| Metamath
Proof Explorer Theorem List (p. 463 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49930) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | stirlinglem6 46201* | A series that converges to log((𝑁 + 1) / 𝑁). (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐻 = (𝑗 ∈ ℕ0 ↦ (2 · ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑗) + 1))))) ⇒ ⊢ (𝑁 ∈ ℕ → seq0( + , 𝐻) ⇝ (log‘((𝑁 + 1) / 𝑁))) | ||
| Theorem | stirlinglem7 46202* | Algebraic manipulation of the formula for J(n). (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐽 = (𝑛 ∈ ℕ ↦ ((((1 + (2 · 𝑛)) / 2) · (log‘((𝑛 + 1) / 𝑛))) − 1)) & ⊢ 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘)))) & ⊢ 𝐻 = (𝑘 ∈ ℕ0 ↦ (2 · ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑘) + 1))))) ⇒ ⊢ (𝑁 ∈ ℕ → seq1( + , 𝐾) ⇝ (𝐽‘𝑁)) | ||
| Theorem | stirlinglem8 46203 | If 𝐴 converges to 𝐶, then 𝐹 converges to C^2 . (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ Ⅎ𝑛𝜑 & ⊢ Ⅎ𝑛𝐴 & ⊢ Ⅎ𝑛𝐷 & ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝐴‘(2 · 𝑛))) & ⊢ (𝜑 → 𝐴:ℕ⟶ℝ+) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (((𝐴‘𝑛)↑4) / ((𝐷‘𝑛)↑2))) & ⊢ 𝐿 = (𝑛 ∈ ℕ ↦ ((𝐴‘𝑛)↑4)) & ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ ((𝐷‘𝑛)↑2)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐷‘𝑛) ∈ ℝ+) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐴 ⇝ 𝐶) ⇒ ⊢ (𝜑 → 𝐹 ⇝ (𝐶↑2)) | ||
| Theorem | stirlinglem9 46204* | ((𝐵‘𝑁) − (𝐵‘(𝑁 + 1))) is expressed as a limit of a series. This result will be used both to prove that 𝐵 is decreasing and to prove that 𝐵 is bounded (below). It will follow that 𝐵 converges in the reals. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴‘𝑛))) & ⊢ 𝐽 = (𝑛 ∈ ℕ ↦ ((((1 + (2 · 𝑛)) / 2) · (log‘((𝑛 + 1) / 𝑛))) − 1)) & ⊢ 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘)))) ⇒ ⊢ (𝑁 ∈ ℕ → seq1( + , 𝐾) ⇝ ((𝐵‘𝑁) − (𝐵‘(𝑁 + 1)))) | ||
| Theorem | stirlinglem10 46205* | A bound for any B(N)-B(N + 1) that will allow to find a lower bound for the whole 𝐵 sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴‘𝑛))) & ⊢ 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘)))) & ⊢ 𝐿 = (𝑘 ∈ ℕ ↦ ((1 / (((2 · 𝑁) + 1)↑2))↑𝑘)) ⇒ ⊢ (𝑁 ∈ ℕ → ((𝐵‘𝑁) − (𝐵‘(𝑁 + 1))) ≤ ((1 / 4) · (1 / (𝑁 · (𝑁 + 1))))) | ||
| Theorem | stirlinglem11 46206* | 𝐵 is decreasing. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴‘𝑛))) & ⊢ 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘)))) ⇒ ⊢ (𝑁 ∈ ℕ → (𝐵‘(𝑁 + 1)) < (𝐵‘𝑁)) | ||
| Theorem | stirlinglem12 46207* | The sequence 𝐵 is bounded below. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴‘𝑛))) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1)))) ⇒ ⊢ (𝑁 ∈ ℕ → ((𝐵‘1) − (1 / 4)) ≤ (𝐵‘𝑁)) | ||
| Theorem | stirlinglem13 46208* | 𝐵 is decreasing and has a lower bound, then it converges. Since 𝐵 is log𝐴, in another theorem it is proven that 𝐴 converges as well. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴‘𝑛))) ⇒ ⊢ ∃𝑑 ∈ ℝ 𝐵 ⇝ 𝑑 | ||
| Theorem | stirlinglem14 46209* | The sequence 𝐴 converges to a positive real. This proves that the Stirling's formula converges to the factorial, up to a constant. In another theorem, using Wallis' formula for π& , such constant is exactly determined, thus proving the Stirling's formula. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴‘𝑛))) ⇒ ⊢ ∃𝑐 ∈ ℝ+ 𝐴 ⇝ 𝑐 | ||
| Theorem | stirlinglem15 46210* | The Stirling's formula is proven using a number of local definitions. The main theorem stirling 46211 will use this final lemma, but it will not expose the local definitions. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ Ⅎ𝑛𝜑 & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛))) & ⊢ 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) & ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝐴‘(2 · 𝑛))) & ⊢ 𝐸 = (𝑛 ∈ ℕ ↦ ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) & ⊢ 𝑉 = (𝑛 ∈ ℕ ↦ ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1))) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (((𝐴‘𝑛)↑4) / ((𝐷‘𝑛)↑2))) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐴 ⇝ 𝐶) ⇒ ⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛))) ⇝ 1) | ||
| Theorem | stirling 46211 | Stirling's approximation formula for 𝑛 factorial. The proof follows two major steps: first it is proven that 𝑆 and 𝑛 factorial are asymptotically equivalent, up to an unknown constant. Then, using Wallis' formula for π it is proven that the unknown constant is the square root of π and then the exact Stirling's formula is established. This is Metamath 100 proof #90. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛))) ⇒ ⊢ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛))) ⇝ 1 | ||
| Theorem | stirlingr 46212 | Stirling's approximation formula for 𝑛 factorial: here convergence is expressed with respect to the standard topology on the reals. The main theorem stirling 46211 is proven for convergence in the topology of complex numbers. The variable 𝑅 is used to denote convergence with respect to the standard topology on the reals. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛))) & ⊢ 𝑅 = (⇝𝑡‘(topGen‘ran (,))) ⇒ ⊢ (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆‘𝑛)))𝑅1 | ||
