![]() |
Metamath
Proof Explorer Theorem List (p. 417 of 437) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28347) |
![]() (28348-29872) |
![]() (29873-43657) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | iundjiun 41601* | Given a sequence 𝐸 of sets, a sequence 𝐹 of disjoint sets is built, such that the indexed union stays the same. As in the proof of Property 112C (d) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑛𝜑 & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶𝑉) & ⊢ 𝐹 = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) ⇒ ⊢ (𝜑 → ((∀𝑚 ∈ 𝑍 ∪ 𝑛 ∈ (𝑁...𝑚)(𝐹‘𝑛) = ∪ 𝑛 ∈ (𝑁...𝑚)(𝐸‘𝑛) ∧ ∪ 𝑛 ∈ 𝑍 (𝐹‘𝑛) = ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) ∧ Disj 𝑛 ∈ 𝑍 (𝐹‘𝑛))) | ||
Theorem | meaxrcl 41602 | The measure of a set is an extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 & ⊢ (𝜑 → 𝐴 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ*) | ||
Theorem | meadjun 41603 | The measure of the union of two disjoint sets is the sum of the measures, Property 112C (a) of [Fremlin1] p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) ⇒ ⊢ (𝜑 → (𝑀‘(𝐴 ∪ 𝐵)) = ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵))) | ||
Theorem | meassle 41604 | The measure of a set is greater than or equal to the measure of a subset, Property 112C (b) of [Fremlin1] p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝑀‘𝐴) ≤ (𝑀‘𝐵)) | ||
Theorem | meaunle 41605 | The measure of the union of two sets is less than or equal to the sum of the measures, Property 112C (c) of [Fremlin1] p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑀‘(𝐴 ∪ 𝐵)) ≤ ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵))) | ||
Theorem | meadjiunlem 41606* | The sum of nonnegative extended reals, restricted to the range of another function. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐺:𝑋⟶𝑆) & ⊢ 𝑌 = {𝑖 ∈ 𝑋 ∣ (𝐺‘𝑖) ≠ ∅} & ⊢ (𝜑 → Disj 𝑖 ∈ 𝑋 (𝐺‘𝑖)) ⇒ ⊢ (𝜑 → (Σ^‘(𝑀 ↾ ran 𝐺)) = (Σ^‘(𝑀 ∘ 𝐺))) | ||
Theorem | meadjiun 41607* | The measure of the disjoint union of a countable set is the extended sum of the measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → 𝐴 ≼ ω) & ⊢ (𝜑 → Disj 𝑘 ∈ 𝐴 𝐵) ⇒ ⊢ (𝜑 → (𝑀‘∪ 𝑘 ∈ 𝐴 𝐵) = (Σ^‘(𝑘 ∈ 𝐴 ↦ (𝑀‘𝐵)))) | ||
Theorem | ismeannd 41608* | Sufficient condition to prove that 𝑀 is a measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝑀:𝑆⟶(0[,]+∞)) & ⊢ (𝜑 → (𝑀‘∅) = 0) & ⊢ ((𝜑 ∧ 𝑒:ℕ⟶𝑆 ∧ Disj 𝑛 ∈ ℕ (𝑒‘𝑛)) → (𝑀‘∪ 𝑛 ∈ ℕ (𝑒‘𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒‘𝑛))))) ⇒ ⊢ (𝜑 → 𝑀 ∈ Meas) | ||
Theorem | meaiunlelem 41609* | The measure of the union of countable sets is less than or equal to the sum of the measures, Property 112C (d) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑛𝜑 & ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶𝑆) & ⊢ 𝐹 = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) ⇒ ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) ≤ (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))))) | ||
Theorem | meaiunle 41610* | The measure of the union of countable sets is less than or equal to the sum of the measures, Property 112C (d) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑛𝜑 & ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶𝑆) ⇒ ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) ≤ (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))))) | ||
Theorem | psmeasurelem 41611* | 𝑀 applied to a disjoint union of subsets of its domain is the sum of 𝑀 applied to such subset. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐻:𝑋⟶(0[,]+∞)) & ⊢ 𝑀 = (𝑥 ∈ 𝒫 𝑋 ↦ (Σ^‘(𝐻 ↾ 𝑥))) & ⊢ (𝜑 → 𝑀:𝒫 𝑋⟶(0[,]+∞)) & ⊢ (𝜑 → 𝑌 ⊆ 𝒫 𝑋) & ⊢ (𝜑 → Disj 𝑦 ∈ 𝑌 𝑦) ⇒ ⊢ (𝜑 → (𝑀‘∪ 𝑌) = (Σ^‘(𝑀 ↾ 𝑌))) | ||
Theorem | psmeasure 41612* | Point supported measure, Remark 112B (d) of [Fremlin1] p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐻:𝑋⟶(0[,]+∞)) & ⊢ 𝑀 = (𝑥 ∈ 𝒫 𝑋 ↦ (Σ^‘(𝐻 ↾ 𝑥))) ⇒ ⊢ (𝜑 → 𝑀 ∈ Meas) | ||
Theorem | voliunsge0lem 41613* | The Lebesgue measure function is countably additive. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ 𝑆 = seq1( + , 𝐺) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝐸‘𝑛))) & ⊢ (𝜑 → 𝐸:ℕ⟶dom vol) & ⊢ (𝜑 → Disj 𝑛 ∈ ℕ (𝐸‘𝑛)) ⇒ ⊢ (𝜑 → (vol‘∪ 𝑛 ∈ ℕ (𝐸‘𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸‘𝑛))))) | ||
Theorem | voliunsge0 41614* | The Lebesgue measure function is countably additive. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐸:ℕ⟶dom vol) & ⊢ (𝜑 → Disj 𝑛 ∈ ℕ (𝐸‘𝑛)) ⇒ ⊢ (𝜑 → (vol‘∪ 𝑛 ∈ ℕ (𝐸‘𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸‘𝑛))))) | ||
Theorem | volmea 41615 | The Lebeasgue measure on the Reals is actually a measure. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → vol ∈ Meas) | ||
Theorem | meage0 41616 | If the measure of a measurable set is greater than or equal to 0. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑀) ⇒ ⊢ (𝜑 → 0 ≤ (𝑀‘𝐴)) | ||
Theorem | meadjunre 41617 | The measure of the union of two disjoint sets, with finite measure, is the sum of the measures, Property 112C (a) of [Fremlin1] p. 15. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) & ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ) & ⊢ (𝜑 → (𝑀‘𝐵) ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑀‘(𝐴 ∪ 𝐵)) = ((𝑀‘𝐴) + (𝑀‘𝐵))) | ||
Theorem | meassre 41618 | If the measure of a measurable set is real, then the measure of any of its measurable subsets is real. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑀) & ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑀) ⇒ ⊢ (𝜑 → (𝑀‘𝐵) ∈ ℝ) | ||
Theorem | meale0eq0 41619 | A measure that is less than or equal to 0 is 0. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑀) & ⊢ (𝜑 → (𝑀‘𝐴) ≤ 0) ⇒ ⊢ (𝜑 → (𝑀‘𝐴) = 0) | ||
Theorem | meadif 41620 | The measure of the difference of two sets. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑀) & ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑀) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → (𝑀‘(𝐴 ∖ 𝐵)) = ((𝑀‘𝐴) − (𝑀‘𝐵))) | ||
Theorem | meaiuninclem 41621* | Measures are continuous from below (bounded case): if 𝐸 is a sequence of increasing measurable sets (with uniformly bounded measure) then the measure of the union is the union of the measure. This is Proposition 112C (e) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) & ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) & ⊢ 𝐹 = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) ⇒ ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) | ||
Theorem | meaiuninc 41622* | Measures are continuous from below (bounded case): if 𝐸 is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is Proposition 112C (e) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) & ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) ⇒ ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) | ||
Theorem | meaiuninc2 41623* | Measures are continuous from below (bounded case): if 𝐸 is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is Proposition 112C (e) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑀‘(𝐸‘𝑛)) ≤ 𝐵) & ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) ⇒ ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) | ||
Theorem | meaiunincf 41624* | Measures are continuous from below (bounded case): if 𝐸 is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is Proposition 112C (e) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 13-Feb-2022.) |
⊢ Ⅎ𝑛𝜑 & ⊢ Ⅎ𝑛𝐸 & ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) & ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) ⇒ ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) | ||
