| Step | Hyp | Ref
| Expression |
| 1 | | df-prpr 47500 |
. 2
⊢
Pairsproper = (𝑣 ∈ V ↦ {𝑝 ∣ ∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})}) |
| 2 | | rexeq 3322 |
. . . . 5
⊢ (𝑣 = 𝑉 → (∃𝑏 ∈ 𝑣 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏}) ↔ ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏}))) |
| 3 | 2 | rexeqbi1dv 3339 |
. . . 4
⊢ (𝑣 = 𝑉 → (∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏}) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏}))) |
| 4 | 3 | abbidv 2808 |
. . 3
⊢ (𝑣 = 𝑉 → {𝑝 ∣ ∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})} = {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})}) |
| 5 | 4 | adantl 481 |
. 2
⊢ ((𝑉 ∈ 𝑊 ∧ 𝑣 = 𝑉) → {𝑝 ∣ ∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})} = {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})}) |
| 6 | | elex 3501 |
. 2
⊢ (𝑉 ∈ 𝑊 → 𝑉 ∈ V) |
| 7 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏}) → 𝑝 = {𝑎, 𝑏}) |
| 8 | 7 | ss2abi 4067 |
. . . . . . 7
⊢ {𝑝 ∣ (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})} ⊆ {𝑝 ∣ 𝑝 = {𝑎, 𝑏}} |
| 9 | | zfpair2 5433 |
. . . . . . . . 9
⊢ {𝑎, 𝑏} ∈ V |
| 10 | 9 | eueqi 3715 |
. . . . . . . 8
⊢
∃!𝑝 𝑝 = {𝑎, 𝑏} |
| 11 | | euabex 5466 |
. . . . . . . 8
⊢
(∃!𝑝 𝑝 = {𝑎, 𝑏} → {𝑝 ∣ 𝑝 = {𝑎, 𝑏}} ∈ V) |
| 12 | 10, 11 | mp1i 13 |
. . . . . . 7
⊢ (𝑉 ∈ 𝑊 → {𝑝 ∣ 𝑝 = {𝑎, 𝑏}} ∈ V) |
| 13 | | ssexg 5323 |
. . . . . . 7
⊢ (({𝑝 ∣ (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})} ⊆ {𝑝 ∣ 𝑝 = {𝑎, 𝑏}} ∧ {𝑝 ∣ 𝑝 = {𝑎, 𝑏}} ∈ V) → {𝑝 ∣ (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})} ∈ V) |
| 14 | 8, 12, 13 | sylancr 587 |
. . . . . 6
⊢ (𝑉 ∈ 𝑊 → {𝑝 ∣ (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})} ∈ V) |
| 15 | 14 | ralrimivw 3150 |
. . . . 5
⊢ (𝑉 ∈ 𝑊 → ∀𝑏 ∈ 𝑉 {𝑝 ∣ (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})} ∈ V) |
| 16 | | abrexex2g 7989 |
. . . . 5
⊢ ((𝑉 ∈ 𝑊 ∧ ∀𝑏 ∈ 𝑉 {𝑝 ∣ (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})} ∈ V) → {𝑝 ∣ ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})} ∈ V) |
| 17 | 15, 16 | mpdan 687 |
. . . 4
⊢ (𝑉 ∈ 𝑊 → {𝑝 ∣ ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})} ∈ V) |
| 18 | 17 | ralrimivw 3150 |
. . 3
⊢ (𝑉 ∈ 𝑊 → ∀𝑎 ∈ 𝑉 {𝑝 ∣ ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})} ∈ V) |
| 19 | | abrexex2g 7989 |
. . 3
⊢ ((𝑉 ∈ 𝑊 ∧ ∀𝑎 ∈ 𝑉 {𝑝 ∣ ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})} ∈ V) → {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})} ∈ V) |
| 20 | 18, 19 | mpdan 687 |
. 2
⊢ (𝑉 ∈ 𝑊 → {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})} ∈ V) |
| 21 | 1, 5, 6, 20 | fvmptd2 7024 |
1
⊢ (𝑉 ∈ 𝑊 → (Pairsproper‘𝑉) = {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})}) |