed by RP, 22-Apr-2021.)
𝑋 = 𝐽    &   𝐾 = (cls‘𝐽)       (𝐽 ∈ Top → 𝐾 ∈ (𝒫 𝑋m 𝒫 𝑋))
 
Theoremdssmapntrcls 41627* The interior and closure operators on a topology are duals of each other. See also kur14lem2 33069. (Contributed by RP, 21-Apr-2021.)
𝑋 = 𝐽    &   𝐾 = (cls‘𝐽)    &   𝐼 = (int‘𝐽)    &   𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))    &   𝐷 = (𝑂𝑋)       (𝐽 ∈ Top → 𝐼 = (𝐷𝐾))
 
Theoremdssmapclsntr 41628* The closure and interior operators on a topology are duals of each other. See also kur14lem2 33069. (Contributed by RP, 22-Apr-2021.)
𝑋 = 𝐽    &   𝐾 = (cls‘𝐽)    &   𝐼 = (int‘𝐽)    &   𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))    &   𝐷 = (𝑂𝑋)       (𝐽 ∈ Top → 𝐾 = (𝐷𝐼))
 
20.31.4.3  Generic Neighborhood Spaces

Any neighborhood space is an open set topology and any open set topology is a neighborhood space. Seifert and Threlfall define a generic neighborhood space which is a superset of what is now generally used and related concepts and the following will show that those definitions apply to elements of Top.

Seifert and Threlfall do not allow neighborhood spaces on the empty set while sn0top 22057 is an example of a topology with an empty base set. This divergence is unlikely to pose serious problems.

 
Theoremgneispa 41629* Each point 𝑝 of the neighborhood space has at least one neighborhood; each neighborhood of 𝑝 contains 𝑝. Axiom A of Seifert and Threlfall. (Contributed by RP, 5-Apr-2021.)
𝑋 = 𝐽       (𝐽 ∈ Top → ∀𝑝𝑋 (((nei‘𝐽)‘{𝑝}) ≠ ∅ ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑝})𝑝𝑛))
 
Theoremgneispb 41630* Given a neighborhood 𝑁 of 𝑃, each subset of the neighborhood space containing this neighborhood is also a neighborhood of 𝑃. Axiom B of Seifert and Threlfall. (Contributed by RP, 5-Apr-2021.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑃𝑋𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ∀𝑠 ∈ 𝒫 𝑋(𝑁𝑠𝑠 ∈ ((nei‘𝐽)‘{𝑃})))
 
Theoremgneispace2 41631* The predicate that 𝐹 is a (generic) Seifert and Threlfall neighborhood space. (Contributed by RP, 15-Apr-2021.)
𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}       (𝐹𝑉 → (𝐹𝐴 ↔ (𝐹:dom 𝐹⟶(𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))))
 
Theoremgneispace3 41632* The predicate that 𝐹 is a (generic) Seifert and Threlfall neighborhood space. (Contributed by RP, 15-Apr-2021.)
𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}       (𝐹𝑉 → (𝐹𝐴 ↔ ((Fun 𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})) ∧ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))))
 
Theoremgneispace 41633* The predicate that 𝐹 is a (generic) Seifert and Threlfall neighborhood space. (Contributed by RP, 14-Apr-2021.)
𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}       (𝐹𝑉 → (𝐹𝐴 ↔ (Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))))))
 
Theoremgneispacef 41634* A generic neighborhood space is a function with a range that is a subset of the powerset of the powerset of its domain. (Contributed by RP, 15-Apr-2021.)
𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}       (𝐹𝐴𝐹:dom 𝐹⟶(𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}))
 
Theoremgneispacef2 41635* A generic neighborhood space is a function with a range that is a subset of the powerset of the powerset of its domain. (Contributed by RP, 15-Apr-2021.)
𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}       (𝐹𝐴𝐹:dom 𝐹⟶𝒫 𝒫 dom 𝐹)
 
Theoremgneispacefun 41636* A generic neighborhood space is a function. (Contributed by RP, 15-Apr-2021.)
𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}       (𝐹𝐴 → Fun 𝐹)
 
