Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metidval Structured version   Visualization version   GIF version

Theorem metidval 31130
Description: Value of the metric identification relation. (Contributed by Thierry Arnoux, 7-Feb-2018.)
Assertion
Ref Expression
metidval (𝐷 ∈ (PsMet‘𝑋) → (~Met𝐷) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑋𝑦𝑋) ∧ (𝑥𝐷𝑦) = 0)})
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝑋,𝑦

Proof of Theorem metidval
Dummy variables 𝑤 𝑑 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-metid 31128 . . 3 ~Met = (𝑑 ran PsMet ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ dom dom 𝑑𝑦 ∈ dom dom 𝑑) ∧ (𝑥𝑑𝑦) = 0)})
21a1i 11 . 2 (𝐷 ∈ (PsMet‘𝑋) → ~Met = (𝑑 ran PsMet ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ dom dom 𝑑𝑦 ∈ dom dom 𝑑) ∧ (𝑥𝑑𝑦) = 0)}))
3 simpr 487 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷)
43dmeqd 5774 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → dom 𝑑 = dom 𝐷)
54dmeqd 5774 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → dom dom 𝑑 = dom dom 𝐷)
6 psmetdmdm 22915 . . . . . . . 8 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 = dom dom 𝐷)
76adantr 483 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → 𝑋 = dom dom 𝐷)
85, 7eqtr4d 2859 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → dom dom 𝑑 = 𝑋)
98eleq2d 2898 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (𝑥 ∈ dom dom 𝑑𝑥𝑋))
108eleq2d 2898 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (𝑦 ∈ dom dom 𝑑𝑦𝑋))
119, 10anbi12d 632 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → ((𝑥 ∈ dom dom 𝑑𝑦 ∈ dom dom 𝑑) ↔ (𝑥𝑋𝑦𝑋)))
123oveqd 7173 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (𝑥𝑑𝑦) = (𝑥𝐷𝑦))
1312eqeq1d 2823 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → ((𝑥𝑑𝑦) = 0 ↔ (𝑥𝐷𝑦) = 0))
1411, 13anbi12d 632 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (((𝑥 ∈ dom dom 𝑑𝑦 ∈ dom dom 𝑑) ∧ (𝑥𝑑𝑦) = 0) ↔ ((𝑥𝑋𝑦𝑋) ∧ (𝑥𝐷𝑦) = 0)))
1514opabbidv 5132 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ dom dom 𝑑𝑦 ∈ dom dom 𝑑) ∧ (𝑥𝑑𝑦) = 0)} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑋𝑦𝑋) ∧ (𝑥𝐷𝑦) = 0)})
16 elfvdm 6702 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ dom PsMet)
17 fveq2 6670 . . . . . 6 (𝑥 = 𝑋 → (PsMet‘𝑥) = (PsMet‘𝑋))
1817eleq2d 2898 . . . . 5 (𝑥 = 𝑋 → (𝐷 ∈ (PsMet‘𝑥) ↔ 𝐷 ∈ (PsMet‘𝑋)))
1918rspcev 3623 . . . 4 ((𝑋 ∈ dom PsMet ∧ 𝐷 ∈ (PsMet‘𝑋)) → ∃𝑥 ∈ dom PsMet𝐷 ∈ (PsMet‘𝑥))
2016, 19mpancom 686 . . 3 (𝐷 ∈ (PsMet‘𝑋) → ∃𝑥 ∈ dom PsMet𝐷 ∈ (PsMet‘𝑥))
21 df-psmet 20537 . . . . 5 PsMet = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*m (𝑥 × 𝑥)) ∣ ∀𝑦𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧𝑥𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))})
2221funmpt2 6394 . . . 4 Fun PsMet
23 elunirn 7010 . . . 4 (Fun PsMet → (𝐷 ran PsMet ↔ ∃𝑥 ∈ dom PsMet𝐷 ∈ (PsMet‘𝑥)))
2422, 23ax-mp 5 . . 3 (𝐷 ran PsMet ↔ ∃𝑥 ∈ dom PsMet𝐷 ∈ (PsMet‘𝑥))
2520, 24sylibr 236 . 2 (𝐷 ∈ (PsMet‘𝑋) → 𝐷 ran PsMet)
26 opabssxp 5643 . . 3 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑋𝑦𝑋) ∧ (𝑥𝐷𝑦) = 0)} ⊆ (𝑋 × 𝑋)
27 elfvex 6703 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ V)
2827, 27xpexd 7474 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (𝑋 × 𝑋) ∈ V)
29 ssexg 5227 . . 3 (({⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑋𝑦𝑋) ∧ (𝑥𝐷𝑦) = 0)} ⊆ (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ V) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑋𝑦𝑋) ∧ (𝑥𝐷𝑦) = 0)} ∈ V)
3026, 28, 29sylancr 589 . 2 (𝐷 ∈ (PsMet‘𝑋) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑋𝑦𝑋) ∧ (𝑥𝐷𝑦) = 0)} ∈ V)
312, 15, 25, 30fvmptd 6775 1 (𝐷 ∈ (PsMet‘𝑋) → (~Met𝐷) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑋𝑦𝑋) ∧ (𝑥𝐷𝑦) = 0)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  wrex 3139  {crab 3142  Vcvv 3494  wss 3936   cuni 4838   class class class wbr 5066  {copab 5128  cmpt 5146   × cxp 5553  dom cdm 5555  ran crn 5556  Fun wfun 6349  cfv 6355  (class class class)co 7156  m cmap 8406  0cc0 10537  *cxr 10674  cle 10676   +𝑒 cxad 12506  PsMetcpsmet 20529  ~Metcmetid 31126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-map 8408  df-xr 10679  df-psmet 20537  df-metid 31128
This theorem is referenced by:  metidss  31131  metidv  31132
  Copyright terms: Public domain W3C validator