Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pstmval Structured version   Visualization version   GIF version

Theorem pstmval 33161
Description: Value of the metric induced by a pseudometric 𝐷. (Contributed by Thierry Arnoux, 7-Feb-2018.)
Hypothesis
Ref Expression
pstmval.1 ∼ = (~Metβ€˜π·)
Assertion
Ref Expression
pstmval (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ (pstoMetβ€˜π·) = (π‘Ž ∈ (𝑋 / ∼ ), 𝑏 ∈ (𝑋 / ∼ ) ↦ βˆͺ {𝑧 ∣ βˆƒπ‘₯ ∈ π‘Ž βˆƒπ‘¦ ∈ 𝑏 𝑧 = (π‘₯𝐷𝑦)}))
Distinct variable groups:   π‘Ž,𝑏,π‘₯,𝑦,𝑧,𝐷   𝑋,π‘Ž,𝑏,π‘₯,𝑦,𝑧   ∼ ,π‘Ž,𝑏,π‘₯,𝑦,𝑧

Proof of Theorem pstmval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 df-pstm 33155 . 2 pstoMet = (𝑑 ∈ βˆͺ ran PsMet ↦ (π‘Ž ∈ (dom dom 𝑑 / (~Metβ€˜π‘‘)), 𝑏 ∈ (dom dom 𝑑 / (~Metβ€˜π‘‘)) ↦ βˆͺ {𝑧 ∣ βˆƒπ‘₯ ∈ π‘Ž βˆƒπ‘¦ ∈ 𝑏 𝑧 = (π‘₯𝑑𝑦)}))
2 psmetdmdm 24031 . . . . . . . 8 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ 𝑋 = dom dom 𝐷)
32adantr 481 . . . . . . 7 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑑 = 𝐷) β†’ 𝑋 = dom dom 𝐷)
4 dmeq 5903 . . . . . . . . 9 (𝑑 = 𝐷 β†’ dom 𝑑 = dom 𝐷)
54dmeqd 5905 . . . . . . . 8 (𝑑 = 𝐷 β†’ dom dom 𝑑 = dom dom 𝐷)
65adantl 482 . . . . . . 7 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑑 = 𝐷) β†’ dom dom 𝑑 = dom dom 𝐷)
73, 6eqtr4d 2775 . . . . . 6 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑑 = 𝐷) β†’ 𝑋 = dom dom 𝑑)
8 qseq1 8759 . . . . . 6 (𝑋 = dom dom 𝑑 β†’ (𝑋 / ∼ ) = (dom dom 𝑑 / ∼ ))
97, 8syl 17 . . . . 5 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑑 = 𝐷) β†’ (𝑋 / ∼ ) = (dom dom 𝑑 / ∼ ))
10 pstmval.1 . . . . . . . 8 ∼ = (~Metβ€˜π·)
11 fveq2 6891 . . . . . . . 8 (𝑑 = 𝐷 β†’ (~Metβ€˜π‘‘) = (~Metβ€˜π·))
1210, 11eqtr4id 2791 . . . . . . 7 (𝑑 = 𝐷 β†’ ∼ = (~Metβ€˜π‘‘))
1312qseq2d 8762 . . . . . 6 (𝑑 = 𝐷 β†’ (dom dom 𝑑 / ∼ ) = (dom dom 𝑑 / (~Metβ€˜π‘‘)))