Theoremgneispacern 41637* A generic neighborhood space has a range that is a subset of the powerset of the powerset of its domain. (Contributed by RP, 15-Apr-2021.)
𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}       (𝐹𝐴 → ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}))
 
Theoremgneispacern2 41638* A generic neighborhood space has a range that is a subset of the powerset of the powerset of its domain. (Contributed by RP, 15-Apr-2021.)
𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}       (𝐹𝐴 → ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹)
 
Theoremgneispace0nelrn 41639* A generic neighborhood space has a nonempty set of neighborhoods for every point in its domain. (Contributed by RP, 15-Apr-2021.)
𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}       (𝐹𝐴 → ∀𝑝 ∈ dom 𝐹(𝐹𝑝) ≠ ∅)
 
Theoremgneispace0nelrn2 41640* A generic neighborhood space has a nonempty set of neighborhoods for every point in its domain. (Contributed by RP, 15-Apr-2021.)
𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}       ((𝐹𝐴𝑃 ∈ dom 𝐹) → (𝐹𝑃) ≠ ∅)
 
Theoremgneispace0nelrn3 41641* A generic neighborhood space has a nonempty set of neighborhoods for every point in its domain. (Contributed by RP, 15-Apr-2021.)
𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}       (𝐹𝐴 → ¬ ∅ ∈ ran 𝐹)
 
Theoremgneispaceel 41642* Every neighborhood of a point in a generic neighborhood space contains that point. (Contributed by RP, 15-Apr-2021.)
𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}       (𝐹𝐴 → ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)𝑝𝑛)
 
Theoremgneispaceel2 41643* Every neighborhood of a point in a generic neighborhood space contains that point. (Contributed by RP, 15-Apr-2021.)
𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}       ((𝐹𝐴𝑃 ∈ dom 𝐹𝑁 ∈ (𝐹𝑃)) → 𝑃𝑁)
 
Theoremgneispacess 41644* All supersets of a neighborhood of a point (limited to the domain of the neighborhood space) are also neighborhoods of that point. (Contributed by RP, 15-Apr-2021.)
𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}       (𝐹𝐴 → ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))
 
Theoremgneispacess2 41645* All supersets of a neighborhood of a point (limited to the domain of the neighborhood space) are also neighborhoods of that point. (Contributed by RP, 15-Apr-2021.)
𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}       (((𝐹𝐴𝑃 ∈ dom 𝐹) ∧ (𝑁 ∈ (𝐹𝑃) ∧ 𝑆 ∈ 𝒫 dom 𝐹𝑁𝑆)) → 𝑆 ∈ (𝐹𝑃))
 
20.31.5  Exploring Higher Homotopy via Kerodon

See https://kerodon.net/ for a work in progress by Jacob Lurie.

 
20.31.5.1  Simplicial Sets

See https://kerodon.net/tag/0004 for introduction to the topological simplex of dimension 𝑁.

 
Theoremk0004lem1 41646 Application of ssin 4161 to range of a function. (Contributed by RP, 1-Apr-2021.)
(𝐷 = (𝐵𝐶) → ((𝐹:𝐴𝐵 ∧ (𝐹𝐴) ⊆ 𝐶) ↔ 𝐹:𝐴𝐷))
 
Theoremk0004lem2 41647 A mapping with a particular restricted range is also a mapping to that range. (Contributed by RP, 1-Apr-2021.)
((𝐴𝑈𝐵𝑉𝐶𝐵) → ((𝐹 ∈ (𝐵m 𝐴) ∧ (𝐹𝐴) ⊆ 𝐶) ↔ 𝐹 ∈ (𝐶m 𝐴)))
 
Theoremk0004lem3 41648 When the value of a mapping on a singleton is known, the mapping is a completely known singleton. (Contributed by RP, 2-Apr-2021.)
((𝐴𝑈𝐵𝑉𝐶𝐵) → ((𝐹 ∈ (𝐵m {𝐴}) ∧ (𝐹𝐴) = 𝐶) ↔ 𝐹 = {⟨𝐴, 𝐶⟩}))
 
