Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metidval Structured version   Visualization version   GIF version

Theorem metidval 33887
Description: Value of the metric identification relation. (Contributed by Thierry Arnoux, 7-Feb-2018.)
Assertion
Ref Expression
metidval (𝐷 ∈ (PsMet‘𝑋) → (~Met𝐷) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑋𝑦𝑋) ∧ (𝑥𝐷𝑦) = 0)})
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝑋,𝑦

Proof of Theorem metidval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 df-metid 33885 . 2 ~Met = (𝑑 ran PsMet ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ dom dom 𝑑𝑦 ∈ dom dom 𝑑) ∧ (𝑥𝑑𝑦) = 0)})
2 simpr 484 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷)
32dmeqd 5872 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → dom 𝑑 = dom 𝐷)
43dmeqd 5872 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → dom dom 𝑑 = dom dom 𝐷)
5 psmetdmdm 24200 . . . . . . . 8 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 = dom dom 𝐷)
65adantr 480 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → 𝑋 = dom dom 𝐷)
74, 6eqtr4d 2768 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → dom dom 𝑑 = 𝑋)
87eleq2d 2815 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (𝑥 ∈ dom dom 𝑑𝑥𝑋))
97eleq2d 2815 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (𝑦 ∈ dom dom 𝑑𝑦𝑋))
108, 9anbi12d 632 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → ((𝑥 ∈ dom dom 𝑑𝑦 ∈ dom dom 𝑑) ↔ (𝑥𝑋𝑦𝑋)))
112oveqd 7407 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (𝑥𝑑𝑦) = (𝑥𝐷𝑦))
1211eqeq1d 2732 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → ((𝑥𝑑𝑦) = 0 ↔ (𝑥𝐷𝑦) = 0))
1310, 12anbi12d 632 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (((𝑥 ∈ dom dom 𝑑𝑦 ∈ dom dom 𝑑) ∧ (𝑥𝑑𝑦) = 0) ↔ ((𝑥𝑋𝑦𝑋) ∧ (𝑥𝐷𝑦) = 0)))
1413opabbidv 5176 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ dom dom 𝑑𝑦 ∈ dom dom 𝑑) ∧ (𝑥𝑑𝑦) = 0)} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑋𝑦𝑋) ∧ (𝑥𝐷𝑦) = 0)})
15 elfvunirn 6893 . 2 (𝐷 ∈ (PsMet‘𝑋) → 𝐷 ran PsMet)
16 opabssxp 5734 . . 3 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑋𝑦𝑋) ∧ (𝑥𝐷𝑦) = 0)} ⊆ (𝑋 × 𝑋)
17 elfvex 6899 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ V)
1817, 17xpexd 7730 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (𝑋 × 𝑋) ∈ V)
19 ssexg 5281 . . 3 (({⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑋𝑦𝑋) ∧ (𝑥𝐷𝑦) = 0)} ⊆ (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ V) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑋𝑦𝑋) ∧ (𝑥𝐷𝑦) = 0)} ∈ V)
2016, 18, 19sylancr 587 . 2 (𝐷 ∈ (PsMet‘𝑋) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑋𝑦𝑋) ∧ (𝑥𝐷𝑦) = 0)} ∈ V)
211, 14, 15, 20fvmptd2 6979 1 (𝐷 ∈ (PsMet‘𝑋) → (~Met𝐷) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑋𝑦𝑋) ∧ (𝑥𝐷𝑦) = 0)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917   cuni 4874  {copab 5172   × cxp 5639  dom cdm 5641  ran crn 5642  cfv 6514  (class class class)co 7390  0cc0 11075  PsMetcpsmet 21255  ~Metcmetid 33883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-xr 11219  df-psmet 21263  df-metid 33885
This theorem is referenced by:  metidss  33888  metidv  33889
  Copyright terms: Public domain W3C validator