1413adantl 482 . . . . 5 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑑 = 𝐷) β†’ (dom dom 𝑑 / ∼ ) = (dom dom 𝑑 / (~Metβ€˜π‘‘)))
159, 14eqtr2d 2773 . . . 4 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑑 = 𝐷) β†’ (dom dom 𝑑 / (~Metβ€˜π‘‘)) = (𝑋 / ∼ ))
16 mpoeq12 7484 . . . 4 (((dom dom 𝑑 / (~Metβ€˜π‘‘)) = (𝑋 / ∼ ) ∧ (dom dom 𝑑 / (~Metβ€˜π‘‘)) = (𝑋 / ∼ )) β†’ (π‘Ž ∈ (dom dom 𝑑 / (~Metβ€˜π‘‘)), 𝑏 ∈ (dom dom 𝑑 / (~Metβ€˜π‘‘)) ↦ βˆͺ {𝑧 ∣ βˆƒπ‘₯ ∈ π‘Ž βˆƒπ‘¦ ∈ 𝑏 𝑧 = (π‘₯𝑑𝑦)}) = (π‘Ž ∈ (𝑋 / ∼ ), 𝑏 ∈ (𝑋 / ∼ ) ↦ βˆͺ {𝑧 ∣ βˆƒπ‘₯ ∈ π‘Ž βˆƒπ‘¦ ∈ 𝑏 𝑧 = (π‘₯𝑑𝑦)}))
1715, 15, 16syl2anc 584 . . 3 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑑 = 𝐷) β†’ (π‘Ž ∈ (dom dom 𝑑 / (~Metβ€˜π‘‘)), 𝑏 ∈ (dom dom 𝑑 / (~Metβ€˜π‘‘)) ↦ βˆͺ {𝑧 ∣ βˆƒπ‘₯ ∈ π‘Ž βˆƒπ‘¦ ∈ 𝑏 𝑧 = (π‘₯𝑑𝑦)}) = (π‘Ž ∈ (𝑋 / ∼ ), 𝑏 ∈ (𝑋 / ∼ ) ↦ βˆͺ {𝑧 ∣ βˆƒπ‘₯ ∈ π‘Ž βˆƒπ‘¦ ∈ 𝑏 𝑧 = (π‘₯𝑑𝑦)}))
18 simp1r 1198 . . . . . . . . 9 (((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑑 = 𝐷) ∧ π‘Ž ∈ (𝑋 / ∼ ) ∧ 𝑏 ∈ (𝑋 / ∼ )) β†’ 𝑑 = 𝐷)
1918oveqd 7428 . . . . . . . 8 (((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑑 = 𝐷) ∧ π‘Ž ∈ (𝑋 / ∼ ) ∧ 𝑏 ∈ (𝑋 / ∼ )) β†’ (π‘₯𝑑𝑦) = (π‘₯𝐷𝑦))
2019eqeq2d 2743 . . . . . . 7 (((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑑 = 𝐷) ∧ π‘Ž ∈ (𝑋 / ∼ ) ∧ 𝑏 ∈ (𝑋 / ∼ )) β†’ (𝑧 = (π‘₯𝑑𝑦) ↔ 𝑧 = (π‘₯𝐷𝑦)))
21202rexbidv 3219 . . . . . 6 (((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑑 = 𝐷) ∧ π‘Ž ∈ (𝑋 / ∼ ) ∧ 𝑏 ∈ (𝑋 / ∼ )) β†’ (βˆƒπ‘₯ ∈ π‘Ž βˆƒπ‘¦ ∈ 𝑏 𝑧 = (π‘₯𝑑𝑦) ↔ βˆƒπ‘₯ ∈ π‘Ž βˆƒπ‘¦ ∈ 𝑏 𝑧 = (π‘₯𝐷𝑦)))
2221abbidv 2801 . . . . 5 (((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑑 = 𝐷) ∧ π‘Ž ∈ (𝑋 / ∼ ) ∧ 𝑏 ∈ (𝑋 / ∼ )) β†’ {𝑧 ∣ βˆƒπ‘₯ ∈ π‘Ž βˆƒπ‘¦ ∈ 𝑏 𝑧 = (π‘₯𝑑𝑦)} = {𝑧 ∣ βˆƒπ‘₯ ∈ π‘Ž βˆƒπ‘¦ ∈ 𝑏 𝑧 = (π‘₯𝐷𝑦)})
2322unieqd 4922 . . . 4 (((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑑 = 𝐷) ∧ π‘Ž ∈ (𝑋 / ∼ ) ∧ 𝑏 ∈ (𝑋 / ∼ )) β†’ βˆͺ {𝑧 ∣ βˆƒπ‘₯ ∈ π‘Ž βˆƒπ‘¦ ∈ 𝑏 𝑧 = (π‘₯𝑑𝑦)} = βˆͺ {𝑧 ∣ βˆƒπ‘₯ ∈ π‘Ž βˆƒπ‘¦ ∈ 𝑏 𝑧 = (π‘₯𝐷𝑦)})
