Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metidval Structured version   Visualization version   GIF version

Theorem metidval 33169
Description: Value of the metric identification relation. (Contributed by Thierry Arnoux, 7-Feb-2018.)
Assertion
Ref Expression
metidval (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ (~Metβ€˜π·) = {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (π‘₯𝐷𝑦) = 0)})
Distinct variable groups:   π‘₯,𝑦,𝐷   π‘₯,𝑋,𝑦

Proof of Theorem metidval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 df-metid 33167 . 2 ~Met = (𝑑 ∈ βˆͺ ran PsMet ↦ {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ dom dom 𝑑 ∧ 𝑦 ∈ dom dom 𝑑) ∧ (π‘₯𝑑𝑦) = 0)})
2 simpr 484 . . . . . . . . 9 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑑 = 𝐷) β†’ 𝑑 = 𝐷)
32dmeqd 5905 . . . . . . . 8 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑑 = 𝐷) β†’ dom 𝑑 = dom 𝐷)
43dmeqd 5905 . . . . . . 7 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑑 = 𝐷) β†’ dom dom 𝑑 = dom dom 𝐷)
5 psmetdmdm 24032 . . . . . . . 8 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ 𝑋 = dom dom 𝐷)
65adantr 480 . . . . . . 7 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑑 = 𝐷) β†’ 𝑋 = dom dom 𝐷)
74, 6eqtr4d 2774 . . . . . 6 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑑 = 𝐷) β†’ dom dom 𝑑 = 𝑋)
87eleq2d 2818 . . . . 5 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑑 = 𝐷) β†’ (π‘₯ ∈ dom dom 𝑑 ↔ π‘₯ ∈ 𝑋))
97eleq2d 2818 . . . . 5 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑑 = 𝐷) β†’ (𝑦 ∈ dom dom 𝑑 ↔ 𝑦 ∈ 𝑋))
108, 9anbi12d 630 . . . 4 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑑 = 𝐷) β†’ ((π‘₯ ∈ dom dom 𝑑 ∧ 𝑦 ∈ dom dom 𝑑) ↔ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)))
112oveqd 7429 . . . . 5 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑑 = 𝐷) β†’ (π‘₯𝑑𝑦) = (π‘₯𝐷𝑦))
1211eqeq1d 2733 . . . 4 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑑 = 𝐷) β†’ ((π‘₯𝑑𝑦) = 0 ↔ (π‘₯𝐷𝑦) = 0))
1310, 12anbi12d 630 . . 3 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑑 = 𝐷) β†’ (((π‘₯ ∈ dom dom 𝑑 ∧ 𝑦 ∈ dom dom 𝑑) ∧ (π‘₯𝑑𝑦) = 0) ↔ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (π‘₯𝐷𝑦) = 0)))
1413opabbidv 5214 . 2 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑑 = 𝐷) β†’ {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ dom dom 𝑑 ∧ 𝑦 ∈ dom dom 𝑑) ∧ (π‘₯𝑑𝑦) = 0)} = {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (π‘₯𝐷𝑦) = 0)})
15 elfvunirn 6923 . 2 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ 𝐷 ∈ βˆͺ ran PsMet)
16 opabssxp 5768 . . 3 {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (π‘₯𝐷𝑦) = 0)} βŠ† (𝑋 Γ— 𝑋)
17 elfvex 6929 . . . 4 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ 𝑋 ∈ V)
1817, 17xpexd 7742 . . 3 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ (𝑋 Γ— 𝑋) ∈ V)
19 ssexg 5323 . . 3 (({⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (π‘₯𝐷𝑦) = 0)} βŠ† (𝑋 Γ— 𝑋) ∧ (𝑋 Γ— 𝑋) ∈ V) β†’ {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (π‘₯𝐷𝑦) = 0)} ∈ V)
2016, 18, 19sylancr 586 . 2 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (π‘₯𝐷𝑦) = 0)} ∈ V)
211, 14, 15, 20fvmptd2 7006 1 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ (~Metβ€˜π·) = {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (π‘₯𝐷𝑦) = 0)})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1540   ∈ wcel 2105  Vcvv 3473   βŠ† wss 3948  βˆͺ cuni 4908  {copab 5210   Γ— cxp 5674  dom cdm 5676  ran crn 5677  β€˜cfv 6543  (class class class)co 7412  0cc0 11114  PsMetcpsmet 21129  ~Metcmetid 33165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-map 8826  df-xr 11257  df-psmet 21137  df-metid 33167
This theorem is referenced by:  metidss  33170  metidv  33171
  Copyright terms: Public domain W3C validator