Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metidval Structured version   Visualization version   GIF version

Theorem metidval 33856
Description: Value of the metric identification relation. (Contributed by Thierry Arnoux, 7-Feb-2018.)
Assertion
Ref Expression
metidval (𝐷 ∈ (PsMet‘𝑋) → (~Met𝐷) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑋𝑦𝑋) ∧ (𝑥𝐷𝑦) = 0)})
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝑋,𝑦

Proof of Theorem metidval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 df-metid 33854 . 2 ~Met = (𝑑 ran PsMet ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ dom dom 𝑑𝑦 ∈ dom dom 𝑑) ∧ (𝑥𝑑𝑦) = 0)})
2 simpr 484 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷)
32dmeqd 5852 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → dom 𝑑 = dom 𝐷)
43dmeqd 5852 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → dom dom 𝑑 = dom dom 𝐷)
5 psmetdmdm 24209 . . . . . . . 8 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 = dom dom 𝐷)
65adantr 480 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → 𝑋 = dom dom 𝐷)
74, 6eqtr4d 2767 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → dom dom 𝑑 = 𝑋)
87eleq2d 2814 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (𝑥 ∈ dom dom 𝑑𝑥𝑋))
97eleq2d 2814 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (𝑦 ∈ dom dom 𝑑𝑦𝑋))
108, 9anbi12d 632 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → ((𝑥 ∈ dom dom 𝑑𝑦 ∈ dom dom 𝑑) ↔ (𝑥𝑋𝑦𝑋)))
112oveqd 7370 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (𝑥𝑑𝑦) = (𝑥𝐷𝑦))
1211eqeq1d 2731 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → ((𝑥𝑑𝑦) = 0 ↔ (𝑥𝐷𝑦) = 0))
1310, 12anbi12d 632 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (((𝑥 ∈ dom dom 𝑑𝑦 ∈ dom dom 𝑑) ∧ (𝑥𝑑𝑦) = 0) ↔ ((𝑥𝑋𝑦𝑋) ∧ (𝑥𝐷𝑦) = 0)))
1413opabbidv 5161 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ dom dom 𝑑𝑦 ∈ dom dom 𝑑) ∧ (𝑥𝑑𝑦) = 0)} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑋𝑦𝑋) ∧ (𝑥𝐷𝑦) = 0)})
15 elfvunirn 6856 . 2 (𝐷 ∈ (PsMet‘𝑋) → 𝐷 ran PsMet)
16 opabssxp 5715 . . 3 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑋𝑦𝑋) ∧ (𝑥𝐷𝑦) = 0)} ⊆ (𝑋 × 𝑋)
17 elfvex 6862 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ V)
1817, 17xpexd 7691 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (𝑋 × 𝑋) ∈ V)
19 ssexg 5265 . . 3 (({⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑋𝑦𝑋) ∧ (𝑥𝐷𝑦) = 0)} ⊆ (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ V) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑋𝑦𝑋) ∧ (𝑥𝐷𝑦) = 0)} ∈ V)
2016, 18, 19sylancr 587 . 2 (𝐷 ∈ (PsMet‘𝑋) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑋𝑦𝑋) ∧ (𝑥𝐷𝑦) = 0)} ∈ V)
211, 14, 15, 20fvmptd2 6942 1 (𝐷 ∈ (PsMet‘𝑋) → (~Met𝐷) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑋𝑦𝑋) ∧ (𝑥𝐷𝑦) = 0)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  wss 3905   cuni 4861  {copab 5157   × cxp 5621  dom cdm 5623  ran crn 5624  cfv 6486  (class class class)co 7353  0cc0 11028  PsMetcpsmet 21263  ~Metcmetid 33852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-map 8762  df-xr 11172  df-psmet 21271  df-metid 33854
This theorem is referenced by:  metidss  33857  metidv  33858
  Copyright terms: Public domain W3C validator