| Theorem | dirkerval 46213* | The Nth Dirichlet Kernel. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))) ⇒ ⊢ (𝑁 ∈ ℕ → (𝐷‘𝑁) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))) | ||
| Theorem | dirker2re 46214 | The Dirichlet Kernel value is a real if the argument is not a multiple of π . (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2)))) ∈ ℝ) | ||
| Theorem | dirkerdenne0 46215 | The Dirichlet Kernel denominator is never 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → ((2 · π) · (sin‘(𝑆 / 2))) ≠ 0) | ||
| Theorem | dirkerval2 46216* | The Nth Dirichlet Kernel evaluated at a specific point 𝑆. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) → ((𝐷‘𝑁)‘𝑆) = if((𝑆 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2)))))) | ||
| Theorem | dirkerre 46217* | The Dirichlet Kernel at any point evaluates to a real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) → ((𝐷‘𝑁)‘𝑆) ∈ ℝ) | ||
| Theorem | dirkerper 46218* | the Dirichlet Kernel has period 2π. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))))) & ⊢ 𝑇 = (2 · π) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝐷‘𝑁)‘(𝑥 + 𝑇)) = ((𝐷‘𝑁)‘𝑥)) | ||
| Theorem | dirkerf 46219* | For any natural number 𝑁, the Dirichlet Kernel (𝐷‘𝑁) is a function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))))) ⇒ ⊢ (𝑁 ∈ ℕ → (𝐷‘𝑁):ℝ⟶ℝ) | ||
| Theorem | dirkertrigeqlem1 46220* | Sum of an even number of alternating cos values. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝐾 ∈ ℕ → Σ𝑛 ∈ (1...(2 · 𝐾))(cos‘(𝑛 · π)) = 0) | ||
| Theorem | dirkertrigeqlem2 46221* | Trigonomic equality lemma for the Dirichlet Kernel trigonomic equality. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (sin‘𝐴) ≠ 0) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝐴))) / π) = ((sin‘((𝑁 + (1 / 2)) · 𝐴)) / ((2 · π) · (sin‘(𝐴 / 2))))) | ||
| Theorem | dirkertrigeqlem3 46222* | Trigonometric equality lemma for the Dirichlet Kernel trigonometric equality. Here we handle the case for an angle that's an odd multiple of π. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ 𝐴 = (((2 · 𝐾) + 1) · π) ⇒ ⊢ (𝜑 → (((1 / 2) + Σ𝑛 ∈ (1...𝑁)(cos‘(𝑛 · 𝐴))) / π) = ((sin‘((𝑁 + (1 / 2)) · 𝐴)) / ((2 · π) · (sin‘(𝐴 / 2))))) | ||
| Theorem | dirkertrigeq 46223* | Trigonometric equality for the Dirichlet kernel. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐹 = (𝐷‘𝑁) & ⊢ 𝐻 = (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) ⇒ ⊢ (𝜑 → 𝐹 = 𝐻) | ||
| Theorem | dirkeritg 46224* | The definite integral of the Dirichlet Kernel. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝑥 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐹 = (𝐷‘𝑁) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (((𝑥 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑥)) / 𝑘)) / π)) ⇒ ⊢ (𝜑 → ∫(𝐴(,)𝐵)(𝐹‘𝑥) d𝑥 = ((𝐺‘𝐵) − (𝐺‘𝐴))) | ||
| Theorem | dirkercncflem1 46225* | If 𝑌 is a multiple of π then it belongs to an open inerval (𝐴(,)𝐵) such that for any other point 𝑦 in the interval, cos y/2 and sin y/2 are nonzero. Such an interval is needed to apply De L'Hopital theorem. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐴 = (𝑌 − π) & ⊢ 𝐵 = (𝑌 + π) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → (𝑌 mod (2 · π)) = 0) ⇒ ⊢ (𝜑 → (𝑌 ∈ (𝐴(,)𝐵) ∧ ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((sin‘(𝑦 / 2)) ≠ 0 ∧ (cos‘(𝑦 / 2)) ≠ 0))) | ||
| Theorem | dirkercncflem2 46226* | Lemma used to prove that the Dirichlet Kernel is continuous at 𝑌 points that are multiples of (2 · π). (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))))) & ⊢ 𝐹 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) & ⊢ 𝐺 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2)))) & ⊢ ((𝜑 ∧ 𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘(𝑦 / 2)) ≠ 0) & ⊢ 𝐻 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) & ⊢ 𝐼 = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2)))) & ⊢ 𝐿 = (𝑤 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) / (π · (cos‘(𝑤 / 2))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑌 ∈ (𝐴(,)𝐵)) & ⊢ (𝜑 → (𝑌 mod (2 · π)) = 0) & ⊢ ((𝜑 ∧ 𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑦 / 2)) ≠ 0) ⇒ ⊢ (𝜑 → ((𝐷‘𝑁)‘𝑌) ∈ (((𝐷‘𝑁) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) limℂ 𝑌)) | ||
| Theorem | dirkercncflem3 46227* | The Dirichlet Kernel is continuous at 𝑌 points that are multiples of (2 · π). (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))))) & ⊢ 𝐴 = (𝑌 − π) & ⊢ 𝐵 = (𝑌 + π) & ⊢ 𝐹 = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))) & ⊢ 𝐺 = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑦 / 2)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → (𝑌 mod (2 · π)) = 0) ⇒ ⊢ (𝜑 → ((𝐷‘𝑁)‘𝑌) ∈ ((𝐷‘𝑁) limℂ 𝑌)) | ||
| Theorem | dirkercncflem4 46228* | The Dirichlet Kernel is continuos at points that are not multiple of 2 π . This is the easier condition, for the proof of the continuity of the Dirichlet kernel. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → (𝑌 mod (2 · π)) ≠ 0) & ⊢ 𝐴 = (⌊‘(𝑌 / (2 · π))) & ⊢ 𝐵 = (𝐴 + 1) & ⊢ 𝐶 = (𝐴 · (2 · π)) & ⊢ 𝐸 = (𝐵 · (2 · π)) ⇒ ⊢ (𝜑 → (𝐷‘𝑁) ∈ (((topGen‘ran (,)) CnP (topGen‘ran (,)))‘𝑌)) | ||
| Theorem | dirkercncf 46229* | For any natural number 𝑁, the Dirichlet Kernel (𝐷‘𝑁) is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))))) ⇒ ⊢ (𝑁 ∈ ℕ → (𝐷‘𝑁) ∈ (ℝ–cn→ℝ)) | ||
| Theorem | fourierdlem1 46230 | A partition interval is a subset of the partitioned interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) & ⊢ (𝜑 → 𝐼 ∈ (0..^𝑀)) & ⊢ (𝜑 → 𝑋 ∈ ((𝑄‘𝐼)[,](𝑄‘(𝐼 + 1)))) ⇒ ⊢ (𝜑 → 𝑋 ∈ (𝐴[,]𝐵)) | ||
| Theorem | fourierdlem2 46231* | Membership in a partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) ⇒ ⊢ (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) | ||
| Theorem | fourierdlem3 46232* | Membership in a partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ ((-π[,]π) ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) ⇒ ⊢ (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ ((-π[,]π) ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄‘𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) | ||
| Theorem | fourierdlem4 46233* | 𝐸 is a function that maps any point to a periodic corresponding point in (𝐴, 𝐵]. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) ⇒ ⊢ (𝜑 → 𝐸:ℝ⟶(𝐴(,]𝐵)) | ||
| Theorem | fourierdlem5 46234* | 𝑆 is a function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝑆 = (𝑥 ∈ (-π[,]π) ↦ (sin‘((𝑋 + (1 / 2)) · 𝑥))) ⇒ ⊢ (𝑋 ∈ ℝ → 𝑆:(-π[,]π)⟶ℝ) | ||
| Theorem | fourierdlem6 46235 | 𝑋 is in the periodic partition, when the considered interval is centered at 𝑋. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝐼 ∈ ℤ) & ⊢ (𝜑 → 𝐽 ∈ ℤ) & ⊢ (𝜑 → 𝐼 < 𝐽) & ⊢ (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴[,]𝐵)) & ⊢ (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴[,]𝐵)) ⇒ ⊢ (𝜑 → 𝐽 = (𝐼 + 1)) | ||
| Theorem | fourierdlem7 46236* | The difference between the periodic sawtooth function and the identity function is decreasing. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) ⇒ ⊢ (𝜑 → ((𝐸‘𝑌) − 𝑌) ≤ ((𝐸‘𝑋) − 𝑋)) | ||
| Theorem | fourierdlem8 46237 | A partition interval is a subset of the partitioned interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) & ⊢ (𝜑 → 𝐼 ∈ (0..^𝑀)) ⇒ ⊢ (𝜑 → ((𝑄‘𝐼)[,](𝑄‘(𝐼 + 1))) ⊆ (𝐴[,]𝐵)) | ||
| Theorem | fourierdlem9 46238* | 𝐻 is a complex function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝑊 ∈ ℝ) & ⊢ 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) ⇒ ⊢ (𝜑 → 𝐻:(-π[,]π)⟶ℝ) | ||
| Theorem | fourierdlem10 46239 | Condition on the bounds of a nonempty subinterval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐶 < 𝐷) & ⊢ (𝜑 → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵)) | ||
| Theorem | fourierdlem11 46240* | If there is a partition, than the lower bound is strictly less than the upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) ⇒ ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵)) | ||
| Theorem | fourierdlem12 46241* | A point of a partition is not an element of any open interval determined by the partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝑄) ⇒ ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ¬ 𝑋 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) | ||
| Theorem | fourierdlem13 46242* | Value of 𝑉 in terms of value of 𝑄. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑋) ∧ (𝑝‘𝑚) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) & ⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) ⇒ ⊢ (𝜑 → ((𝑄‘𝐼) = ((𝑉‘𝐼) − 𝑋) ∧ (𝑉‘𝐼) = (𝑋 + (𝑄‘𝐼)))) | ||
| Theorem | fourierdlem14 46243* | Given the partition 𝑉, 𝑄 is the partition shifted to the left by 𝑋. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑋) ∧ (𝑝‘𝑚) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) & ⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) ⇒ ⊢ (𝜑 → 𝑄 ∈ (𝑂‘𝑀)) | ||
| Theorem | fourierdlem15 46244* | The range of the partition is between its starting point and its ending point. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) ⇒ ⊢ (𝜑 → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) | ||
| Theorem | fourierdlem16 46245* | The coefficients of the fourier series are integrable and reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ 𝐶 = (-π(,)π) & ⊢ (𝜑 → (𝐹 ↾ 𝐶) ∈ 𝐿1) & ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫𝐶((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (((𝐴‘𝑁) ∈ ℝ ∧ (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) ∈ 𝐿1) ∧ ∫𝐶((𝐹‘𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 ∈ ℝ)) | ||
| Theorem | fourierdlem17 46246* | The defined 𝐿 is actually a function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ 𝐿 = (𝑥 ∈ (𝐴(,]𝐵) ↦ if(𝑥 = 𝐵, 𝐴, 𝑥)) ⇒ ⊢ (𝜑 → 𝐿:(𝐴(,]𝐵)⟶(𝐴[,]𝐵)) | ||
| Theorem | fourierdlem18 46247* | The function 𝑆 is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝑁 ∈ ℝ) & ⊢ 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠))) ⇒ ⊢ (𝜑 → 𝑆 ∈ ((-π[,]π)–cn→ℝ)) | ||
| Theorem | fourierdlem19 46248* | If two elements of 𝐷 have the same periodic image in (𝐴(,]𝐵) then they are equal. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝐷 = {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) & ⊢ (𝜑 → 𝑊 ∈ 𝐷) & ⊢ (𝜑 → 𝑍 ∈ 𝐷) & ⊢ (𝜑 → (𝐸‘𝑍) = (𝐸‘𝑊)) ⇒ ⊢ (𝜑 → ¬ 𝑊 < 𝑍) | ||
| Theorem | fourierdlem20 46249* | Every interval in the partition 𝑆 is included in an interval of the partition 𝑄. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) & ⊢ (𝜑 → (𝑄‘0) ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ≤ (𝑄‘𝑀)) & ⊢ (𝜑 → 𝐽 ∈ (0..^𝑁)) & ⊢ 𝑇 = ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵))) & ⊢ (𝜑 → 𝑆 Isom < , < ((0...𝑁), 𝑇)) & ⊢ 𝐼 = sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}, ℝ, < ) ⇒ ⊢ (𝜑 → ∃𝑖 ∈ (0..^𝑀)((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) | ||
| Theorem | fourierdlem21 46250* | The coefficients of the fourier series are integrable and reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ 𝐶 = (-π(,)π) & ⊢ (𝜑 → (𝐹 ↾ 𝐶) ∈ 𝐿1) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫𝐶((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (((𝐵‘𝑁) ∈ ℝ ∧ (𝑥 ∈ 𝐶 ↦ ((𝐹‘𝑥) · (sin‘(𝑁 · 𝑥)))) ∈ 𝐿1) ∧ ∫𝐶((𝐹‘𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 ∈ ℝ)) | ||
| Theorem | fourierdlem22 46251* | The coefficients of the fourier series are integrable and reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ 𝐶 = (-π(,)π) & ⊢ (𝜑 → (𝐹 ↾ 𝐶) ∈ 𝐿1) & ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫𝐶((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫𝐶((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) ⇒ ⊢ (𝜑 → ((𝑛 ∈ ℕ0 → (𝐴‘𝑛) ∈ ℝ) ∧ (𝑛 ∈ ℕ → (𝐵‘𝑛) ∈ ℝ))) | ||
| Theorem | fourierdlem23 46252* | If 𝐹 is continuous and 𝑋 is constant, then (𝐹‘(𝑋 + 𝑠)) is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→ℂ)) & ⊢ (𝜑 → 𝐵 ⊆ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑠 ∈ 𝐵) → (𝑋 + 𝑠) ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑠 ∈ 𝐵 ↦ (𝐹‘(𝑋 + 𝑠))) ∈ (𝐵–cn→ℂ)) | ||
| Theorem | fourierdlem24 46253 | A sufficient condition for module being nonzero. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝐴 ∈ ((-π[,]π) ∖ {0}) → (𝐴 mod (2 · π)) ≠ 0) | ||
| Theorem | fourierdlem25 46254* | If 𝐶 is not in the range of the partition, then it is in an open interval induced by the partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) & ⊢ (𝜑 → 𝐶 ∈ ((𝑄‘0)[,](𝑄‘𝑀))) & ⊢ (𝜑 → ¬ 𝐶 ∈ ran 𝑄) & ⊢ 𝐼 = sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) < 𝐶}, ℝ, < ) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ (0..^𝑀)𝐶 ∈ ((𝑄‘𝑗)(,)(𝑄‘(𝑗 + 1)))) | ||
| Theorem | fourierdlem26 46255* | Periodic image of a point 𝑌 that's in the period that begins with the point 𝑋. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → (𝐸‘𝑋) = 𝐵) & ⊢ (𝜑 → 𝑌 ∈ (𝑋(,](𝑋 + 𝑇))) ⇒ ⊢ (𝜑 → (𝐸‘𝑌) = (𝐴 + (𝑌 − 𝑋))) | ||
| Theorem | fourierdlem27 46256 | A partition open interval is a subset of the partitioned open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) & ⊢ (𝜑 → 𝐼 ∈ (0..^𝑀)) ⇒ ⊢ (𝜑 → ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (𝐴(,)𝐵)) | ||
| Theorem | fourierdlem28 46257* | Derivative of (𝐹‘(𝑋 + 𝑠)). (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ 𝐷 = (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) & ⊢ (𝜑 → 𝐷:((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ) ⇒ ⊢ (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠)))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐷‘(𝑋 + 𝑠)))) | ||
| Theorem | fourierdlem29 46258* | Explicit function value for 𝐾 applied to 𝐴. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ⇒ ⊢ (𝐴 ∈ (-π[,]π) → (𝐾‘𝐴) = if(𝐴 = 0, 1, (𝐴 / (2 · (sin‘(𝐴 / 2)))))) | ||
| Theorem | fourierdlem30 46259* | Sum of three small pieces is less than ε. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝐹 · -𝐺)) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐹 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐺 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ 𝑋 = (abs‘𝐴) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ 𝑌 = (abs‘𝐶) & ⊢ 𝑍 = (abs‘∫𝐼(𝐹 · -𝐺) d𝑥) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝑅 ∈ ℝ) & ⊢ (𝜑 → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ≤ 𝑅) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐵) ≤ 1) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐷) ≤ 1) ⇒ ⊢ (𝜑 → (abs‘(((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) − ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥)) < 𝐸) | ||
| Theorem | fourierdlem31 46260* | If 𝐴 is finite and for any element in 𝐴 there is a number 𝑚 such that a property holds for all numbers larger than 𝑚, then there is a number 𝑛 such that the property holds for all numbers larger than 𝑛 and for all elements in 𝐴. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 29-Sep-2020.) |
| ⊢ Ⅎ𝑖𝜑 & ⊢ Ⅎ𝑟𝜑 & ⊢ Ⅎ𝑖𝑉 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → ∀𝑖 ∈ 𝐴 ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)𝜒) & ⊢ 𝑀 = {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} & ⊢ 𝑉 = (𝑖 ∈ 𝐴 ↦ inf(𝑀, ℝ, < )) & ⊢ 𝑁 = sup(ran 𝑉, ℝ, < ) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ 𝐴 𝜒) | ||
| Theorem | fourierdlem32 46261 | Limit of a continuous function on an open subinterval. Lower bound version. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) & ⊢ (𝜑 → 𝑅 ∈ (𝐹 limℂ 𝐴)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐶 < 𝐷) & ⊢ (𝜑 → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) & ⊢ 𝑌 = if(𝐶 = 𝐴, 𝑅, (𝐹‘𝐶)) & ⊢ 𝐽 = ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) ⇒ ⊢ (𝜑 → 𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) limℂ 𝐶)) | ||
| Theorem | fourierdlem33 46262 | Limit of a continuous function on an open subinterval. Upper bound version. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) & ⊢ (𝜑 → 𝐿 ∈ (𝐹 limℂ 𝐵)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐶 < 𝐷) & ⊢ (𝜑 → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) & ⊢ 𝑌 = if(𝐷 = 𝐵, 𝐿, (𝐹‘𝐷)) & ⊢ 𝐽 = ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ⇒ ⊢ (𝜑 → 𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) limℂ 𝐷)) | ||
| Theorem | fourierdlem34 46263* | A partition is one to one. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) ⇒ ⊢ (𝜑 → 𝑄:(0...𝑀)–1-1→ℝ) | ||
| Theorem | fourierdlem35 46264 | There is a single point in (𝐴(,]𝐵) that's distant from 𝑋 a multiple integer of 𝑇. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝐼 ∈ ℤ) & ⊢ (𝜑 → 𝐽 ∈ ℤ) & ⊢ (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴(,]𝐵)) & ⊢ (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴(,]𝐵)) ⇒ ⊢ (𝜑 → 𝐼 = 𝐽) | ||
| Theorem | fourierdlem36 46265* | 𝐹 is an isomorphism. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ 𝐹 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐴)) & ⊢ 𝑁 = ((♯‘𝐴) − 1) ⇒ ⊢ (𝜑 → 𝐹 Isom < , < ((0...𝑁), 𝐴)) | ||
| Theorem | fourierdlem37 46266* | 𝐼 is a function that maps any real point to the point that in the partition that immediately precedes the corresponding periodic point in the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) & ⊢ 𝐿 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦)) & ⊢ 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}, ℝ, < )) ⇒ ⊢ (𝜑 → (𝐼:ℝ⟶(0..^𝑀) ∧ (𝑥 ∈ ℝ → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}))) | ||
| Theorem | fourierdlem38 46267* | The function 𝐹 is continuous on every interval induced by the partition 𝑄. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹 ∈ (dom 𝐹–cn→ℂ)) & ⊢ 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ 𝐻 = (𝐴 ∪ ((-π[,]π) ∖ dom 𝐹)) & ⊢ (𝜑 → ran 𝑄 = 𝐻) ⇒ ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) | ||
| Theorem | fourierdlem39 46268* | Integration by parts of ∫(𝐴(,)𝐵)((𝐹‘𝑥) · (sin‘(𝑅 · 𝑥))) d𝑥 (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) & ⊢ 𝐺 = (ℝ D 𝐹) & ⊢ (𝜑 → 𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ)) & ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺‘𝑥)) ≤ 𝑦) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∫(𝐴(,)𝐵)((𝐹‘𝑥) · (sin‘(𝑅 · 𝑥))) d𝑥 = ((((𝐹‘𝐵) · -((cos‘(𝑅 · 𝐵)) / 𝑅)) − ((𝐹‘𝐴) · -((cos‘(𝑅 · 𝐴)) / 𝑅))) − ∫(𝐴(,)𝐵)((𝐺‘𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) d𝑥)) | ||
| Theorem | fourierdlem40 46269* | 𝐻 is a continuous function on any partition interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝐴 ∈ (-π[,]π)) & ⊢ (𝜑 → 𝐵 ∈ (-π[,]π)) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵)) & ⊢ (𝜑 → (𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋))) ∈ (((𝐴 + 𝑋)(,)(𝐵 + 𝑋))–cn→ℂ)) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝑊 ∈ ℝ) & ⊢ 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) ⇒ ⊢ (𝜑 → (𝐻 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ)) | ||
| Theorem | fourierdlem41 46270* | Lemma used to prove that every real is a limit point for the domain of the derivative of the periodic function to be approximated. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝑍 = (𝑥 ∈ ℝ ↦ ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇)) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍‘𝑥))) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷) ⇒ ⊢ (𝜑 → (∃𝑦 ∈ ℝ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ 𝐷) ∧ ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ 𝐷))) | ||
| Theorem | fourierdlem42 46271* | The set of points in a moved partition are finite. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 29-Sep-2020.) |
| ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 < 𝐶) & ⊢ 𝑇 = (𝐶 − 𝐵) & ⊢ (𝜑 → 𝐴 ⊆ (𝐵[,]𝐶)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ 𝐷 = (abs ∘ − ) & ⊢ 𝐼 = ((𝐴 × 𝐴) ∖ I ) & ⊢ 𝑅 = ran (𝐷 ↾ 𝐼) & ⊢ 𝐸 = inf(𝑅, ℝ, < ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐾 = (𝐽 ↾t (𝑋[,]𝑌)) & ⊢ 𝐻 = {𝑥 ∈ (𝑋[,]𝑌) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐴} & ⊢ (𝜓 ↔ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑎 + (𝑗 · 𝑇)) ∈ 𝐴 ∧ (𝑏 + (𝑘 · 𝑇)) ∈ 𝐴))) ⇒ ⊢ (𝜑 → 𝐻 ∈ Fin) | ||
| Theorem | fourierdlem43 46272 | 𝐾 is a real function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ⇒ ⊢ 𝐾:(-π[,]π)⟶ℝ | ||
| Theorem | fourierdlem44 46273 | A condition for having (sin‘(𝐴 / 2)) nonzero. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) → (sin‘(𝐴 / 2)) ≠ 0) | ||
| Theorem | fourierdlem46 46274* | The function 𝐹 has a limit at the bounds of every interval induced by the partition 𝑄. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹 ∈ (dom 𝐹–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐹)) → ((𝐹 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐹)) → ((𝐹 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) & ⊢ (𝜑 → 𝑄 Isom < , < ((0...𝑀), 𝐻)) & ⊢ (𝜑 → 𝑄:(0...𝑀)⟶𝐻) & ⊢ (𝜑 → 𝐼 ∈ (0..^𝑀)) & ⊢ (𝜑 → (𝑄‘𝐼) < (𝑄‘(𝐼 + 1))) & ⊢ (𝜑 → ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (-π(,)π)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ 𝐻 = ({-π, π, 𝐶} ∪ ((-π[,]π) ∖ dom 𝐹)) & ⊢ (𝜑 → ran 𝑄 = 𝐻) ⇒ ⊢ (𝜑 → (((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘𝐼)) ≠ ∅ ∧ ((𝐹 ↾ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) limℂ (𝑄‘(𝐼 + 1))) ≠ ∅)) | ||
| Theorem | fourierdlem47 46275* | For 𝑟 large enough, the final expression is less than the given positive 𝐸. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐹) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑟 ∈ ℝ) → (𝑥 ∈ 𝐼 ↦ (𝐹 · -𝐺)) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐹 ∈ ℂ) & ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑟 ∈ ℂ) → 𝐺 ∈ ℂ) & ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑟 ∈ ℝ) → (abs‘𝐺) ≤ 1) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ 𝑋 = (abs‘𝐴) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ 𝑌 = (abs‘𝐶) & ⊢ 𝑍 = ∫𝐼(abs‘𝐹) d𝑥 & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ ((𝜑 ∧ 𝑟 ∈ ℂ) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑟 ∈ ℝ) → (abs‘𝐵) ≤ 1) & ⊢ ((𝜑 ∧ 𝑟 ∈ ℂ) → 𝐷 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑟 ∈ ℝ) → (abs‘𝐷) ≤ 1) & ⊢ 𝑀 = ((⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) + 1) ⇒ ⊢ (𝜑 → ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸) | ||
| Theorem | fourierdlem48 46276* | The given periodic function 𝐹 has a right limit at every point in the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝑍 = (𝑥 ∈ ℝ ↦ ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇)) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍‘𝑥))) & ⊢ (𝜒 ↔ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ ℤ) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) ⇒ ⊢ (𝜑 → ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋) ≠ ∅) | ||
| Theorem | fourierdlem49 46277* | The given periodic function 𝐹 has a left limit at every point in the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝑍 = (𝑥 ∈ ℝ ↦ ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇)) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍‘𝑥))) ⇒ ⊢ (𝜑 → ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋) ≠ ∅) | ||
| Theorem | fourierdlem50 46278* | Continuity of 𝑂 and its limits with respect to the 𝑆 partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝‘𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π)) & ⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) & ⊢ 𝑇 = ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵))) & ⊢ 𝑁 = ((♯‘𝑇) − 1) & ⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇)) & ⊢ (𝜑 → 𝐽 ∈ (0..^𝑁)) & ⊢ 𝑈 = (℩𝑖 ∈ (0..^𝑀)((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) & ⊢ (𝜒 ↔ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ (0..^𝑀)) ∧ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑘)(,)(𝑄‘(𝑘 + 1))))) ⇒ ⊢ (𝜑 → (𝑈 ∈ (0..^𝑀) ∧ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑈)(,)(𝑄‘(𝑈 + 1))))) | ||
| Theorem | fourierdlem51 46279* | 𝑋 is in the periodic partition, when the considered interval is centered at 𝑋. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 0) & ⊢ (𝜑 → 0 < 𝐵) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ (𝜑 → 𝐶 ∈ Fin) & ⊢ (𝜑 → 𝐶 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝐵 ∈ 𝐶) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → (𝐸‘𝑋) ∈ 𝐶) & ⊢ 𝐷 = ({(𝐴 + 𝑋), (𝐵 + 𝑋)} ∪ {𝑦 ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}) & ⊢ 𝐹 = (℩𝑓𝑓 Isom < , < ((0...((♯‘𝐷) − 1)), 𝐷)) & ⊢ 𝐻 = {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} ⇒ ⊢ (𝜑 → 𝑋 ∈ ran 𝐹) | ||
| Theorem | fourierdlem52 46280* | d16:d17,d18:jca |- ( ph -> ( ( S 0) ≤ 𝐴 ∧ 𝐴 ≤ (𝑆 0 ) ) ) . (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝑇 ∈ Fin) & ⊢ 𝑁 = ((♯‘𝑇) − 1) & ⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑇 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝐴 ∈ 𝑇) & ⊢ (𝜑 → 𝐵 ∈ 𝑇) ⇒ ⊢ (𝜑 → ((𝑆:(0...𝑁)⟶(𝐴[,]𝐵) ∧ (𝑆‘0) = 𝐴) ∧ (𝑆‘𝑁) = 𝐵)) | ||