Theoremk0004val 41649* The topological simplex of dimension 𝑁 is the set of real vectors where the components are nonnegative and sum to 1. (Contributed by RP, 29-Mar-2021.)
𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡𝑘) = 1})       (𝑁 ∈ ℕ0 → (𝐴𝑁) = {𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡𝑘) = 1})
 
Theoremk0004ss1 41650* The topological simplex of dimension 𝑁 is a subset of the real vectors of dimension (𝑁 + 1). (Contributed by RP, 29-Mar-2021.)
𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡𝑘) = 1})       (𝑁 ∈ ℕ0 → (𝐴𝑁) ⊆ (ℝ ↑m (1...(𝑁 + 1))))
 
Theoremk0004ss2 41651* The topological simplex of dimension 𝑁 is a subset of the base set of a real vector space of dimension (𝑁 + 1). (Contributed by RP, 29-Mar-2021.)
𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡𝑘) = 1})       (𝑁 ∈ ℕ0 → (𝐴𝑁) ⊆ (Base‘(ℝ^‘(1...(𝑁 + 1)))))
 
Theoremk0004ss3 41652* The topological simplex of dimension 𝑁 is a subset of the base set of Euclidean space of dimension (𝑁 + 1). (Contributed by RP, 29-Mar-2021.)
𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡𝑘) = 1})       (𝑁 ∈ ℕ0 → (𝐴𝑁) ⊆ (Base‘(𝔼hil‘(𝑁 + 1))))
 
Theoremk0004val0 41653* The topological simplex of dimension 0 is a singleton. (Contributed by RP, 2-Apr-2021.)
𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡𝑘) = 1})       (𝐴‘0) = {{⟨1, 1⟩}}
 
20.32  Mathbox for Stanislas Polu
 
Theoreminductionexd 41654 Simple induction example. (Contributed by Stanislas Polu, 9-Mar-2020.)
(𝑁 ∈ ℕ → 3 ∥ ((4↑𝑁) + 5))
 
20.32.1  IMO Problems
 
20.32.1.1  IMO 1972 B2
 
Theoremwwlemuld 41655 Natural deduction form of lemul2d 12745. (Contributed by Stanislas Polu, 9-Mar-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑 → (𝐶 · 𝐴) ≤ (𝐶 · 𝐵))    &   (𝜑 → 0 < 𝐶)       (𝜑𝐴𝐵)
 
Theoremleeq1d 41656 Specialization of breq1d 5080 to reals and less than. (Contributed by Stanislas Polu, 9-Mar-2020.)
(𝜑𝐴𝐶)    &   (𝜑𝐴 = 𝐵)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑𝐵𝐶)
 
Theoremleeq2d 41657 Specialization of breq2d 5082 to reals and less than. (Contributed by Stanislas Polu, 9-Mar-2020.)
(𝜑𝐴𝐶)    &   (𝜑𝐶 = 𝐷)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑𝐴𝐷)
 
Theoremabsmulrposd 41658 Specialization of absmuld with absidd 15062. (Contributed by Stanislas Polu, 9-Mar-2020.)
(𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (abs‘(𝐴 · 𝐵)) = (𝐴 · (abs‘𝐵)))
 
Theoremimadisjld 41659 Natural dduction form of one side of imadisj 5977. (Contributed by Stanislas Polu, 9-Mar-2020.)
(𝜑 → (dom 𝐴𝐵) = ∅)       (𝜑 → (𝐴𝐵) = ∅)
 
Theoremimadisjlnd 41660 Natural deduction form of one negated side of imadisj 5977. (Contributed by Stanislas Polu, 9-Mar-2020.)
(𝜑 → (dom 𝐴𝐵) ≠ ∅)       (𝜑 → (𝐴𝐵) ≠ ∅)
 
