Step | Hyp | Ref
| Expression |
1 | | df-pstm 33155 |
. 2
β’ pstoMet =
(π β βͺ ran PsMet β¦ (π β (dom dom π / (~Metβπ)), π β (dom dom π / (~Metβπ)) β¦ βͺ {π§
β£ βπ₯ β
π βπ¦ β π π§ = (π₯ππ¦)})) |
2 | | psmetdmdm 24031 |
. . . . . . . 8
β’ (π· β (PsMetβπ) β π = dom dom π·) |
3 | 2 | adantr 481 |
. . . . . . 7
β’ ((π· β (PsMetβπ) β§ π = π·) β π = dom dom π·) |
4 | | dmeq 5903 |
. . . . . . . . 9
β’ (π = π· β dom π = dom π·) |
5 | 4 | dmeqd 5905 |
. . . . . . . 8
β’ (π = π· β dom dom π = dom dom π·) |
6 | 5 | adantl 482 |
. . . . . . 7
β’ ((π· β (PsMetβπ) β§ π = π·) β dom dom π = dom dom π·) |
7 | 3, 6 | eqtr4d 2775 |
. . . . . 6
β’ ((π· β (PsMetβπ) β§ π = π·) β π = dom dom π) |
8 | | qseq1 8759 |
. . . . . 6
β’ (π = dom dom π β (π / βΌ ) = (dom dom π / βΌ )) |
9 | 7, 8 | syl 17 |
. . . . 5
β’ ((π· β (PsMetβπ) β§ π = π·) β (π / βΌ ) = (dom dom π / βΌ )) |
10 | | pstmval.1 |
. . . . . . . 8
β’ βΌ =
(~Metβπ·) |
11 | | fveq2 6891 |
. . . . . . . 8
β’ (π = π· β (~Metβπ) = (~Metβπ·)) |
12 | 10, 11 | eqtr4id 2791 |
. . . . . . 7
β’ (π = π· β βΌ =
(~Metβπ)) |
13 | 12 | qseq2d 8762 |
. . . . . 6
β’ (π = π· β (dom dom π / βΌ ) = (dom dom π /
(~Metβπ))) |
14 | 13 | adantl 482 |
. . . . 5
β’ ((π· β (PsMetβπ) β§ π = π·) β (dom dom π / βΌ ) = (dom dom π /
(~Metβπ))) |
15 | 9, 14 | eqtr2d 2773 |
. . . 4
β’ ((π· β (PsMetβπ) β§ π = π·) β (dom dom π / (~Metβπ)) = (π / βΌ )) |
16 | | mpoeq12 7484 |
. . . 4
β’ (((dom
dom π /
(~Metβπ))
= (π / βΌ )
β§ (dom dom π /
(~Metβπ))
= (π / βΌ ))
β (π β (dom dom
π /
(~Metβπ)),
π β (dom dom π /
(~Metβπ))
β¦ βͺ {π§ β£ βπ₯ β π βπ¦ β π π§ = (π₯ππ¦)}) = (π β (π / βΌ ), π β (π / βΌ ) β¦ βͺ {π§
β£ βπ₯ β
π βπ¦ β π π§ = (π₯ππ¦)})) |
17 | 15, 15, 16 | syl2anc 584 |
. . 3
β’ ((π· β (PsMetβπ) β§ π = π·) β (π β (dom dom π / (~Metβπ)), π β (dom dom π / (~Metβπ)) β¦ βͺ {π§
β£ βπ₯ β
π βπ¦ β π π§ = (π₯ππ¦)}) = (π β (π / βΌ ), π β (π / βΌ ) β¦ βͺ {π§
β£ βπ₯ β
π βπ¦ β π π§ = (π₯ππ¦)})) |
18 | | simp1r 1198 |
. . . . . . . . 9
β’ (((π· β (PsMetβπ) β§ π = π·) β§ π β (π / βΌ ) β§ π β (π / βΌ )) β π = π·) |
19 | 18 | oveqd 7428 |
. . . . . . . 8
β’ (((π· β (PsMetβπ) β§ π = π·) β§ π β (π / βΌ ) β§ π β (π / βΌ )) β (π₯ππ¦) = (π₯π·π¦)) |
20 | 19 | eqeq2d 2743 |
. . . . . . 7
β’ (((π· β (PsMetβπ) β§ π = π·) β§ π β (π / βΌ ) β§ π β (π / βΌ )) β (π§ = (π₯ππ¦) β π§ = (π₯π·π¦))) |
21 | 20 | 2rexbidv 3219 |
. . . . . 6
β’ (((π· β (PsMetβπ) β§ π = π·) β§ π β (π / βΌ ) β§ π β (π / βΌ )) β
(βπ₯ β π βπ¦ β π π§ = (π₯ππ¦) β βπ₯ β π βπ¦ β π π§ = (π₯π·π¦))) |
22 | 21 | abbidv 2801 |
. . . . 5
β’ (((π· β (PsMetβπ) β§ π = π·) β§ π β (π / βΌ ) β§ π β (π / βΌ )) β {π§ β£ βπ₯ β π βπ¦ β π π§ = (π₯ππ¦)} = {π§ β£ βπ₯ β π βπ¦ β π π§ = (π₯π·π¦)}) |
23 | 22 | unieqd 4922 |
. . . 4
β’ (((π· β (PsMetβπ) β§ π = π·) β§ π β (π / βΌ ) β§ π β (π / βΌ )) β βͺ {π§
β£ βπ₯ β
π βπ¦ β π π§ = (π₯ππ¦)} = βͺ {π§ β£ βπ₯ β π βπ¦ β π π§ = (π₯π·π¦)}) |
24 | 23 | mpoeq3dva 7488 |
. . 3
β’ ((π· β (PsMetβπ) β§ π = π·) β (π β (π / βΌ ), π β (π / βΌ ) β¦ βͺ {π§
β£ βπ₯ β
π βπ¦ β π π§ = (π₯ππ¦)}) = (π β (π / βΌ ), π β (π / βΌ ) β¦ βͺ {π§
β£ βπ₯ β
π βπ¦ β π π§ = (π₯π·π¦)})) |
25 | 17, 24 | eqtrd 2772 |
. 2
β’ ((π· β (PsMetβπ) β§ π = π·) β (π β (dom dom π / (~Metβπ)), π β (dom dom π / (~Metβπ)) β¦ βͺ {π§
β£ βπ₯ β
π βπ¦ β π π§ = (π₯ππ¦)}) = (π β (π / βΌ ), π β (π / βΌ ) β¦ βͺ {π§
β£ βπ₯ β
π βπ¦ β π π§ = (π₯π·π¦)})) |
26 | | elfvunirn 6923 |
. 2
β’ (π· β (PsMetβπ) β π· β βͺ ran
PsMet) |
27 | | elfvex 6929 |
. . . 4
β’ (π· β (PsMetβπ) β π β V) |
28 | | qsexg 8771 |
. . . 4
β’ (π β V β (π / βΌ ) β
V) |
29 | 27, 28 | syl 17 |
. . 3
β’ (π· β (PsMetβπ) β (π / βΌ ) β
V) |
30 | | mpoexga 8066 |
. . 3
β’ (((π / βΌ ) β V β§
(π / βΌ )
β V) β (π β
(π / βΌ ),
π β (π / βΌ ) β¦ βͺ {π§
β£ βπ₯ β
π βπ¦ β π π§ = (π₯π·π¦)}) β V) |
31 | 29, 29, 30 | syl2anc 584 |
. 2
β’ (π· β (PsMetβπ) β (π β (π / βΌ ), π β (π / βΌ ) β¦ βͺ {π§
β£ βπ₯ β
π βπ¦ β π π§ = (π₯π·π¦)}) β V) |
32 | 1, 25, 26, 31 | fvmptd2 7006 |
1
β’ (π· β (PsMetβπ) β (pstoMetβπ·) = (π β (π / βΌ ), π β (π / βΌ ) β¦ βͺ {π§
β£ βπ₯ β
π βπ¦ β π π§ = (π₯π·π¦)})) |