Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prprval Structured version   Visualization version   GIF version

Theorem prprval 47519
Description: The set of all proper unordered pairs over a given set 𝑉. (Contributed by AV, 29-Apr-2023.)
Assertion
Ref Expression
prprval (𝑉𝑊 → (Pairsproper𝑉) = {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})})
Distinct variable groups:   𝑉,𝑎,𝑏,𝑝   𝑊,𝑎,𝑏,𝑝

Proof of Theorem prprval
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 df-prpr 47518 . 2 Pairsproper = (𝑣 ∈ V ↦ {𝑝 ∣ ∃𝑎𝑣𝑏𝑣 (𝑎𝑏𝑝 = {𝑎, 𝑏})})
2 rexeq 3297 . . . . 5 (𝑣 = 𝑉 → (∃𝑏𝑣 (𝑎𝑏𝑝 = {𝑎, 𝑏}) ↔ ∃𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})))
32rexeqbi1dv 3314 . . . 4 (𝑣 = 𝑉 → (∃𝑎𝑣𝑏𝑣 (𝑎𝑏𝑝 = {𝑎, 𝑏}) ↔ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})))
43abbidv 2796 . . 3 (𝑣 = 𝑉 → {𝑝 ∣ ∃𝑎𝑣𝑏𝑣 (𝑎𝑏𝑝 = {𝑎, 𝑏})} = {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})})
54adantl 481 . 2 ((𝑉𝑊𝑣 = 𝑉) → {𝑝 ∣ ∃𝑎𝑣𝑏𝑣 (𝑎𝑏𝑝 = {𝑎, 𝑏})} = {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})})
6 elex 3471 . 2 (𝑉𝑊𝑉 ∈ V)
7 simpr 484 . . . . . . . 8 ((𝑎𝑏𝑝 = {𝑎, 𝑏}) → 𝑝 = {𝑎, 𝑏})
87ss2abi 4033 . . . . . . 7 {𝑝 ∣ (𝑎𝑏𝑝 = {𝑎, 𝑏})} ⊆ {𝑝𝑝 = {𝑎, 𝑏}}
9 zfpair2 5391 . . . . . . . . 9 {𝑎, 𝑏} ∈ V
109eueqi 3683 . . . . . . . 8 ∃!𝑝 𝑝 = {𝑎, 𝑏}
11 euabex 5424 . . . . . . . 8 (∃!𝑝 𝑝 = {𝑎, 𝑏} → {𝑝𝑝 = {𝑎, 𝑏}} ∈ V)
1210, 11mp1i 13 . . . . . . 7 (𝑉𝑊 → {𝑝𝑝 = {𝑎, 𝑏}} ∈ V)
13 ssexg 5281 . . . . . . 7 (({𝑝 ∣ (𝑎𝑏𝑝 = {𝑎, 𝑏})} ⊆ {𝑝𝑝 = {𝑎, 𝑏}} ∧ {𝑝𝑝 = {𝑎, 𝑏}} ∈ V) → {𝑝 ∣ (𝑎𝑏𝑝 = {𝑎, 𝑏})} ∈ V)
148, 12, 13sylancr 587 . . . . . 6 (𝑉𝑊 → {𝑝 ∣ (𝑎𝑏𝑝 = {𝑎, 𝑏})} ∈ V)
1514ralrimivw 3130 . . . . 5 (𝑉𝑊 → ∀𝑏𝑉 {𝑝 ∣ (𝑎𝑏𝑝 = {𝑎, 𝑏})} ∈ V)
16 abrexex2g 7946 . . . . 5 ((𝑉𝑊 ∧ ∀𝑏𝑉 {𝑝 ∣ (𝑎𝑏𝑝 = {𝑎, 𝑏})} ∈ V) → {𝑝 ∣ ∃𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})} ∈ V)
1715, 16mpdan 687 . . . 4 (𝑉𝑊 → {𝑝 ∣ ∃𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})} ∈ V)
1817ralrimivw 3130 . . 3 (𝑉𝑊 → ∀𝑎𝑉 {𝑝 ∣ ∃𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})} ∈ V)
19 abrexex2g 7946 . . 3 ((𝑉𝑊 ∧ ∀𝑎𝑉 {𝑝 ∣ ∃𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})} ∈ V) → {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})} ∈ V)
2018, 19mpdan 687 . 2 (𝑉𝑊 → {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})} ∈ V)
211, 5, 6, 20fvmptd2 6979 1 (𝑉𝑊 → (Pairsproper𝑉) = {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ∃!weu 2562  {cab 2708  wne 2926  wral 3045  wrex 3054  Vcvv 3450  wss 3917  {cpr 4594  cfv 6514  Pairspropercprpr 47517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-prpr 47518
This theorem is referenced by:  prprvalpw  47520  prprspr2  47523
  Copyright terms: Public domain W3C validator