Detailed syntax breakdown of Definition df-pstm
Step | Hyp | Ref
| Expression |
1 | | cpstm 31837 |
. 2
class
pstoMet |
2 | | vd |
. . 3
setvar 𝑑 |
3 | | cpsmet 20581 |
. . . . 5
class
PsMet |
4 | 3 | crn 5590 |
. . . 4
class ran
PsMet |
5 | 4 | cuni 4839 |
. . 3
class ∪ ran PsMet |
6 | | va |
. . . 4
setvar 𝑎 |
7 | | vb |
. . . 4
setvar 𝑏 |
8 | 2 | cv 1538 |
. . . . . . 7
class 𝑑 |
9 | 8 | cdm 5589 |
. . . . . 6
class dom 𝑑 |
10 | 9 | cdm 5589 |
. . . . 5
class dom dom
𝑑 |
11 | | cmetid 31836 |
. . . . . 6
class
~Met |
12 | 8, 11 | cfv 6433 |
. . . . 5
class
(~Met‘𝑑) |
13 | 10, 12 | cqs 8497 |
. . . 4
class (dom dom
𝑑 /
(~Met‘𝑑)) |
14 | | vz |
. . . . . . . . . 10
setvar 𝑧 |
15 | 14 | cv 1538 |
. . . . . . . . 9
class 𝑧 |
16 | | vx |
. . . . . . . . . . 11
setvar 𝑥 |
17 | 16 | cv 1538 |
. . . . . . . . . 10
class 𝑥 |
18 | | vy |
. . . . . . . . . . 11
setvar 𝑦 |
19 | 18 | cv 1538 |
. . . . . . . . . 10
class 𝑦 |
20 | 17, 19, 8 | co 7275 |
. . . . . . . . 9
class (𝑥𝑑𝑦) |
21 | 15, 20 | wceq 1539 |
. . . . . . . 8
wff 𝑧 = (𝑥𝑑𝑦) |
22 | 7 | cv 1538 |
. . . . . . . 8
class 𝑏 |
23 | 21, 18, 22 | wrex 3065 |
. . . . . . 7
wff
∃𝑦 ∈
𝑏 𝑧 = (𝑥𝑑𝑦) |
24 | 6 | cv 1538 |
. . . . . . 7
class 𝑎 |
25 | 23, 16, 24 | wrex 3065 |
. . . . . 6
wff
∃𝑥 ∈
𝑎 ∃𝑦 ∈ 𝑏 𝑧 = (𝑥𝑑𝑦) |
26 | 25, 14 | cab 2715 |
. . . . 5
class {𝑧 ∣ ∃𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝑧 = (𝑥𝑑𝑦)} |
27 | 26 | cuni 4839 |
. . . 4
class ∪ {𝑧
∣ ∃𝑥 ∈
𝑎 ∃𝑦 ∈ 𝑏 𝑧 = (𝑥𝑑𝑦)} |
28 | 6, 7, 13, 13, 27 | cmpo 7277 |
. . 3
class (𝑎 ∈ (dom dom 𝑑 /
(~Met‘𝑑)),
𝑏 ∈ (dom dom 𝑑 /
(~Met‘𝑑))
↦ ∪ {𝑧 ∣ ∃𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝑧 = (𝑥𝑑𝑦)}) |
29 | 2, 5, 28 | cmpt 5157 |
. 2
class (𝑑 ∈ ∪ ran PsMet ↦ (𝑎 ∈ (dom dom 𝑑 / (~Met‘𝑑)), 𝑏 ∈ (dom dom 𝑑 / (~Met‘𝑑)) ↦ ∪ {𝑧
∣ ∃𝑥 ∈
𝑎 ∃𝑦 ∈ 𝑏 𝑧 = (𝑥𝑑𝑦)})) |
30 | 1, 29 | wceq 1539 |
1
wff pstoMet =
(𝑑 ∈ ∪ ran PsMet ↦ (𝑎 ∈ (dom dom 𝑑 / (~Met‘𝑑)), 𝑏 ∈ (dom dom 𝑑 / (~Met‘𝑑)) ↦ ∪ {𝑧
∣ ∃𝑥 ∈
𝑎 ∃𝑦 ∈ 𝑏 𝑧 = (𝑥𝑑𝑦)})) |