| Theorem | fourierdlem53 46281* | The limit of 𝐹(𝑠) at (𝑋 + 𝐷) is the limit of 𝐹(𝑋 + 𝑠) at 𝐷. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ 𝐺 = (𝑠 ∈ 𝐴 ↦ (𝐹‘(𝑋 + 𝑠))) & ⊢ ((𝜑 ∧ 𝑠 ∈ 𝐴) → (𝑋 + 𝑠) ∈ 𝐵) & ⊢ (𝜑 → 𝐵 ⊆ ℝ) & ⊢ ((𝜑 ∧ 𝑠 ∈ 𝐴) → 𝑠 ≠ 𝐷) & ⊢ (𝜑 → 𝐶 ∈ ((𝐹 ↾ 𝐵) limℂ (𝑋 + 𝐷))) & ⊢ (𝜑 → 𝐷 ∈ ℂ) ⇒ ⊢ (𝜑 → 𝐶 ∈ (𝐺 limℂ 𝐷)) | ||
| Theorem | fourierdlem54 46282* | Given a partition 𝑄 and an arbitrary interval [𝐶, 𝐷], a partition 𝑆 on [𝐶, 𝐷] is built such that it preserves any periodic function piecewise continuous on 𝑄 will be piecewise continuous on 𝑆, with the same limits. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐶 < 𝐷) & ⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝‘𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝐻 = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}) & ⊢ 𝑁 = ((♯‘𝐻) − 1) & ⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻)) ⇒ ⊢ (𝜑 → ((𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂‘𝑁)) ∧ 𝑆 Isom < , < ((0...𝑁), 𝐻))) | ||
| Theorem | fourierdlem55 46283* | 𝑈 is a real function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝑊 ∈ ℝ) & ⊢ 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) & ⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) & ⊢ 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) ⇒ ⊢ (𝜑 → 𝑈:(-π[,]π)⟶ℝ) | ||
| Theorem | fourierdlem56 46284* | Derivative of the 𝐾 function on an interval not containing ' 0 '. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) & ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ((-π[,]π) ∖ {0})) & ⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≠ 0) ⇒ ⊢ (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐾‘𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((((sin‘(𝑠 / 2)) − (((cos‘(𝑠 / 2)) / 2) · 𝑠)) / ((sin‘(𝑠 / 2))↑2)) / 2))) | ||
| Theorem | fourierdlem57 46285* | The derivative of 𝑂. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ) & ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (-π[,]π)) & ⊢ (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ 𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) ⇒ ⊢ ((𝜑 → ((ℝ D 𝑂):(𝐴(,)𝐵)⟶ℝ ∧ (ℝ D 𝑂) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2))))) ∧ (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑠 / 2)))) | ||
| Theorem | fourierdlem58 46286* | The derivative of 𝐾 is continuous on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐾 = (𝑠 ∈ 𝐴 ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) & ⊢ (𝜑 → 𝐴 ⊆ (-π[,]π)) & ⊢ (𝜑 → ¬ 0 ∈ 𝐴) & ⊢ (𝜑 → 𝐴 ∈ (topGen‘ran (,))) ⇒ ⊢ (𝜑 → (ℝ D 𝐾) ∈ (𝐴–cn→ℝ)) | ||
| Theorem | fourierdlem59 46287* | The derivative of 𝐻 is continuous on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵)) & ⊢ (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ 𝐻 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠)) ⇒ ⊢ (𝜑 → (ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℝ)) | ||
| Theorem | fourierdlem60 46288* | Given a differentiable function 𝐹, with finite limit of the derivative at 𝐴 the derived function 𝐻 has a limit at 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) & ⊢ (𝜑 → 𝑌 ∈ (𝐹 limℂ 𝐵)) & ⊢ 𝐺 = (ℝ D 𝐹) & ⊢ (𝜑 → dom 𝐺 = (𝐴(,)𝐵)) & ⊢ (𝜑 → 𝐸 ∈ (𝐺 limℂ 𝐵)) & ⊢ 𝐻 = (𝑠 ∈ ((𝐴 − 𝐵)(,)0) ↦ (((𝐹‘(𝐵 + 𝑠)) − 𝑌) / 𝑠)) & ⊢ 𝑁 = (𝑠 ∈ ((𝐴 − 𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌)) & ⊢ 𝐷 = (𝑠 ∈ ((𝐴 − 𝐵)(,)0) ↦ 𝑠) ⇒ ⊢ (𝜑 → 𝐸 ∈ (𝐻 limℂ 0)) | ||
| Theorem | fourierdlem61 46289* | Given a differentiable function 𝐹, with finite limit of the derivative at 𝐴 the derived function 𝐻 has a limit at 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) & ⊢ (𝜑 → 𝑌 ∈ (𝐹 limℂ 𝐴)) & ⊢ 𝐺 = (ℝ D 𝐹) & ⊢ (𝜑 → dom 𝐺 = (𝐴(,)𝐵)) & ⊢ (𝜑 → 𝐸 ∈ (𝐺 limℂ 𝐴)) & ⊢ 𝐻 = (𝑠 ∈ (0(,)(𝐵 − 𝐴)) ↦ (((𝐹‘(𝐴 + 𝑠)) − 𝑌) / 𝑠)) & ⊢ 𝑁 = (𝑠 ∈ (0(,)(𝐵 − 𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌)) & ⊢ 𝐷 = (𝑠 ∈ (0(,)(𝐵 − 𝐴)) ↦ 𝑠) ⇒ ⊢ (𝜑 → 𝐸 ∈ (𝐻 limℂ 0)) | ||
| Theorem | fourierdlem62 46290 | The function 𝐾 is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐾 = (𝑦 ∈ (-π[,]π) ↦ if(𝑦 = 0, 1, (𝑦 / (2 · (sin‘(𝑦 / 2)))))) ⇒ ⊢ 𝐾 ∈ ((-π[,]π)–cn→ℝ) | ||
| Theorem | fourierdlem63 46291* | The upper bound of intervals in the moved partition are mapped to points that are not greater than the corresponding upper bounds in the original partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐶 < 𝐷) & ⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝‘𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝐻 = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}) & ⊢ 𝑁 = ((♯‘𝐻) − 1) & ⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻)) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) & ⊢ (𝜑 → 𝐾 ∈ (0...𝑀)) & ⊢ (𝜑 → 𝐽 ∈ (0..^𝑁)) & ⊢ (𝜑 → 𝑌 ∈ ((𝑆‘𝐽)[,)(𝑆‘(𝐽 + 1)))) & ⊢ (𝜑 → (𝐸‘𝑌) < (𝑄‘𝐾)) & ⊢ 𝑋 = ((𝑄‘𝐾) − ((𝐸‘𝑌) − 𝑌)) ⇒ ⊢ (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ≤ (𝑄‘𝐾)) | ||
| Theorem | fourierdlem64 46292* | The partition 𝑉 is finer than 𝑄, when 𝑄 is moved on the same interval where 𝑉 lies. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐶 < 𝐷) & ⊢ 𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) & ⊢ 𝑁 = ((♯‘𝐻) − 1) & ⊢ 𝑉 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻)) & ⊢ (𝜑 → 𝐽 ∈ (0..^𝑁)) & ⊢ 𝐿 = sup({𝑘 ∈ ℤ ∣ ((𝑄‘0) + (𝑘 · 𝑇)) ≤ (𝑉‘𝐽)}, ℝ, < ) & ⊢ 𝐼 = sup({𝑗 ∈ (0..^𝑀) ∣ ((𝑄‘𝑗) + (𝐿 · 𝑇)) ≤ (𝑉‘𝐽)}, ℝ, < ) ⇒ ⊢ (𝜑 → ((𝐼 ∈ (0..^𝑀) ∧ 𝐿 ∈ ℤ) ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑙 ∈ ℤ ((𝑉‘𝐽)(,)(𝑉‘(𝐽 + 1))) ⊆ (((𝑄‘𝑖) + (𝑙 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (𝑙 · 𝑇))))) | ||
| Theorem | fourierdlem65 46293* | The distance of two adjacent points in the moved partition is preserved in the original partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ (𝐶(,)+∞)) & ⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝‘𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝑁 = ((♯‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄})) − 1) & ⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵 − 𝐴))) ∈ ran 𝑄}))) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) & ⊢ 𝐿 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦)) & ⊢ 𝑍 = ((𝑆‘𝑗) + (𝐵 − (𝐸‘(𝑆‘𝑗)))) ⇒ ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘(𝑗 + 1))) − (𝐿‘(𝐸‘(𝑆‘𝑗)))) = ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗))) | ||
| Theorem | fourierdlem66 46294* | Value of the 𝐺 function when the argument is not zero. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝑊 ∈ ℝ) & ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))) & ⊢ 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) & ⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) & ⊢ 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) & ⊢ 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠))) & ⊢ 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) & ⊢ 𝐴 = ((-π[,]π) ∖ {0}) ⇒ ⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ 𝐴) → (𝐺‘𝑠) = (π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷‘𝑛)‘𝑠)))) | ||
| Theorem | fourierdlem67 46295* | 𝐺 is a function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝑊 ∈ ℝ) & ⊢ 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) & ⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) & ⊢ 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) & ⊢ (𝜑 → 𝑁 ∈ ℝ) & ⊢ 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠))) & ⊢ 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) ⇒ ⊢ (𝜑 → 𝐺:(-π[,]π)⟶ℝ) | ||
| Theorem | fourierdlem68 46296* | The derivative of 𝑂 is bounded on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π)) & ⊢ (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵)) & ⊢ (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘(𝐹‘𝑡)) ≤ 𝐷) & ⊢ (𝜑 → 𝐸 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘𝑡)) ≤ 𝐸) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ 𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) ⇒ ⊢ (𝜑 → (dom (ℝ D 𝑂) = (𝐴(,)𝐵) ∧ ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏)) | ||
| Theorem | fourierdlem69 46297* | A piecewise continuous function is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℂ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) ⇒ ⊢ (𝜑 → 𝐹 ∈ 𝐿1) | ||
| Theorem | fourierdlem70 46298* | A piecewise continuous function is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) & ⊢ (𝜑 → (𝑄‘0) = 𝐴) & ⊢ (𝜑 → (𝑄‘𝑀) = 𝐵) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) & ⊢ 𝐼 = (𝑖 ∈ (0..^𝑀) ↦ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑠 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑠)) ≤ 𝑥) | ||
| Theorem | fourierdlem71 46299* | A periodic piecewise continuous function, possibly undefined on a finite set in each periodic interval, is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → dom 𝐹 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:dom 𝐹⟶ℝ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) & ⊢ (𝜑 → (𝑄‘0) = 𝐴) & ⊢ (𝜑 → (𝑄‘𝑀) = 𝐵) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) & ⊢ (((𝜑 ∧ 𝑥 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ dom 𝐹) & ⊢ (((𝜑 ∧ 𝑥 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹‘𝑥)) & ⊢ 𝐼 = (𝑖 ∈ (0..^𝑀) ↦ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ dom 𝐹(abs‘(𝐹‘𝑥)) ≤ 𝑦) | ||
| Theorem | fourierdlem72 46300* | The derivative of 𝑂 is continuous on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝‘𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (-π[,]π)) & ⊢ (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) & ⊢ (𝜑 → 𝑈 ∈ (0..^𝑀)) & ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ((𝑄‘𝑈)(,)(𝑄‘(𝑈 + 1)))) & ⊢ 𝐻 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠)) & ⊢ 𝐾 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) & ⊢ 𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) ⇒ ⊢ (𝜑 → (ℝ D 𝑂) ∈ ((𝐴(,)𝐵)–cn→ℂ)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |