Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metidval Structured version   Visualization version   GIF version

Theorem metidval 33921
Description: Value of the metric identification relation. (Contributed by Thierry Arnoux, 7-Feb-2018.)
Assertion
Ref Expression
metidval (𝐷 ∈ (PsMet‘𝑋) → (~Met𝐷) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑋𝑦𝑋) ∧ (𝑥𝐷𝑦) = 0)})
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝑋,𝑦

Proof of Theorem metidval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 df-metid 33919 . 2 ~Met = (𝑑 ran PsMet ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ dom dom 𝑑𝑦 ∈ dom dom 𝑑) ∧ (𝑥𝑑𝑦) = 0)})
2 simpr 484 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷)
32dmeqd 5885 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → dom 𝑑 = dom 𝐷)
43dmeqd 5885 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → dom dom 𝑑 = dom dom 𝐷)
5 psmetdmdm 24244 . . . . . . . 8 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 = dom dom 𝐷)
65adantr 480 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → 𝑋 = dom dom 𝐷)
74, 6eqtr4d 2773 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → dom dom 𝑑 = 𝑋)
87eleq2d 2820 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (𝑥 ∈ dom dom 𝑑𝑥𝑋))
97eleq2d 2820 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (𝑦 ∈ dom dom 𝑑𝑦𝑋))
108, 9anbi12d 632 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → ((𝑥 ∈ dom dom 𝑑𝑦 ∈ dom dom 𝑑) ↔ (𝑥𝑋𝑦𝑋)))
112oveqd 7422 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (𝑥𝑑𝑦) = (𝑥𝐷𝑦))
1211eqeq1d 2737 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → ((𝑥𝑑𝑦) = 0 ↔ (𝑥𝐷𝑦) = 0))
1310, 12anbi12d 632 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (((𝑥 ∈ dom dom 𝑑𝑦 ∈ dom dom 𝑑) ∧ (𝑥𝑑𝑦) = 0) ↔ ((𝑥𝑋𝑦𝑋) ∧ (𝑥𝐷𝑦) = 0)))
1413opabbidv 5185 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ dom dom 𝑑𝑦 ∈ dom dom 𝑑) ∧ (𝑥𝑑𝑦) = 0)} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑋𝑦𝑋) ∧ (𝑥𝐷𝑦) = 0)})
15 elfvunirn 6908 . 2 (𝐷 ∈ (PsMet‘𝑋) → 𝐷 ran PsMet)
16 opabssxp 5747 . . 3 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑋𝑦𝑋) ∧ (𝑥𝐷𝑦) = 0)} ⊆ (𝑋 × 𝑋)
17 elfvex 6914 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ V)
1817, 17xpexd 7745 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (𝑋 × 𝑋) ∈ V)
19 ssexg 5293 . . 3 (({⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑋𝑦𝑋) ∧ (𝑥𝐷𝑦) = 0)} ⊆ (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ V) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑋𝑦𝑋) ∧ (𝑥𝐷𝑦) = 0)} ∈ V)
2016, 18, 19sylancr 587 . 2 (𝐷 ∈ (PsMet‘𝑋) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑋𝑦𝑋) ∧ (𝑥𝐷𝑦) = 0)} ∈ V)
211, 14, 15, 20fvmptd2 6994 1 (𝐷 ∈ (PsMet‘𝑋) → (~Met𝐷) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑋𝑦𝑋) ∧ (𝑥𝐷𝑦) = 0)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  wss 3926   cuni 4883  {copab 5181   × cxp 5652  dom cdm 5654  ran crn 5655  cfv 6531  (class class class)co 7405  0cc0 11129  PsMetcpsmet 21299  ~Metcmetid 33917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8842  df-xr 11273  df-psmet 21307  df-metid 33919
This theorem is referenced by:  metidss  33922  metidv  33923
  Copyright terms: Public domain W3C validator