Theoremwnefimgd 41661 The image of a mapping from A is nonempty if A is nonempty. (Contributed by Stanislas Polu, 9-Mar-2020.)
(𝜑𝐴 ≠ ∅)    &   (𝜑𝐹:𝐴𝐵)       (𝜑 → (𝐹𝐴) ≠ ∅)
 
Theoremfco2d 41662 Natural deduction form of fco2 6611. (Contributed by Stanislas Polu, 9-Mar-2020.)
(𝜑𝐺:𝐴𝐵)    &   (𝜑 → (𝐹𝐵):𝐵𝐶)       (𝜑 → (𝐹𝐺):𝐴𝐶)
 
Theoremwfximgfd 41663 The value of a function on its domain is in the image of the function. (Contributed by Stanislas Polu, 9-Mar-2020.)
(𝜑𝐶𝐴)    &   (𝜑𝐹:𝐴𝐵)       (𝜑 → (𝐹𝐶) ∈ (𝐹𝐴))
 
Theoremextoimad 41664* If |f(x)| <= C for all x then it applies to all x in the image of |f(x)| (Contributed by Stanislas Polu, 9-Mar-2020.)
(𝜑𝐹:ℝ⟶ℝ)    &   (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹𝑦)) ≤ 𝐶)       (𝜑 → ∀𝑥 ∈ (abs “ (𝐹 “ ℝ))𝑥𝐶)
 
Theoremimo72b2lem0 41665* Lemma for imo72b2 41672. (Contributed by Stanislas Polu, 9-Mar-2020.)
(𝜑𝐹:ℝ⟶ℝ)    &   (𝜑𝐺:ℝ⟶ℝ)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → ((𝐹‘(𝐴 + 𝐵)) + (𝐹‘(𝐴𝐵))) = (2 · ((𝐹𝐴) · (𝐺𝐵))))    &   (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹𝑦)) ≤ 1)       (𝜑 → ((abs‘(𝐹𝐴)) · (abs‘(𝐺𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
 
Theoremsuprleubrd 41666* Natural deduction form of specialized suprleub 11871. (Contributed by Stanislas Polu, 9-Mar-2020.)
(𝜑𝐴 ⊆ ℝ)    &   (𝜑𝐴 ≠ ∅)    &   (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → ∀𝑧𝐴 𝑧𝐵)       (𝜑 → sup(𝐴, ℝ, < ) ≤ 𝐵)
 
Theoremimo72b2lem2 41667* Lemma for imo72b2 41672. (Contributed by Stanislas Polu, 9-Mar-2020.)
(𝜑𝐹:ℝ⟶ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑 → ∀𝑧 ∈ ℝ (abs‘(𝐹𝑧)) ≤ 𝐶)       (𝜑 → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ≤ 𝐶)
 
Theoremsuprlubrd 41668* Natural deduction form of specialized suprlub 11869. (Contributed by Stanislas Polu, 9-Mar-2020.)
(𝜑𝐴 ⊆ ℝ)    &   (𝜑𝐴 ≠ ∅)    &   (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → ∃𝑧𝐴 𝐵 < 𝑧)       (𝜑𝐵 < sup(𝐴, ℝ, < ))
 
Theoremimo72b2lem1 41669* Lemma for imo72b2 41672. (Contributed by Stanislas Polu, 9-Mar-2020.)
(𝜑𝐹:ℝ⟶ℝ)    &   (𝜑 → ∃𝑥 ∈ ℝ (𝐹𝑥) ≠ 0)    &   (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹𝑦)) ≤ 1)       (𝜑 → 0 < sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
 
Theoremlemuldiv3d 41670 'Less than or equal to' relationship between division and multiplication. (Contributed by Stanislas Polu, 9-Mar-2020.)
(𝜑 → (𝐵 · 𝐴) ≤ 𝐶)    &   (𝜑 → 0 < 𝐴)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑𝐵 ≤ (𝐶 / 𝐴))
 
Theoremlemuldiv4d 41671 'Less than or equal to' relationship between division and multiplication. (Contributed by Stanislas Polu, 9-Mar-2020.)
(𝜑𝐵 ≤ (𝐶 / 𝐴))    &   (𝜑 → 0 < 𝐴)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → (𝐵 · 𝐴) ≤ 𝐶)
 
Theoremimo72b2 41672* IMO 1972 B2. (14th International Mathematical Olympiad in Poland, problem B2). (Contributed by Stanislas Polu, 9-Mar-2020.)
(𝜑𝐹:ℝ⟶ℝ)    &   (𝜑𝐺:ℝ⟶ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → ∀𝑢 ∈ ℝ ∀𝑣 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))))    &   (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹𝑦)) ≤ 1)    &   (𝜑 → ∃𝑥 ∈ ℝ (𝐹𝑥) ≠ 0)       (𝜑 → (abs‘(𝐺𝐵)) ≤ 1)
 
20.32.2  INT Inequalities Proof Generator

This section formalizes theorems necessary to reproduce the equality and inequality generator described in "Neural Theorem Proving on Inequality Problems" http://aitp-conference.org/2020/abstract/paper_18.pdf.

Other theorems required: 0red 10909 1red 10907 readdcld 10935 remulcld 10936 eqcomd 2744.

 
Theoremint-addcomd 41673 AdditionCommutativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
(𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴 = 𝐵)       (𝜑 → (𝐵 + 𝐶) = (𝐶 + 𝐴))
 
Theoremint-addassocd 41674 AdditionAssociativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑𝐴 = 𝐵)       (𝜑 → (𝐵 + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + 𝐷))
 
Theoremint-addsimpd 41675 AdditionSimplification generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 = 𝐵)       (𝜑 → 0 = (𝐴𝐵))
 
Theoremint-mulcomd 41676 MultiplicationCommutativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
(𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴 = 𝐵)       (𝜑 → (𝐵 · 𝐶) = (𝐶 · 𝐴))
 
Theoremint-mulassocd 41677 MultiplicationAssociativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
(𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑𝐴 = 𝐵)       (𝜑 → (𝐵 · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · 𝐷))
 
Theoremint-mulsimpd 41678 MultiplicationSimplification generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
(𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 = 𝐵)    &   (𝜑𝐵 ≠ 0)       (𝜑 → 1 = (𝐴 / 𝐵))
 
Theoremint-leftdistd 41679 AdditionMultiplicationLeftDistribution generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
(𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑𝐴 = 𝐵)       (𝜑 → ((𝐶 + 𝐷) · 𝐵) = ((𝐶 · 𝐴) + (𝐷 · 𝐴)))
 
Theoremint-rightdistd 41680 AdditionMultiplicationRightDistribution generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
(𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑𝐴 = 𝐵)       (𝜑 → (𝐵 · (𝐶 + 𝐷)) = ((𝐴 · 𝐶) + (𝐴 · 𝐷)))
 
Theoremint-sqdefd 41681 SquareDefinition generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
(𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 = 𝐵)       (𝜑 → (𝐴 · 𝐵) = (𝐴↑2))
 
Theoremint-mul11d 41682 First MultiplicationOne generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 = 𝐵)       (𝜑 → (𝐴 · 1) = 𝐵)
 
Theoremint-mul12d 41683 Second MultiplicationOne generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 = 𝐵)       (𝜑 → (1 · 𝐴) = 𝐵)
 
Theoremint-add01d 41684 First AdditionZero generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 = 𝐵)       (𝜑 → (𝐴 + 0) = 𝐵)
 
Theoremint-add02d 41685 Second AdditionZero generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 = 𝐵)       (𝜑 → (0 + 𝐴) = 𝐵)
 
Theoremint-sqgeq0d 41686 SquareGEQZero generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 = 𝐵)       (𝜑 → 0 ≤ (𝐴 · 𝐵))
 
Theoremint-eqprincd 41687 PrincipleOfEquality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐴 + 𝐶) = (𝐵 + 𝐷))
 
Theoremint-eqtransd 41688 EqualityTransitivity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐵 = 𝐶)       (𝜑𝐴 = 𝐶)
 
Theoremint-eqmvtd 41689 EquMoveTerm generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
(𝜑𝐶 ∈ ℝ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑𝐴 = 𝐵)    &   (𝜑𝐴 = (𝐶 + 𝐷))       (𝜑𝐶 = (𝐵𝐷))
 
Theoremint-eqineqd 41690 EquivalenceImpliesDoubleInequality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
(𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 = 𝐵)       (𝜑𝐵𝐴)
 
Theoremint-ineqmvtd 41691 IneqMoveTerm generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
(𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑𝐵𝐴)    &   (𝜑𝐴 = (𝐶 + 𝐷))       (𝜑 → (𝐵𝐷) ≤ 𝐶)
 
Theoremint-ineq1stprincd 41692 FirstPrincipleOfInequality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑𝐵𝐴)    &   (𝜑𝐷𝐶)       (𝜑 → (𝐵 + 𝐷) ≤ (𝐴 + 𝐶))
 
Theoremint-ineq2ndprincd 41693 SecondPrincipleOfInequality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐵𝐴)    &   (𝜑 → 0 ≤ 𝐶)       (𝜑 → (𝐵 · 𝐶) ≤ (𝐴 · 𝐶))
 
Theoremint-ineqtransd 41694 InequalityTransitivity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐵𝐴)    &   (𝜑𝐶𝐵)       (𝜑𝐶𝐴)
 
20.32.3  N-Digit Addition Proof Generator

This section formalizes theorems used in an n-digit addition proof generator.

Other theorems required: deccl 12381 addcomli 11097 00id 11080 addid1i 11092 addid2i 11093 eqid 2738 dec0h 12388 decadd 12420 decaddc 12421.

 
Theoremunitadd 41695 Theorem used in conjunction with decaddc 12421 to absorb carry when generating n-digit addition synthetic proofs. (Contributed by Stanislas Polu, 7-Apr-2020.)
(𝐴 + 𝐵) = 𝐹    &   (𝐶 + 1) = 𝐵    &   𝐴 ∈ ℕ0    &   𝐶 ∈ ℕ0       ((𝐴 + 𝐶) + 1) = 𝐹
 
20.32.4  AM-GM (for k = 2,3,4)
 
Theoremgsumws3 41696 Valuation of a length 3 word in a monoid. (Contributed by Stanislas Polu, 9-Sep-2020.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → (𝐺 Σg ⟨“𝑆𝑇𝑈”⟩) = (𝑆 + (𝑇 + 𝑈)))
 
Theoremgsumws4 41697 Valuation of a length 4 word in a monoid. (Contributed by Stanislas Polu, 10-Sep-2020.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵 ∧ (𝑈𝐵𝑉𝐵)))) → (𝐺 Σg ⟨“𝑆𝑇𝑈𝑉”⟩) = (𝑆 + (𝑇 + (𝑈 + 𝑉))))
 
Theoremamgm2d 41698 Arithmetic-geometric mean inequality for 𝑛 = 2, derived from amgmlem 26044. (Contributed by Stanislas Polu, 8-Sep-2020.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑 → ((𝐴 · 𝐵)↑𝑐(1 / 2)) ≤ ((𝐴 + 𝐵) / 2))
 
Theoremamgm3d 41699 Arithmetic-geometric mean inequality for 𝑛 = 3. (Contributed by Stanislas Polu, 11-Sep-2020.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐶 ∈ ℝ+)       (𝜑 → ((𝐴 · (𝐵 · 𝐶))↑𝑐(1 / 3)) ≤ ((𝐴 + (𝐵 + 𝐶)) / 3))
 
Theoremamgm4d 41700 Arithmetic-geometric mean inequality for 𝑛 = 4. (Contributed by Stanislas Polu, 11-Sep-2020.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐶 ∈ ℝ+)    &   (𝜑𝐷 ∈ ℝ+)       (𝜑 → ((𝐴 · (𝐵 · (𝐶 · 𝐷)))↑𝑐(1 / 4)) ≤ ((𝐴 + (𝐵 + (𝐶 + 𝐷))) / 4))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >