![]() |
Metamath
Proof Explorer Theorem List (p. 417 of 471) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-29665) |
![]() (29666-31188) |
![]() (31189-47043) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ensucne0OLD 41601 | A class equinumerous to a successor is never empty. (Contributed by RP, 11-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ≈ suc 𝐵 → 𝐴 ≠ ∅) | ||
Theorem | dfom6 41602 | Let ω be defined to be the union of the set of all finite ordinals. (Contributed by RP, 27-Sep-2023.) |
⊢ ω = ∪ (On ∩ Fin) | ||
Theorem | infordmin 41603 | ω is the smallest infinite ordinal. (Contributed by RP, 27-Sep-2023.) |
⊢ ∀𝑥 ∈ (On ∖ Fin)ω ⊆ 𝑥 | ||
Theorem | iscard4 41604 | Two ways to express the property of being a cardinal number. (Contributed by RP, 8-Nov-2023.) |
⊢ ((card‘𝐴) = 𝐴 ↔ 𝐴 ∈ ran card) | ||
Theorem | minregex 41605* | Given any cardinal number 𝐴, there exists an argument 𝑥, which yields the least regular uncountable value of ℵ which is greater to or equal to 𝐴. This proof uses AC. (Contributed by RP, 23-Nov-2023.) |
⊢ (𝐴 ∈ (ran card ∖ ω) → ∃𝑥 ∈ On 𝑥 = ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))}) | ||
Theorem | minregex2 41606* | Given any cardinal number 𝐴, there exists an argument 𝑥, which yields the least regular uncountable value of ℵ which dominates 𝐴. This proof uses AC. (Contributed by RP, 24-Nov-2023.) |
⊢ (𝐴 ∈ (ran card ∖ ω) → ∃𝑥 ∈ On 𝑥 = ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ≼ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))}) | ||
Theorem | iscard5 41607* | Two ways to express the property of being a cardinal number. (Contributed by RP, 8-Nov-2023.) |
⊢ ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ≈ 𝐴)) | ||
Theorem | elrncard 41608* | Let us define a cardinal number to be an element 𝐴 ∈ On such that 𝐴 is not equipotent with any 𝑥 ∈ 𝐴. (Contributed by RP, 1-Oct-2023.) |
⊢ (𝐴 ∈ ran card ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ≈ 𝐴)) | ||
Theorem | harval3 41609* | (har‘𝐴) is the least cardinal that is greater than 𝐴. (Contributed by RP, 4-Nov-2023.) |
⊢ (𝐴 ∈ dom card → (har‘𝐴) = ∩ {𝑥 ∈ ran card ∣ 𝐴 ≺ 𝑥}) | ||
Theorem | harval3on 41610* | For any ordinal number 𝐴 let (har‘𝐴) denote the least cardinal that is greater than 𝐴. (Contributed by RP, 4-Nov-2023.) |
⊢ (𝐴 ∈ On → (har‘𝐴) = ∩ {𝑥 ∈ ran card ∣ 𝐴 ≺ 𝑥}) | ||
Theorem | omssrncard 41611 | All natural numbers are cardinals. (Contributed by RP, 1-Oct-2023.) |
⊢ ω ⊆ ran card | ||
Theorem | 0iscard 41612 | 0 is a cardinal number. (Contributed by RP, 1-Oct-2023.) |
⊢ ∅ ∈ ran card | ||
Theorem | 1iscard 41613 | 1 is a cardinal number. (Contributed by RP, 1-Oct-2023.) |
⊢ 1o ∈ ran card | ||
Theorem | omiscard 41614 | ω is a cardinal number. (Contributed by RP, 1-Oct-2023.) |
⊢ ω ∈ ran card | ||
Theorem | sucomisnotcard 41615 | ω +o 1o is not a cardinal number. (Contributed by RP, 1-Oct-2023.) |
⊢ ¬ (ω +o 1o) ∈ ran card | ||
Theorem | nna1iscard 41616 | For any natural number, the add one operation is results in a cardinal number. (Contributed by RP, 1-Oct-2023.) |
⊢ (𝑁 ∈ ω → (𝑁 +o 1o) ∈ ran card) | ||
Theorem | har2o 41617 | The least cardinal greater than 2 is 3. (Contributed by RP, 5-Nov-2023.) |
⊢ (har‘2o) = 3o | ||
Theorem | en2pr 41618* | A class is equinumerous to ordinal two iff it is a pair of distinct sets. (Contributed by RP, 11-Oct-2023.) |
⊢ (𝐴 ≈ 2o ↔ ∃𝑥∃𝑦(𝐴 = {𝑥, 𝑦} ∧ 𝑥 ≠ 𝑦)) | ||
Theorem | pr2cv 41619 | If an unordered pair is equinumerous to ordinal two, then both parts are sets. (Contributed by RP, 8-Oct-2023.) |
⊢ ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | ||
Theorem | pr2el1 41620 | If an unordered pair is equinumerous to ordinal two, then a part is a member. (Contributed by RP, 21-Oct-2023.) |
⊢ ({𝐴, 𝐵} ≈ 2o → 𝐴 ∈ {𝐴, 𝐵}) | ||
Theorem | pr2cv1 41621 | If an unordered pair is equinumerous to ordinal two, then a part is a set. (Contributed by RP, 21-Oct-2023.) |
⊢ ({𝐴, 𝐵} ≈ 2o → 𝐴 ∈ V) | ||
Theorem | pr2el2 41622 | If an unordered pair is equinumerous to ordinal two, then a part is a member. (Contributed by RP, 21-Oct-2023.) |
⊢ ({𝐴, 𝐵} ≈ 2o → 𝐵 ∈ {𝐴, 𝐵}) | ||
Theorem | pr2cv2 41623 | If an unordered pair is equinumerous to ordinal two, then a part is a set. (Contributed by RP, 21-Oct-2023.) |
⊢ ({𝐴, 𝐵} ≈ 2o → 𝐵 ∈ V) | ||
Theorem | pren2 41624 | An unordered pair is equinumerous to ordinal two iff both parts are sets not equal to each other. (Contributed by RP, 8-Oct-2023.) |
⊢ ({𝐴, 𝐵} ≈ 2o ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵)) | ||
Theorem | pr2eldif1 41625 | If an unordered pair is equinumerous to ordinal two, then a part is an element of the difference of the pair and the singleton of the other part. (Contributed by RP, 21-Oct-2023.) |
⊢ ({𝐴, 𝐵} ≈ 2o → 𝐴 ∈ ({𝐴, 𝐵} ∖ {𝐵})) | ||
Theorem | pr2eldif2 41626 | If an unordered pair is equinumerous to ordinal two, then a part is an element of the difference of the pair and the singleton of the other part. (Contributed by RP, 21-Oct-2023.) |
⊢ ({𝐴, 𝐵} ≈ 2o → 𝐵 ∈ ({𝐴, 𝐵} ∖ {𝐴})) | ||
Theorem | pren2d 41627 | A pair of two distinct sets is equinumerous to ordinal two. (Contributed by RP, 21-Oct-2023.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → {𝐴, 𝐵} ≈ 2o) | ||
Theorem | aleph1min 41628 | (ℵ‘1o) is the least uncountable ordinal. (Contributed by RP, 18-Nov-2023.) |
⊢ (ℵ‘1o) = ∩ {𝑥 ∈ On ∣ ω ≺ 𝑥} | ||
Theorem | alephiso2 41629 | ℵ is a strictly order-preserving mapping of On onto the class of all infinite cardinal numbers. (Contributed by RP, 18-Nov-2023.) |
⊢ ℵ Isom E , ≺ (On, {𝑥 ∈ ran card ∣ ω ⊆ 𝑥}) | ||
Theorem | alephiso3 41630 | ℵ is a strictly order-preserving mapping of On onto the class of all infinite cardinal numbers. (Contributed by RP, 18-Nov-2023.) |
⊢ ℵ Isom E , ≺ (On, (ran card ∖ ω)) | ||
Theorem | pwelg 41631* | The powerclass is an element of a class closed under union and powerclass operations iff the element is a member of that class. (Contributed by RP, 21-Mar-2020.) |
⊢ (∀𝑥 ∈ 𝐵 (∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → (𝐴 ∈ 𝐵 ↔ 𝒫 𝐴 ∈ 𝐵)) | ||
Theorem | pwinfig 41632* | The powerclass of an infinite set is an infinite set, and vice-versa. Here 𝐵 is a class which is closed under both the union and the powerclass operations and which may have infinite sets as members. (Contributed by RP, 21-Mar-2020.) |
⊢ (∀𝑥 ∈ 𝐵 (∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → (𝐴 ∈ (𝐵 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝐵 ∖ Fin))) | ||
Theorem | pwinfi2 41633 | The powerclass of an infinite set is an infinite set, and vice-versa. Here 𝑈 is a weak universe. (Contributed by RP, 21-Mar-2020.) |
⊢ (𝑈 ∈ WUni → (𝐴 ∈ (𝑈 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝑈 ∖ Fin))) | ||
Theorem | pwinfi3 41634 | The powerclass of an infinite set is an infinite set, and vice-versa. Here 𝑇 is a transitive Tarski universe. (Contributed by RP, 21-Mar-2020.) |
⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇) → (𝐴 ∈ (𝑇 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝑇 ∖ Fin))) | ||
Theorem | pwinfi 41635 | The powerclass of an infinite set is an infinite set, and vice-versa. (Contributed by RP, 21-Mar-2020.) |
⊢ (𝐴 ∈ (V ∖ Fin) ↔ 𝒫 𝐴 ∈ (V ∖ Fin)) | ||
While there is not yet a definition, the finite intersection property of a class is introduced by fiint 9202 where two textbook definitions are shown to be equivalent. This property is seen often with ordinal numbers (onin 6345, ordelinel 6415), chains of sets ordered by the proper subset relation (sorpssin 7659), various sets in the field of topology (inopn 22176, incld 22322, innei 22404, ... ) and "universal" classes like weak universes (wunin 10583, tskin 10629) and the class of all sets (inex1g 5275). | ||
Theorem | fipjust 41636* | A definition of the finite intersection property of a class based on closure under pairwise intersection of its elements is independent of the dummy variables. (Contributed by RP, 1-Jan-2020.) |
⊢ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 ∩ 𝑣) ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴) | ||
Theorem | cllem0 41637* | The class of all sets with property 𝜑(𝑧) is closed under the binary operation on sets defined in 𝑅(𝑥, 𝑦). (Contributed by RP, 3-Jan-2020.) |
⊢ 𝑉 = {𝑧 ∣ 𝜑} & ⊢ 𝑅 ∈ 𝑈 & ⊢ (𝑧 = 𝑅 → (𝜑 ↔ 𝜓)) & ⊢ (𝑧 = 𝑥 → (𝜑 ↔ 𝜒)) & ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜃)) & ⊢ ((𝜒 ∧ 𝜃) → 𝜓) ⇒ ⊢ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 𝑅 ∈ 𝑉 | ||
Theorem | superficl 41638* | The class of all supersets of a class has the finite intersection property. (Contributed by RP, 1-Jan-2020.) (Proof shortened by RP, 3-Jan-2020.) |
⊢ 𝐴 = {𝑧 ∣ 𝐵 ⊆ 𝑧} ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 | ||
Theorem | superuncl 41639* | The class of all supersets of a class is closed under binary union. (Contributed by RP, 3-Jan-2020.) |
⊢ 𝐴 = {𝑧 ∣ 𝐵 ⊆ 𝑧} ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∪ 𝑦) ∈ 𝐴 | ||
