Detailed syntax breakdown of Definition df-pstm
| Step | Hyp | Ref
| Expression |
| 1 | | cpstm 33886 |
. 2
class
pstoMet |
| 2 | | vd |
. . 3
setvar 𝑑 |
| 3 | | cpsmet 21348 |
. . . . 5
class
PsMet |
| 4 | 3 | crn 5686 |
. . . 4
class ran
PsMet |
| 5 | 4 | cuni 4907 |
. . 3
class ∪ ran PsMet |
| 6 | | va |
. . . 4
setvar 𝑎 |
| 7 | | vb |
. . . 4
setvar 𝑏 |
| 8 | 2 | cv 1539 |
. . . . . . 7
class 𝑑 |
| 9 | 8 | cdm 5685 |
. . . . . 6
class dom 𝑑 |
| 10 | 9 | cdm 5685 |
. . . . 5
class dom dom
𝑑 |
| 11 | | cmetid 33885 |
. . . . . 6
class
~Met |
| 12 | 8, 11 | cfv 6561 |
. . . . 5
class
(~Met‘𝑑) |
| 13 | 10, 12 | cqs 8744 |
. . . 4
class (dom dom
𝑑 /
(~Met‘𝑑)) |
| 14 | | vz |
. . . . . . . . . 10
setvar 𝑧 |
| 15 | 14 | cv 1539 |
. . . . . . . . 9
class 𝑧 |
| 16 | | vx |
. . . . . . . . . . 11
setvar 𝑥 |
| 17 | 16 | cv 1539 |
. . . . . . . . . 10
class 𝑥 |
| 18 | | vy |
. . . . . . . . . . 11
setvar 𝑦 |
| 19 | 18 | cv 1539 |
. . . . . . . . . 10
class 𝑦 |
| 20 | 17, 19, 8 | co 7431 |
. . . . . . . . 9
class (𝑥𝑑𝑦) |
| 21 | 15, 20 | wceq 1540 |
. . . . . . . 8
wff 𝑧 = (𝑥𝑑𝑦) |
| 22 | 7 | cv 1539 |
. . . . . . . 8
class 𝑏 |
| 23 | 21, 18, 22 | wrex 3070 |
. . . . . . 7
wff
∃𝑦 ∈
𝑏 𝑧 = (𝑥𝑑𝑦) |
| 24 | 6 | cv 1539 |
. . . . . . 7
class 𝑎 |
| 25 | 23, 16, 24 | wrex 3070 |
. . . . . 6
wff
∃𝑥 ∈
𝑎 ∃𝑦 ∈ 𝑏 𝑧 = (𝑥𝑑𝑦) |
| 26 | 25, 14 | cab 2714 |
. . . . 5
class {𝑧 ∣ ∃𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝑧 = (𝑥𝑑𝑦)} |
| 27 | 26 | cuni 4907 |
. . . 4
class ∪ {𝑧
∣ ∃𝑥 ∈
𝑎 ∃𝑦 ∈ 𝑏 𝑧 = (𝑥𝑑𝑦)} |
| 28 | 6, 7, 13, 13, 27 | cmpo 7433 |
. . 3
class (𝑎 ∈ (dom dom 𝑑 /
(~Met‘𝑑)),
𝑏 ∈ (dom dom 𝑑 /
(~Met‘𝑑))
↦ ∪ {𝑧 ∣ ∃𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝑧 = (𝑥𝑑𝑦)}) |
| 29 | 2, 5, 28 | cmpt 5225 |
. 2
class (𝑑 ∈ ∪ ran PsMet ↦ (𝑎 ∈ (dom dom 𝑑 / (~Met‘𝑑)), 𝑏 ∈ (dom dom 𝑑 / (~Met‘𝑑)) ↦ ∪ {𝑧
∣ ∃𝑥 ∈
𝑎 ∃𝑦 ∈ 𝑏 𝑧 = (𝑥𝑑𝑦)})) |
| 30 | 1, 29 | wceq 1540 |
1
wff pstoMet =
(𝑑 ∈ ∪ ran PsMet ↦ (𝑎 ∈ (dom dom 𝑑 / (~Met‘𝑑)), 𝑏 ∈ (dom dom 𝑑 / (~Met‘𝑑)) ↦ ∪ {𝑧
∣ ∃𝑥 ∈
𝑎 ∃𝑦 ∈ 𝑏 𝑧 = (𝑥𝑑𝑦)})) |