Theorem | meaiuninc3v 41625* | Measures are continuous from below: if 𝐸 is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is the general case of Proposition 112C (e) of [Fremlin1] p. 16 . This theorem generalizes meaiuninc 41622 and meaiuninc2 41623 where the sequence is required to be bounded. (Contributed by Glauco Siliprandi, 13-Feb-2022.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) & ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) ⇒ ⊢ (𝜑 → 𝑆~~>*(𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) | ||
Theorem | meaiuninc3 41626* | Measures are continuous from below: if 𝐸 is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is the general case of Proposition 112C (e) of [Fremlin1] p. 16 . This theorem generalizes meaiuninc 41622 and meaiuninc2 41623 where the sequence is required to be bounded. (Contributed by Glauco Siliprandi, 13-Feb-2022.) |
⊢ Ⅎ𝑛𝜑 & ⊢ Ⅎ𝑛𝐸 & ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) & ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) ⇒ ⊢ (𝜑 → 𝑆~~>*(𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) | ||
Theorem | meaiininclem 41627* | Measures are continuous from above: if 𝐸 is a nonincreasing sequence of measurable sets, and any of the sets has finite measure, then the measure of the intersection is the limit of the measures. This is Proposition 112C (f) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸‘𝑛)) & ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑁)) & ⊢ (𝜑 → (𝑀‘(𝐸‘𝐾)) ∈ ℝ) & ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝐾) ∖ (𝐸‘𝑛))) & ⊢ 𝐹 = ∪ 𝑛 ∈ 𝑍 (𝐺‘𝑛) ⇒ ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) | ||
Theorem | meaiininc 41628* | Measures are continuous from above: if 𝐸 is a nonincreasing sequence of measurable sets, and any of the sets has finite measure, then the measure of the intersection is the limit of the measures. This is Proposition 112C (f) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ Ⅎ𝑛𝜑 & ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸‘𝑛)) & ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑁)) & ⊢ (𝜑 → (𝑀‘(𝐸‘𝐾)) ∈ ℝ) & ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) ⇒ ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) | ||
Theorem | meaiininc2 41629* | Measures are continuous from above: if 𝐸 is a nonincreasing sequence of measurable sets, and any of the sets has finite measure, then the measure of the intersection is the limit of the measures. This is Proposition 112C (f) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ Ⅎ𝑛𝜑 & ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸‘𝑛)) & ⊢ (𝜑 → ∃𝑘 ∈ 𝑍 (𝑀‘(𝐸‘𝑘)) ∈ ℝ) & ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) ⇒ ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) | ||
Proofs for most of the theorems in section 113 of [Fremlin1] | ||
Syntax | come 41630 | Extend class notation with the class of outer measures. |
class OutMeas | ||
Definition | df-ome 41631* | Define the class of outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ OutMeas = {𝑥 ∣ ((((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 = 𝒫 ∪ dom 𝑥) ∧ (𝑥‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 ∪ dom 𝑥∀𝑧 ∈ 𝒫 𝑦(𝑥‘𝑧) ≤ (𝑥‘𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≼ ω → (𝑥‘∪ 𝑦) ≤ (Σ^‘(𝑥 ↾ 𝑦))))} | ||
Syntax | ccaragen 41632 | Extend class notation with a function that takes an outer measure and generates a sigma-algebra and a measure. |
class CaraGen | ||
Definition | df-caragen 41633* | Define the sigma-algebra generated by an outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ CaraGen = (𝑜 ∈ OutMeas ↦ {𝑒 ∈ 𝒫 ∪ dom 𝑜 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑜((𝑜‘(𝑎 ∩ 𝑒)) +𝑒 (𝑜‘(𝑎 ∖ 𝑒))) = (𝑜‘𝑎)}) | ||
Theorem | caragenval 41634* | The sigma-algebra generated by an outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝑂 ∈ OutMeas → (CaraGen‘𝑂) = {𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎)}) | ||
Theorem | isome 41635* | Express the predicate "𝑂 is an outer measure." Definition 113A of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝑂 ∈ 𝑉 → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 ∪ dom 𝑂∀𝑧 ∈ 𝒫 𝑦(𝑂‘𝑧) ≤ (𝑂‘𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂‘∪ 𝑦) ≤ (Σ^‘(𝑂 ↾ 𝑦)))))) | ||
Theorem | caragenel 41636* | Membership in the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑆 = (CaraGen‘𝑂) ⇒ ⊢ (𝜑 → (𝐸 ∈ 𝑆 ↔ (𝐸 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)))) | ||
Theorem | omef 41637 | An outer measure is a function that maps to nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 ⇒ ⊢ (𝜑 → 𝑂:𝒫 𝑋⟶(0[,]+∞)) | ||
Theorem | ome0 41638 | The outer measure of the empty set is 0 . (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑂 ∈ OutMeas) ⇒ ⊢ (𝜑 → (𝑂‘∅) = 0) | ||
Theorem | omessle 41639 | The outer measure of a set is greater than or equal to the measure of a subset, Definition 113A (ii) of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ (𝜑 → 𝐵 ⊆ 𝑋) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝑂‘𝐴) ≤ (𝑂‘𝐵)) | ||
Theorem | omedm 41640 | The domain of an outer measure is a power set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝑂 ∈ OutMeas → dom 𝑂 = 𝒫 ∪ dom 𝑂) | ||
Theorem | caragensplit 41641 | If 𝐸 is in the set generated by the Caratheodory's method, then it splits any set 𝐴 in two parts such that the sum of the outer measures of the two parts is equal to the outer measure of the whole set 𝐴. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑆 = (CaraGen‘𝑂) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ (𝜑 → 𝐸 ∈ 𝑆) & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) ⇒ ⊢ (𝜑 → ((𝑂‘(𝐴 ∩ 𝐸)) +𝑒 (𝑂‘(𝐴 ∖ 𝐸))) = (𝑂‘𝐴)) | ||
Theorem | caragenelss 41642 | An element of the Caratheodory's construction is a subset of the base set of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑆 = (CaraGen‘𝑂) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ 𝑋 = ∪ dom 𝑂 ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | ||
Theorem | carageneld 41643* | Membership in the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ 𝑆 = (CaraGen‘𝑂) & ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑋) & ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)) ⇒ ⊢ (𝜑 → 𝐸 ∈ 𝑆) | ||
Theorem | omecl 41644 | The outer measure of a set is a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) ⇒ ⊢ (𝜑 → (𝑂‘𝐴) ∈ (0[,]+∞)) | ||
Theorem | caragenss 41645 | The sigma-algebra generated from an outer measure, by the Caratheodory's construction, is a subset of the domain of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ 𝑆 = (CaraGen‘𝑂) ⇒ ⊢ (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂) | ||
Theorem | omeunile 41646 | The outer measure of the union of a countable set is the less than or equal to the extended sum of the outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ (𝜑 → 𝑌 ⊆ 𝒫 𝑋) & ⊢ (𝜑 → 𝑌 ≼ ω) ⇒ ⊢ (𝜑 → (𝑂‘∪ 𝑌) ≤ (Σ^‘(𝑂 ↾ 𝑌))) | ||
Theorem | caragen0 41647 | The empty set belongs to any Caratheodory's construction. First part of Step (b) in the proof of Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑆 = (CaraGen‘𝑂) ⇒ ⊢ (𝜑 → ∅ ∈ 𝑆) | ||
Theorem | omexrcl 41648 | The outer measure of a set is an extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) ⇒ ⊢ (𝜑 → (𝑂‘𝐴) ∈ ℝ*) | ||
Theorem | caragenunidm 41649 | The base set of an outer measure belongs to the sigma-algebra generated by the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ 𝑆 = (CaraGen‘𝑂) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝑆) | ||
Theorem | caragensspw 41650 | The sigma-algebra generated from an outer measure, by the Caratheodory's construction, is a subset of the power set of the base set of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ 𝑆 = (CaraGen‘𝑂) ⇒ ⊢ (𝜑 → 𝑆 ⊆ 𝒫 𝑋) | ||
Theorem | omessre 41651 | If the outer measure of a set is real, then the outer measure of any of its subset is real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ (𝜑 → (𝑂‘𝐴) ∈ ℝ) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → (𝑂‘𝐵) ∈ ℝ) | ||
Theorem | caragenuni 41652 | The base set of the sigma-algebra generated by the Caratheodory's construction is the whole base set of the original outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑆 = (CaraGen‘𝑂) ⇒ ⊢ (𝜑 → ∪ 𝑆 = ∪ dom 𝑂) | ||
Theorem | caragenuncllem 41653 | The Caratheodory's construction is closed under the union. Step (c) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑆 = (CaraGen‘𝑂) & ⊢ (𝜑 → 𝐸 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ 𝑆) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) ⇒ ⊢ (𝜑 → ((𝑂‘(𝐴 ∩ (𝐸 ∪ 𝐹))) +𝑒 (𝑂‘(𝐴 ∖ (𝐸 ∪ 𝐹)))) = (𝑂‘𝐴)) | ||
Theorem | caragenuncl 41654 | The Caratheodory's construction is closed under the union. Step (c) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑆 = (CaraGen‘𝑂) & ⊢ (𝜑 → 𝐸 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐸 ∪ 𝐹) ∈ 𝑆) | ||
Theorem | caragendifcl 41655 | The Caratheodory's construction is closed under the complement operation. Second part of Step (b) in the proof of Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑆 = (CaraGen‘𝑂) & ⊢ (𝜑 → 𝐸 ∈ 𝑆) ⇒ ⊢ (𝜑 → (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) | ||
Theorem | caragenfiiuncl 41656* | The Caratheodory's construction is closed under finite indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑆 = (CaraGen‘𝑂) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) ⇒ ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) | ||
Theorem | omeunle 41657 | The outer measure of the union of two sets is less than or equal to the sum of the measures, Remark 113B (c) of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ (𝜑 → 𝐵 ⊆ 𝑋) ⇒ ⊢ (𝜑 → (𝑂‘(𝐴 ∪ 𝐵)) ≤ ((𝑂‘𝐴) +𝑒 (𝑂‘𝐵))) | ||
Theorem | omeiunle 41658* | The outer measure of the indexed union of a countable set is the less than or equal to the extended sum of the outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑛𝜑 & ⊢ Ⅎ𝑛𝐸 & ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶𝒫 𝑋) ⇒ ⊢ (𝜑 → (𝑂‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) ≤ (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛))))) | ||
Theorem | omelesplit 41659 | The outer measure of a set 𝐴 is less than or equal to the extended addition of the outer measures of the decomposition induced on 𝐴 by any 𝐸. Step (a) in the proof of Caratheodory's Method, Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) ⇒ ⊢ (𝜑 → (𝑂‘𝐴) ≤ ((𝑂‘(𝐴 ∩ 𝐸)) +𝑒 (𝑂‘(𝐴 ∖ 𝐸)))) | ||
Theorem | omeiunltfirp 41660* | If the outer measure of a countable union is not +∞, then it can be arbitrarily approximated by finite sums of outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶𝒫 𝑋) & ⊢ (𝜑 → (𝑂‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) < (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐸‘𝑛)) + 𝑌)) | ||
Theorem | omeiunlempt 41661* | The outer measure of the indexed union of a countable set is the less than or equal to the extended sum of the outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑛𝜑 & ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝐸 ⊆ 𝑋) ⇒ ⊢ (𝜑 → (𝑂‘∪ 𝑛 ∈ 𝑍 𝐸) ≤ (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘𝐸)))) | ||
Theorem | carageniuncllem1 41662* | The outer measure of 𝐴 ∩ (𝐺‘𝑛) is the sum of the outer measures of 𝐴 ∩ (𝐹‘𝑚). These are lines 7 to 10 of Step (d) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑆 = (CaraGen‘𝑂) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ (𝜑 → (𝑂‘𝐴) ∈ ℝ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐸:𝑍⟶𝑆) & ⊢ 𝐺 = (𝑛 ∈ 𝑍 ↦ ∪ 𝑖 ∈ (𝑀...𝑛)(𝐸‘𝑖)) & ⊢ 𝐹 = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑀..^𝑛)(𝐸‘𝑖))) & ⊢ (𝜑 → 𝐾 ∈ 𝑍) ⇒ ⊢ (𝜑 → Σ𝑛 ∈ (𝑀...𝐾)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝐾)))) | ||
Theorem | carageniuncllem2 41663* | The Caratheodory's construction is closed under countable union. Step (d) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑆 = (CaraGen‘𝑂) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ (𝜑 → (𝑂‘𝐴) ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐸:𝑍⟶𝑆) & ⊢ (𝜑 → 𝑌 ∈ ℝ+) & ⊢ 𝐺 = (𝑛 ∈ 𝑍 ↦ ∪ 𝑖 ∈ (𝑀...𝑛)(𝐸‘𝑖)) & ⊢ 𝐹 = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑀..^𝑛)(𝐸‘𝑖))) ⇒ ⊢ (𝜑 → ((𝑂‘(𝐴 ∩ ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝐴 ∖ ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ≤ ((𝑂‘𝐴) + 𝑌)) | ||
Theorem | carageniuncl 41664* | The Caratheodory's construction is closed under indexed countable union. Step (d) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑆 = (CaraGen‘𝑂) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐸:𝑍⟶𝑆) ⇒ ⊢ (𝜑 → ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛) ∈ 𝑆) | ||
Theorem | caragenunicl 41665 | The Caratheodory's construction is closed under countable union. Step (d) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑆 = (CaraGen‘𝑂) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆) & ⊢ (𝜑 → 𝑋 ≼ ω) ⇒ ⊢ (𝜑 → ∪ 𝑋 ∈ 𝑆) | ||
Theorem | caragensal 41666 | Caratheodory's method generates a sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑆 = (CaraGen‘𝑂) ⇒ ⊢ (𝜑 → 𝑆 ∈ SAlg) | ||
Theorem | caratheodorylem1 41667* | Lemma used to prove that Caratheodory's construction is sigma-additive. This is the proof of the statement in the middle of Step (e) in the proof of Theorem 113C of [Fremlin1] p. 21. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑆 = (CaraGen‘𝑂) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐸:𝑍⟶𝑆) & ⊢ (𝜑 → Disj 𝑛 ∈ 𝑍 (𝐸‘𝑛)) & ⊢ 𝐺 = (𝑛 ∈ 𝑍 ↦ ∪ 𝑖 ∈ (𝑀...𝑛)(𝐸‘𝑖)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) ⇒ ⊢ (𝜑 → (𝑂‘(𝐺‘𝑁)) = (Σ^‘(𝑛 ∈ (𝑀...𝑁) ↦ (𝑂‘(𝐸‘𝑛))))) | ||
Theorem | caratheodorylem2 41668* | Caratheodory's construction is sigma-additive. Main part of Step (e) in the proof of Theorem 113C of [Fremlin1] p. 21. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ 𝑆 = (CaraGen‘𝑂) & ⊢ (𝜑 → 𝐸:ℕ⟶𝑆) & ⊢ (𝜑 → Disj 𝑛 ∈ ℕ (𝐸‘𝑛)) & ⊢ 𝐺 = (𝑘 ∈ ℕ ↦ ∪ 𝑛 ∈ (1...𝑘)(𝐸‘𝑛)) ⇒ ⊢ (𝜑 → (𝑂‘∪ 𝑛 ∈ ℕ (𝐸‘𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐸‘𝑛))))) | ||
Theorem | caratheodory 41669 | Caratheodory's construction of a measure given an outer measure. Proof of Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑆 = (CaraGen‘𝑂) ⇒ ⊢ (𝜑 → (𝑂 ↾ 𝑆) ∈ Meas) | ||
Theorem | 0ome 41670* | The map that assigns 0 to every subset, is an outer measure. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ 𝑂 = (𝑥 ∈ 𝒫 𝑋 ↦ 0) ⇒ ⊢ (𝜑 → 𝑂 ∈ OutMeas) | ||
Theorem | isomenndlem 41671* | 𝑂 is sub-additive w.r.t. countable indexed union, implies that 𝑂 is sub-additive w.r.t. countable union. Thus, the definition of Outer Measure can be given using an indexed union. Definition 113A of [Fremlin1] p. 19 . (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ (𝜑 → 𝑂:𝒫 𝑋⟶(0[,]+∞)) & ⊢ (𝜑 → (𝑂‘∅) = 0) & ⊢ (𝜑 → 𝑌 ⊆ 𝒫 𝑋) & ⊢ ((𝜑 ∧ 𝑎:ℕ⟶𝒫 𝑋) → (𝑂‘∪ 𝑛 ∈ ℕ (𝑎‘𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑎‘𝑛))))) & ⊢ (𝜑 → 𝐵 ⊆ ℕ) & ⊢ (𝜑 → 𝐹:𝐵–1-1-onto→𝑌) & ⊢ 𝐴 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐵, (𝐹‘𝑛), ∅)) ⇒ ⊢ (𝜑 → (𝑂‘∪ 𝑌) ≤ (Σ^‘(𝑂 ↾ 𝑌))) | ||
Theorem | isomennd 41672* | Sufficient condition to prove that 𝑂 is an outer measure. Definition 113A of [Fremlin1] p. 19 . (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑂:𝒫 𝑋⟶(0[,]+∞)) & ⊢ (𝜑 → (𝑂‘∅) = 0) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑥) → (𝑂‘𝑦) ≤ (𝑂‘𝑥)) & ⊢ ((𝜑 ∧ 𝑎:ℕ⟶𝒫 𝑋) → (𝑂‘∪ 𝑛 ∈ ℕ (𝑎‘𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑎‘𝑛))))) ⇒ ⊢ (𝜑 → 𝑂 ∈ OutMeas) | ||
Theorem | caragenel2d 41673* | Membership in the Caratheodory's construction. Similar to carageneld 41643, but here "less then or equal to" is used, instead of equality. This is Remark 113D of [Fremlin1] p. 21. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ 𝑆 = (CaraGen‘𝑂) & ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑋) & ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) ≤ (𝑂‘𝑎)) ⇒ ⊢ (𝜑 → 𝐸 ∈ 𝑆) | ||
Theorem | omege0 41674 | If the outer measure of a set is greater than or equal to 0. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) ⇒ ⊢ (𝜑 → 0 ≤ (𝑂‘𝐴)) | ||
Theorem | omess0 41675 | If the outer measure of a set is 0, then the outer measure of its subsets is 0. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ (𝜑 → (𝑂‘𝐴) = 0) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → (𝑂‘𝐵) = 0) | ||
Theorem | caragencmpl 41676 | A measure built with the Caratheodory's construction is complete. See Definition 112Df of [Fremlin1] p. 19. This is Exercise 113Xa of [Fremlin1] p. 21 (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ (𝜑 → 𝐸 ⊆ 𝑋) & ⊢ (𝜑 → (𝑂‘𝐸) = 0) & ⊢ 𝑆 = (CaraGen‘𝑂) ⇒ ⊢ (𝜑 → 𝐸 ∈ 𝑆) | ||
Proofs for most of the theorems in section 115 of [Fremlin1] | ||
Syntax | covoln 41677 | Extend class notation with the class of Lebesgue outer measure for the space of multidimensional real numbers. |
class voln* | ||
Definition | df-ovoln 41678* | Define the outer measure for the space of multidimensional real numbers. The cardinality of 𝑥 is the dimension of the space modeled. Definition 115C of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ voln* = (𝑥 ∈ Fin ↦ (𝑦 ∈ 𝒫 (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑥) ↑𝑚 ℕ)(𝑦 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑥 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, < )))) | ||
Syntax | cvoln 41679 | Extend class notation with the class of Lebesgue measure for the space of multidimensional real numbers. |
class voln | ||
Definition | df-voln 41680 | Define the Lebesgue measure for the space of multidimensional real numbers. The cardinality of 𝑥 is the dimension of the space modeled. Definition 115C of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ voln = (𝑥 ∈ Fin ↦ ((voln*‘𝑥) ↾ (CaraGen‘(voln*‘𝑥)))) | ||
Theorem | vonval 41681 | Value of the Lebesgue measure for a given finite dimension. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ (𝜑 → 𝑋 ∈ Fin) ⇒ ⊢ (𝜑 → (voln‘𝑋) = ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))) | ||
Theorem | ovnval 41682* | Value of the Lebesgue outer measure for a given finite dimension. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ (𝜑 → 𝑋 ∈ Fin) ⇒ ⊢ (𝜑 → (voln*‘𝑋) = (𝑦 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ if(𝑋 = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝑦 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, < )))) | ||
Theorem | elhoi 41683* | Membership in a multidimensional half-open interval. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑌 ∈ ((𝐴[,)𝐵) ↑𝑚 𝑋) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)))) | ||
Theorem | icoresmbl 41684 | A closed-below, open-above real interval is measurable, when the bounds are real. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ ran ([,) ↾ (ℝ × ℝ)) ⊆ dom vol | ||
Theorem | hoissre 41685* | The projection of a half-open interval onto a single dimension is a subset of ℝ. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ (𝜑 → 𝐼:𝑋⟶(ℝ × ℝ)) ⇒ ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ) | ||
Theorem | ovnval2 41686* | Value of the Lebesgue outer measure of a subset 𝐴 of the space of multidimensional real numbers. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑𝑚 𝑋)) & ⊢ 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ⇒ ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) = if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < ))) | ||
Theorem | volicorecl 41687 | The Lebesgue measure of a left-closed, right-open interval with real bounds, is real. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) ∈ ℝ) | ||
Theorem | hoiprodcl 41688* | The pre-measure of half-open intervals is a nonnegative real. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐼:𝑋⟶(ℝ × ℝ)) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ 𝐼)‘𝑘)) ∈ (0[,)+∞)) | ||
Theorem | hoicvr 41689* | 𝐼 is a countable set of half-open intervals that covers the whole multidimensional reals. See Definition 1135 (b) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ 𝐼 = (𝑗 ∈ ℕ ↦ (𝑥 ∈ 𝑋 ↦ 〈-𝑗, 𝑗〉)) & ⊢ (𝜑 → 𝑋 ∈ Fin) ⇒ ⊢ (𝜑 → (ℝ ↑𝑚 𝑋) ⊆ ∪ 𝑗 ∈ ℕ X𝑖 ∈ 𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑖)) | ||
Theorem | hoissrrn 41690* | A half-open interval is a subset of R^n . (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ (𝜑 → 𝐼:𝑋⟶(ℝ × ℝ)) ⇒ ⊢ (𝜑 → X𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ (ℝ ↑𝑚 𝑋)) | ||
Theorem | ovn0val 41691 | The Lebesgue outer measure (for the zero dimensional space of reals) of every subset is zero. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑𝑚 ∅)) ⇒ ⊢ (𝜑 → ((voln*‘∅)‘𝐴) = 0) | ||
Theorem | ovnn0val 41692* | The value of a (multidimensional) Lebesgue outer measure, defined on a nonzero-dimensional space of reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑𝑚 𝑋)) & ⊢ 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ⇒ ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) = inf(𝑀, ℝ*, < )) | ||
Theorem | ovnval2b 41693* | Value of the Lebesgue outer measure of a subset 𝐴 of the space of multidimensional real numbers. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑𝑚 𝑋)) & ⊢ 𝐿 = (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}) ⇒ ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) = if(𝑋 = ∅, 0, inf((𝐿‘𝐴), ℝ*, < ))) | ||
Theorem | volicorescl 41694 | The Lebesgue measure of a left-closed, right-open interval with real bounds, is real. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ (𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) → (vol‘𝐴) ∈ ℝ) | ||
Theorem | ovnprodcl 41695* | The product used in the definition of the outer Lebesgue measure in R^n is a nonnegative real. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐹:ℕ⟶((ℝ × ℝ) ↑𝑚 𝑋)) & ⊢ (𝜑 → 𝐼 ∈ ℕ) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝐹‘𝐼))‘𝑘)) ∈ (0[,)+∞)) | ||
Theorem | hoiprodcl2 41696* | The pre-measure of half-open intervals is a nonnegative real. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ 𝐿 = (𝑖 ∈ ((ℝ × ℝ) ↑𝑚 𝑋) ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘))) & ⊢ (𝜑 → 𝐼:𝑋⟶(ℝ × ℝ)) ⇒ ⊢ (𝜑 → (𝐿‘𝐼) ∈ (0[,)+∞)) | ||
Theorem | hoicvrrex 41697* | Any subset of the multidimensional reals can be covered by a countable set of half-open intervals, see Definition 115A (b) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑌 ⊆ (ℝ ↑𝑚 𝑋)) ⇒ ⊢ (𝜑 → ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝑌 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ +∞ = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) | ||
Theorem | ovnsupge0 41698* | The set used in the definition of the Lebesgue outer measure is a subset of the nonnegative extended reals. This is a substep for (a)(i) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑𝑚 𝑋)) & ⊢ 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ⇒ ⊢ (𝜑 → 𝑀 ⊆ (0[,]+∞)) | ||
Theorem | ovnlecvr 41699* | Given a subset of multidimensional reals and a set of half-open intervals that covers it, the Lebesgue outer measure of the set is bounded by the generalized sum of the pre-measure of the half-open intervals. The statement would also be true with 𝑋 the empty set, but covers are not used for the zero-dimensional case. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ 𝐿 = (𝑖 ∈ ((ℝ × ℝ) ↑𝑚 𝑋) ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ 𝑖)‘𝑘))) & ⊢ (𝜑 → 𝐼:ℕ⟶((ℝ × ℝ) ↑𝑚 𝑋)) & ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑘)) ⇒ ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗))))) | ||
Theorem | ovnpnfelsup 41700* | +∞ is an element of the set used in the definition of the Lebesgue outer measure. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑𝑚 𝑋)) & ⊢ 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ⇒ ⊢ (𝜑 → +∞ ∈ 𝑀) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |