Detailed syntax breakdown of Definition df-prpr
| Step | Hyp | Ref
| Expression |
| 1 | | cprpr 47499 |
. 2
class
Pairsproper |
| 2 | | vv |
. . 3
setvar 𝑣 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | va |
. . . . . . . . 9
setvar 𝑎 |
| 5 | 4 | cv 1539 |
. . . . . . . 8
class 𝑎 |
| 6 | | vb |
. . . . . . . . 9
setvar 𝑏 |
| 7 | 6 | cv 1539 |
. . . . . . . 8
class 𝑏 |
| 8 | 5, 7 | wne 2940 |
. . . . . . 7
wff 𝑎 ≠ 𝑏 |
| 9 | | vp |
. . . . . . . . 9
setvar 𝑝 |
| 10 | 9 | cv 1539 |
. . . . . . . 8
class 𝑝 |
| 11 | 5, 7 | cpr 4628 |
. . . . . . . 8
class {𝑎, 𝑏} |
| 12 | 10, 11 | wceq 1540 |
. . . . . . 7
wff 𝑝 = {𝑎, 𝑏} |
| 13 | 8, 12 | wa 395 |
. . . . . 6
wff (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏}) |
| 14 | 2 | cv 1539 |
. . . . . 6
class 𝑣 |
| 15 | 13, 6, 14 | wrex 3070 |
. . . . 5
wff
∃𝑏 ∈
𝑣 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏}) |
| 16 | 15, 4, 14 | wrex 3070 |
. . . 4
wff
∃𝑎 ∈
𝑣 ∃𝑏 ∈ 𝑣 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏}) |
| 17 | 16, 9 | cab 2714 |
. . 3
class {𝑝 ∣ ∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})} |
| 18 | 2, 3, 17 | cmpt 5225 |
. 2
class (𝑣 ∈ V ↦ {𝑝 ∣ ∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})}) |
| 19 | 1, 18 | wceq 1540 |
1
wff
Pairsproper = (𝑣 ∈ V ↦ {𝑝 ∣ ∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})}) |