2423mpoeq3dva 7488 . . 3 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑑 = 𝐷) β†’ (π‘Ž ∈ (𝑋 / ∼ ), 𝑏 ∈ (𝑋 / ∼ ) ↦ βˆͺ {𝑧 ∣ βˆƒπ‘₯ ∈ π‘Ž βˆƒπ‘¦ ∈ 𝑏 𝑧 = (π‘₯𝑑𝑦)}) = (π‘Ž ∈ (𝑋 / ∼ ), 𝑏 ∈ (𝑋 / ∼ ) ↦ βˆͺ {𝑧 ∣ βˆƒπ‘₯ ∈ π‘Ž βˆƒπ‘¦ ∈ 𝑏 𝑧 = (π‘₯𝐷𝑦)}))
2517, 24eqtrd 2772 . 2 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑑 = 𝐷) β†’ (π‘Ž ∈ (dom dom 𝑑 / (~Metβ€˜π‘‘)), 𝑏 ∈ (dom dom 𝑑 / (~Metβ€˜π‘‘)) ↦ βˆͺ {𝑧 ∣ βˆƒπ‘₯ ∈ π‘Ž βˆƒπ‘¦ ∈ 𝑏 𝑧 = (π‘₯𝑑𝑦)}) = (π‘Ž ∈ (𝑋 / ∼ ), 𝑏 ∈ (𝑋 / ∼ ) ↦ βˆͺ {𝑧 ∣ βˆƒπ‘₯ ∈ π‘Ž βˆƒπ‘¦ ∈ 𝑏 𝑧 = (π‘₯𝐷𝑦)}))
26 elfvunirn 6923 . 2 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ 𝐷 ∈ βˆͺ ran PsMet)
27 elfvex 6929 . . . 4 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ 𝑋 ∈ V)
28 qsexg 8771 . . . 4 (𝑋 ∈ V β†’ (𝑋 / ∼ ) ∈ V)
2927, 28syl 17 . . 3 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ (𝑋 / ∼ ) ∈ V)
30 mpoexga 8066 . . 3 (((𝑋 / ∼ ) ∈ V ∧ (𝑋 / ∼ ) ∈ V) β†’ (π‘Ž ∈ (𝑋 / ∼ ), 𝑏 ∈ (𝑋 / ∼ ) ↦ βˆͺ {𝑧 ∣ βˆƒπ‘₯ ∈ π‘Ž βˆƒπ‘¦ ∈ 𝑏 𝑧 = (π‘₯𝐷𝑦)}) ∈ V)
3129, 29, 30syl2anc 584 . 2 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ (π‘Ž ∈ (𝑋 / ∼ ), 𝑏 ∈ (𝑋 / ∼ ) ↦ βˆͺ {𝑧 ∣ βˆƒπ‘₯ ∈ π‘Ž βˆƒπ‘¦ ∈ 𝑏 𝑧 = (π‘₯𝐷𝑦)}) ∈ V)
321, 25, 26, 31fvmptd2 7006 1 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ (pstoMetβ€˜π·) = (π‘Ž ∈ (𝑋 / ∼ ), 𝑏 ∈ (𝑋 / ∼ ) ↦ βˆͺ {𝑧 ∣ βˆƒπ‘₯ ∈ π‘Ž βˆƒπ‘¦ ∈ 𝑏 𝑧 = (π‘₯𝐷𝑦)}))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  {cab 2709  βˆƒwrex 3070  Vcvv 3474  βˆͺ cuni 4908  dom cdm 5676  ran crn 5677  β€˜cfv 6543  (class class class)co 7411   ∈ cmpo 7413   / cqs 8704  PsMetcpsmet 21128  ~Metcmetid 33152  pstoMetcpstm 33153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-ec 8707  df-qs 8711  df-map 8824  df-xr 11256  df-psmet 21136  df-pstm 33155
This theorem is referenced by:  pstmfval  33162  pstmxmet  33163
  Copyright terms: Public domain W3C validator