Theorem | ssficl 41640* | The class of all subsets of a class has the finite intersection property. (Contributed by RP, 1-Jan-2020.) (Proof shortened by RP, 3-Jan-2020.) |
⊢ 𝐴 = {𝑧 ∣ 𝑧 ⊆ 𝐵} ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 | ||
Theorem | ssuncl 41641* | The class of all subsets of a class is closed under binary union. (Contributed by RP, 3-Jan-2020.) |
⊢ 𝐴 = {𝑧 ∣ 𝑧 ⊆ 𝐵} ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∪ 𝑦) ∈ 𝐴 | ||
Theorem | ssdifcl 41642* | The class of all subsets of a class is closed under class difference. (Contributed by RP, 3-Jan-2020.) |
⊢ 𝐴 = {𝑧 ∣ 𝑧 ⊆ 𝐵} ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∖ 𝑦) ∈ 𝐴 | ||
Theorem | sssymdifcl 41643* | The class of all subsets of a class is closed under symmetric difference. (Contributed by RP, 3-Jan-2020.) |
⊢ 𝐴 = {𝑧 ∣ 𝑧 ⊆ 𝐵} ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥 ∖ 𝑦) ∪ (𝑦 ∖ 𝑥)) ∈ 𝐴 | ||
Theorem | fiinfi 41644* | If two classes have the finite intersection property, then so does their intersection. (Contributed by RP, 1-Jan-2020.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ∈ 𝐵) & ⊢ (𝜑 → 𝐶 = (𝐴 ∩ 𝐵)) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑥 ∩ 𝑦) ∈ 𝐶) | ||
Theorem | rababg 41645 | Condition when restricted class is equal to unrestricted class. (Contributed by RP, 13-Aug-2020.) |
⊢ (∀𝑥(𝜑 → 𝑥 ∈ 𝐴) ↔ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ 𝜑}) | ||
Theorem | elinintab 41646* | Two ways of saying a set is an element of the intersection of a class with the intersection of a class. (Contributed by RP, 13-Aug-2020.) |
⊢ (𝐴 ∈ (𝐵 ∩ ∩ {𝑥 ∣ 𝜑}) ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥))) | ||
Theorem | elmapintrab 41647* | Two ways to say a set is an element of the intersection of a class of images. (Contributed by RP, 16-Aug-2020.) |
⊢ 𝐶 ∈ V & ⊢ 𝐶 ⊆ 𝐵 ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ {𝑤 ∈ 𝒫 𝐵 ∣ ∃𝑥(𝑤 = 𝐶 ∧ 𝜑)} ↔ ((∃𝑥𝜑 → 𝐴 ∈ 𝐵) ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝐶)))) | ||
Theorem | elinintrab 41648* | Two ways of saying a set is an element of the intersection of a class with the intersection of a class. (Contributed by RP, 14-Aug-2020.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ {𝑤 ∈ 𝒫 𝐵 ∣ ∃𝑥(𝑤 = (𝐵 ∩ 𝑥) ∧ 𝜑)} ↔ ((∃𝑥𝜑 → 𝐴 ∈ 𝐵) ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥)))) | ||
Theorem | inintabss 41649* | Upper bound on intersection of class and the intersection of a class. (Contributed by RP, 13-Aug-2020.) |
⊢ (𝐴 ∩ ∩ {𝑥 ∣ 𝜑}) ⊆ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜑)} | ||
Theorem | inintabd 41650* | Value of the intersection of class with the intersection of a nonempty class. (Contributed by RP, 13-Aug-2020.) |
⊢ (𝜑 → ∃𝑥𝜓) ⇒ ⊢ (𝜑 → (𝐴 ∩ ∩ {𝑥 ∣ 𝜓}) = ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜓)}) | ||
Theorem | xpinintabd 41651* | Value of the intersection of Cartesian product with the intersection of a nonempty class. (Contributed by RP, 12-Aug-2020.) |
⊢ (𝜑 → ∃𝑥𝜓) ⇒ ⊢ (𝜑 → ((𝐴 × 𝐵) ∩ ∩ {𝑥 ∣ 𝜓}) = ∩ {𝑤 ∈ 𝒫 (𝐴 × 𝐵) ∣ ∃𝑥(𝑤 = ((𝐴 × 𝐵) ∩ 𝑥) ∧ 𝜓)}) | ||
Theorem | relintabex 41652 | If the intersection of a class is a relation, then the class is nonempty. (Contributed by RP, 12-Aug-2020.) |
⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ∃𝑥𝜑) | ||
Theorem | elcnvcnvintab 41653* | Two ways of saying a set is an element of the converse of the converse of the intersection of a class. (Contributed by RP, 20-Aug-2020.) |
⊢ (𝐴 ∈ ◡◡∩ {𝑥 ∣ 𝜑} ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥))) | ||
Theorem | relintab 41654* | Value of the intersection of a class when it is a relation. (Contributed by RP, 12-Aug-2020.) |
⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ 𝜑} = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡◡𝑥 ∧ 𝜑)}) | ||
Theorem | nonrel 41655 | A non-relation is equal to the base class with all ordered pairs removed. (Contributed by RP, 25-Oct-2020.) |
⊢ (𝐴 ∖ ◡◡𝐴) = (𝐴 ∖ (V × V)) | ||
Theorem | elnonrel 41656 | Only an ordered pair where not both entries are sets could be an element of the non-relation part of class. (Contributed by RP, 25-Oct-2020.) |
⊢ (〈𝑋, 𝑌〉 ∈ (𝐴 ∖ ◡◡𝐴) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V))) | ||
Theorem | cnvssb 41657 | Subclass theorem for converse. (Contributed by RP, 22-Oct-2020.) |
⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ◡𝐴 ⊆ ◡𝐵)) | ||
Theorem | relnonrel 41658 | The non-relation part of a relation is empty. (Contributed by RP, 22-Oct-2020.) |
⊢ (Rel 𝐴 ↔ (𝐴 ∖ ◡◡𝐴) = ∅) | ||
Theorem | cnvnonrel 41659 | The converse of the non-relation part of a class is empty. (Contributed by RP, 18-Oct-2020.) |
⊢ ◡(𝐴 ∖ ◡◡𝐴) = ∅ | ||
Theorem | brnonrel 41660 | A non-relation cannot relate any two classes. (Contributed by RP, 23-Oct-2020.) |
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) → ¬ 𝑋(𝐴 ∖ ◡◡𝐴)𝑌) | ||
Theorem | dmnonrel 41661 | The domain of the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
⊢ dom (𝐴 ∖ ◡◡𝐴) = ∅ | ||
Theorem | rnnonrel 41662 | The range of the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
⊢ ran (𝐴 ∖ ◡◡𝐴) = ∅ | ||
Theorem | resnonrel 41663 | A restriction of the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
⊢ ((𝐴 ∖ ◡◡𝐴) ↾ 𝐵) = ∅ | ||
Theorem | imanonrel 41664 | An image under the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
⊢ ((𝐴 ∖ ◡◡𝐴) “ 𝐵) = ∅ | ||
Theorem | cononrel1 41665 | Composition with the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
⊢ ((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) = ∅ | ||
Theorem | cononrel2 41666 | Composition with the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
⊢ (𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) = ∅ | ||
See also idssxp 5999 by Thierry Arnoux. | ||
Theorem | elmapintab 41667* | Two ways to say a set is an element of mapped intersection of a class. Here 𝐹 maps elements of 𝐶 to elements of ∩ {𝑥 ∣ 𝜑} or 𝑥. (Contributed by RP, 19-Aug-2020.) |
⊢ (𝐴 ∈ 𝐵 ↔ (𝐴 ∈ 𝐶 ∧ (𝐹‘𝐴) ∈ ∩ {𝑥 ∣ 𝜑})) & ⊢ (𝐴 ∈ 𝐸 ↔ (𝐴 ∈ 𝐶 ∧ (𝐹‘𝐴) ∈ 𝑥)) ⇒ ⊢ (𝐴 ∈ 𝐵 ↔ (𝐴 ∈ 𝐶 ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝐸))) | ||
Theorem | fvnonrel 41668 | The function value of any class under a non-relation is empty. (Contributed by RP, 23-Oct-2020.) |
⊢ ((𝐴 ∖ ◡◡𝐴)‘𝑋) = ∅ | ||
Theorem | elinlem 41669 | Two ways to say a set is a member of an intersection. (Contributed by RP, 19-Aug-2020.) |
⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ( I ‘𝐴) ∈ 𝐶)) | ||
Theorem | elcnvcnvlem 41670 | Two ways to say a set is a member of the converse of the converse of a class. (Contributed by RP, 20-Aug-2020.) |
⊢ (𝐴 ∈ ◡◡𝐵 ↔ (𝐴 ∈ (V × V) ∧ ( I ‘𝐴) ∈ 𝐵)) | ||
Original probably needs new subsection for Relation-related existence theorems. | ||
Theorem | cnvcnvintabd 41671* | Value of the relationship content of the intersection of a class. (Contributed by RP, 20-Aug-2020.) |
⊢ (𝜑 → ∃𝑥𝜓) ⇒ ⊢ (𝜑 → ◡◡∩ {𝑥 ∣ 𝜓} = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡◡𝑥 ∧ 𝜓)}) | ||
Theorem | elcnvlem 41672 | Two ways to say a set is a member of the converse of a class. (Contributed by RP, 19-Aug-2020.) |
⊢ 𝐹 = (𝑥 ∈ (V × V) ↦ 〈(2nd ‘𝑥), (1st ‘𝑥)〉) ⇒ ⊢ (𝐴 ∈ ◡𝐵 ↔ (𝐴 ∈ (V × V) ∧ (𝐹‘𝐴) ∈ 𝐵)) | ||
Theorem | elcnvintab 41673* | Two ways of saying a set is an element of the converse of the intersection of a class. (Contributed by RP, 19-Aug-2020.) |
⊢ (𝐴 ∈ ◡∩ {𝑥 ∣ 𝜑} ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑 → 𝐴 ∈ ◡𝑥))) | ||
Theorem | cnvintabd 41674* | Value of the converse of the intersection of a nonempty class. (Contributed by RP, 20-Aug-2020.) |
⊢ (𝜑 → ∃𝑥𝜓) ⇒ ⊢ (𝜑 → ◡∩ {𝑥 ∣ 𝜓} = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡𝑥 ∧ 𝜓)}) | ||
Theorem | undmrnresiss 41675* | Two ways of saying the identity relation restricted to the union of the domain and range of a relation is a subset of a relation. Generalization of reflexg 41676. (Contributed by RP, 26-Sep-2020.) |
⊢ (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐵 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → (𝑥𝐵𝑥 ∧ 𝑦𝐵𝑦))) | ||
Theorem | reflexg 41676* | Two ways of saying a relation is reflexive over its domain and range. (Contributed by RP, 4-Aug-2020.) |
⊢ (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐴 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → (𝑥𝐴𝑥 ∧ 𝑦𝐴𝑦))) | ||
Theorem | cnvssco 41677* | A condition weaker than reflexivity. (Contributed by RP, 3-Aug-2020.) |
⊢ (◡𝐴 ⊆ ◡(𝐵 ∘ 𝐶) ↔ ∀𝑥∀𝑦∃𝑧(𝑥𝐴𝑦 → (𝑥𝐶𝑧 ∧ 𝑧𝐵𝑦))) | ||
Theorem | refimssco 41678 | Reflexive relations are subsets of their self-composition. (Contributed by RP, 4-Aug-2020.) |
⊢ (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐴 → ◡𝐴 ⊆ ◡(𝐴 ∘ 𝐴)) | ||
Theorem | cleq2lem 41679 | Equality implies bijection. (Contributed by RP, 24-Jul-2020.) |
⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 = 𝐵 → ((𝑅 ⊆ 𝐴 ∧ 𝜑) ↔ (𝑅 ⊆ 𝐵 ∧ 𝜓))) | ||
Theorem | cbvcllem 41680* | Change of bound variable in class of supersets of a with a property. (Contributed by RP, 24-Jul-2020.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜑)} = {𝑦 ∣ (𝑋 ⊆ 𝑦 ∧ 𝜓)} | ||
Theorem | clublem 41681* | If a superset 𝑌 of 𝑋 possesses the property parameterized in 𝑥 in 𝜓, then 𝑌 is a superset of the closure of that property for the set 𝑋. (Contributed by RP, 23-Jul-2020.) |
⊢ (𝜑 → 𝑌 ∈ V) & ⊢ (𝑥 = 𝑌 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝑋 ⊆ 𝑌) & ⊢ (𝜑 → 𝜒) ⇒ ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} ⊆ 𝑌) | ||
Theorem | clss2lem 41682* | The closure of a property is a superset of the closure of a less restrictive property. (Contributed by RP, 24-Jul-2020.) |
⊢ (𝜑 → (𝜒 → 𝜓)) ⇒ ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} ⊆ ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜒)}) | ||
Theorem | dfid7 41683* | Definition of identity relation as the trivial closure. (Contributed by RP, 26-Jul-2020.) |
⊢ I = (𝑥 ∈ V ↦ ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ⊤)}) | ||
Theorem | mptrcllem 41684* | Show two versions of a closure with reflexive properties are equal. (Contributed by RP, 19-Oct-2020.) |
⊢ (𝑥 ∈ 𝑉 → ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} ∈ V) & ⊢ (𝑥 ∈ 𝑉 → ∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)} ∈ V) & ⊢ (𝑥 ∈ 𝑉 → 𝜒) & ⊢ (𝑥 ∈ 𝑉 → 𝜃) & ⊢ (𝑥 ∈ 𝑉 → 𝜏) & ⊢ (𝑦 = ∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)} → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = ∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)} → (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ↔ 𝜃)) & ⊢ (𝑧 = ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} → (𝜓 ↔ 𝜏)) ⇒ ⊢ (𝑥 ∈ 𝑉 ↦ ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}) = (𝑥 ∈ 𝑉 ↦ ∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)}) | ||
Theorem | cotrintab 41685 | The intersection of a class is a transitive relation if membership in the class implies the member is a transitive relation. (Contributed by RP, 28-Oct-2020.) |
⊢ (𝜑 → (𝑥 ∘ 𝑥) ⊆ 𝑥) ⇒ ⊢ (∩ {𝑥 ∣ 𝜑} ∘ ∩ {𝑥 ∣ 𝜑}) ⊆ ∩ {𝑥 ∣ 𝜑} | ||
Theorem | rclexi 41686* | The reflexive closure of a set exists. (Contributed by RP, 27-Oct-2020.) |
⊢ 𝐴 ∈ 𝑉 ⇒ ⊢ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)} ∈ V | ||
Theorem | rtrclexlem 41687 | Existence of relation implies existence of union with Cartesian product of domain and range. (Contributed by RP, 1-Nov-2020.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∪ ((dom 𝑅 ∪ ran 𝑅) × (dom 𝑅 ∪ ran 𝑅))) ∈ V) | ||
Theorem | rtrclex 41688* | The reflexive-transitive closure of a set exists. (Contributed by RP, 1-Nov-2020.) |
⊢ (𝐴 ∈ V ↔ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ ((𝑥 ∘ 𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥))} ∈ V) | ||
Theorem | trclubgNEW 41689* | If a relation exists then the transitive closure has an upper bound. (Contributed by RP, 24-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) | ||
Theorem | trclubNEW 41690* | If a relation exists then the transitive closure has an upper bound. (Contributed by RP, 24-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → Rel 𝑅) ⇒ ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ (dom 𝑅 × ran 𝑅)) | ||
Theorem | trclexi 41691* | The transitive closure of a set exists. (Contributed by RP, 27-Oct-2020.) |
⊢ 𝐴 ∈ 𝑉 ⇒ ⊢ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ∈ V | ||
Theorem | rtrclexi 41692* | The reflexive-transitive closure of a set exists. (Contributed by RP, 27-Oct-2020.) |
⊢ 𝐴 ∈ 𝑉 ⇒ ⊢ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ ((𝑥 ∘ 𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥))} ∈ V | ||
Theorem | clrellem 41693* | When the property 𝜓 holds for a relation substituted for 𝑥, then the closure on that property is a relation if the base set is a relation. (Contributed by RP, 30-Jul-2020.) |
⊢ (𝜑 → 𝑌 ∈ V) & ⊢ (𝜑 → Rel 𝑋) & ⊢ (𝑥 = ◡◡𝑌 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝑋 ⊆ 𝑌) & ⊢ (𝜑 → 𝜒) ⇒ ⊢ (𝜑 → Rel ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}) | ||
Theorem | clcnvlem 41694* | When 𝐴, an upper bound of the closure, exists and certain substitutions hold the converse of the closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020.) |
⊢ ((𝜑 ∧ 𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) → (𝜒 → 𝜓)) & ⊢ ((𝜑 ∧ 𝑦 = ◡𝑥) → (𝜓 → 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) & ⊢ (𝜑 → 𝑋 ⊆ 𝐴) & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝜃) ⇒ ⊢ (𝜑 → ◡∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} = ∩ {𝑦 ∣ (◡𝑋 ⊆ 𝑦 ∧ 𝜒)}) | ||
Theorem | cnvtrucl0 41695* | The converse of the trivial closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020.) |
⊢ (𝑋 ∈ 𝑉 → ◡∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ ⊤)} = ∩ {𝑦 ∣ (◡𝑋 ⊆ 𝑦 ∧ ⊤)}) | ||
Theorem | cnvrcl0 41696* | The converse of the reflexive closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020.) |
⊢ (𝑋 ∈ 𝑉 → ◡∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)} = ∩ {𝑦 ∣ (◡𝑋 ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)}) | ||
Theorem | cnvtrcl0 41697* | The converse of the transitive closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020.) |
⊢ (𝑋 ∈ 𝑉 → ◡∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} = ∩ {𝑦 ∣ (◡𝑋 ⊆ 𝑦 ∧ (𝑦 ∘ 𝑦) ⊆ 𝑦)}) | ||
Theorem | dmtrcl 41698* | The domain of the transitive closure is equal to the domain of its base relation. (Contributed by RP, 1-Nov-2020.) |
⊢ (𝑋 ∈ 𝑉 → dom ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} = dom 𝑋) | ||
Theorem | rntrcl 41699* | The range of the transitive closure is equal to the range of its base relation. (Contributed by RP, 1-Nov-2020.) |
⊢ (𝑋 ∈ 𝑉 → ran ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} = ran 𝑋) | ||
Theorem | dfrtrcl5 41700* | Definition of reflexive-transitive closure as a standard closure. (Contributed by RP, 1-Nov-2020.) |
⊢ t* = (𝑥 ∈ V ↦ ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ∧ (𝑦 ∘ 𝑦) ⊆ 𝑦))}) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |