Step | Hyp | Ref
| Expression |
1 | | df-pstm 31839 |
. . 3
⊢ pstoMet =
(𝑑 ∈ ∪ ran PsMet ↦ (𝑎 ∈ (dom dom 𝑑 / (~Met‘𝑑)), 𝑏 ∈ (dom dom 𝑑 / (~Met‘𝑑)) ↦ ∪ {𝑧
∣ ∃𝑥 ∈
𝑎 ∃𝑦 ∈ 𝑏 𝑧 = (𝑥𝑑𝑦)})) |
2 | 1 | a1i 11 |
. 2
⊢ (𝐷 ∈ (PsMet‘𝑋) → pstoMet = (𝑑 ∈ ∪ ran PsMet ↦ (𝑎 ∈ (dom dom 𝑑 / (~Met‘𝑑)), 𝑏 ∈ (dom dom 𝑑 / (~Met‘𝑑)) ↦ ∪ {𝑧
∣ ∃𝑥 ∈
𝑎 ∃𝑦 ∈ 𝑏 𝑧 = (𝑥𝑑𝑦)}))) |
3 | | psmetdmdm 23458 |
. . . . . . . 8
⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝑋 = dom dom 𝐷) |
4 | 3 | adantr 481 |
. . . . . . 7
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → 𝑋 = dom dom 𝐷) |
5 | | dmeq 5812 |
. . . . . . . . 9
⊢ (𝑑 = 𝐷 → dom 𝑑 = dom 𝐷) |
6 | 5 | dmeqd 5814 |
. . . . . . . 8
⊢ (𝑑 = 𝐷 → dom dom 𝑑 = dom dom 𝐷) |
7 | 6 | adantl 482 |
. . . . . . 7
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → dom dom 𝑑 = dom dom 𝐷) |
8 | 4, 7 | eqtr4d 2781 |
. . . . . 6
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → 𝑋 = dom dom 𝑑) |
9 | | qseq1 8552 |
. . . . . 6
⊢ (𝑋 = dom dom 𝑑 → (𝑋 / ∼ ) = (dom dom 𝑑 / ∼ )) |
10 | 8, 9 | syl 17 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (𝑋 / ∼ ) = (dom dom 𝑑 / ∼ )) |
11 | | pstmval.1 |
. . . . . . . 8
⊢ ∼ =
(~Met‘𝐷) |
12 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑑 = 𝐷 → (~Met‘𝑑) = (~Met‘𝐷)) |
13 | 11, 12 | eqtr4id 2797 |
. . . . . . 7
⊢ (𝑑 = 𝐷 → ∼ =
(~Met‘𝑑)) |
14 | | qseq2 8553 |
. . . . . . 7
⊢ ( ∼ =
(~Met‘𝑑)
→ (dom dom 𝑑 /
∼
) = (dom dom 𝑑 /
(~Met‘𝑑))) |
15 | 13, 14 | syl 17 |
. . . . . 6
⊢ (𝑑 = 𝐷 → (dom dom 𝑑 / ∼ ) = (dom dom 𝑑 /
(~Met‘𝑑))) |
16 | 15 | adantl 482 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (dom dom 𝑑 / ∼ ) = (dom dom 𝑑 /
(~Met‘𝑑))) |
17 | 10, 16 | eqtr2d 2779 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (dom dom 𝑑 / (~Met‘𝑑)) = (𝑋 / ∼ )) |
18 | | mpoeq12 7348 |
. . . 4
⊢ (((dom
dom 𝑑 /
(~Met‘𝑑))
= (𝑋 / ∼ )
∧ (dom dom 𝑑 /
(~Met‘𝑑))
= (𝑋 / ∼ ))
→ (𝑎 ∈ (dom dom
𝑑 /
(~Met‘𝑑)),
𝑏 ∈ (dom dom 𝑑 /
(~Met‘𝑑))
↦ ∪ {𝑧 ∣ ∃𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝑧 = (𝑥𝑑𝑦)}) = (𝑎 ∈ (𝑋 / ∼ ), 𝑏 ∈ (𝑋 / ∼ ) ↦ ∪ {𝑧
∣ ∃𝑥 ∈
𝑎 ∃𝑦 ∈ 𝑏 𝑧 = (𝑥𝑑𝑦)})) |
19 | 17, 17, 18 | syl2anc 584 |
. . 3
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (𝑎 ∈ (dom dom 𝑑 / (~Met‘𝑑)), 𝑏 ∈ (dom dom 𝑑 / (~Met‘𝑑)) ↦ ∪ {𝑧
∣ ∃𝑥 ∈
𝑎 ∃𝑦 ∈ 𝑏 𝑧 = (𝑥𝑑𝑦)}) = (𝑎 ∈ (𝑋 / ∼ ), 𝑏 ∈ (𝑋 / ∼ ) ↦ ∪ {𝑧
∣ ∃𝑥 ∈
𝑎 ∃𝑦 ∈ 𝑏 𝑧 = (𝑥𝑑𝑦)})) |
20 | | simp1r 1197 |
. . . . . . . . 9
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) ∧ 𝑎 ∈ (𝑋 / ∼ ) ∧ 𝑏 ∈ (𝑋 / ∼ )) → 𝑑 = 𝐷) |
21 | 20 | oveqd 7292 |
. . . . . . . 8
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) ∧ 𝑎 ∈ (𝑋 / ∼ ) ∧ 𝑏 ∈ (𝑋 / ∼ )) → (𝑥𝑑𝑦) = (𝑥𝐷𝑦)) |
22 | 21 | eqeq2d 2749 |
. . . . . . 7
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) ∧ 𝑎 ∈ (𝑋 / ∼ ) ∧ 𝑏 ∈ (𝑋 / ∼ )) → (𝑧 = (𝑥𝑑𝑦) ↔ 𝑧 = (𝑥𝐷𝑦))) |
23 | 22 | 2rexbidv 3229 |
. . . . . 6
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) ∧ 𝑎 ∈ (𝑋 / ∼ ) ∧ 𝑏 ∈ (𝑋 / ∼ )) →
(∃𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝑧 = (𝑥𝑑𝑦) ↔ ∃𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝑧 = (𝑥𝐷𝑦))) |
24 | 23 | abbidv 2807 |
. . . . 5
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) ∧ 𝑎 ∈ (𝑋 / ∼ ) ∧ 𝑏 ∈ (𝑋 / ∼ )) → {𝑧 ∣ ∃𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝑧 = (𝑥𝑑𝑦)} = {𝑧 ∣ ∃𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝑧 = (𝑥𝐷𝑦)}) |
25 | 24 | unieqd 4853 |
. . . 4
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) ∧ 𝑎 ∈ (𝑋 / ∼ ) ∧ 𝑏 ∈ (𝑋 / ∼ )) → ∪ {𝑧
∣ ∃𝑥 ∈
𝑎 ∃𝑦 ∈ 𝑏 𝑧 = (𝑥𝑑𝑦)} = ∪ {𝑧 ∣ ∃𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝑧 = (𝑥𝐷𝑦)}) |
26 | 25 | mpoeq3dva 7352 |
. . 3
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (𝑎 ∈ (𝑋 / ∼ ), 𝑏 ∈ (𝑋 / ∼ ) ↦ ∪ {𝑧
∣ ∃𝑥 ∈
𝑎 ∃𝑦 ∈ 𝑏 𝑧 = (𝑥𝑑𝑦)}) = (𝑎 ∈ (𝑋 / ∼ ), 𝑏 ∈ (𝑋 / ∼ ) ↦ ∪ {𝑧
∣ ∃𝑥 ∈
𝑎 ∃𝑦 ∈ 𝑏 𝑧 = (𝑥𝐷𝑦)})) |
27 | 19, 26 | eqtrd 2778 |
. 2
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (𝑎 ∈ (dom dom 𝑑 / (~Met‘𝑑)), 𝑏 ∈ (dom dom 𝑑 / (~Met‘𝑑)) ↦ ∪ {𝑧
∣ ∃𝑥 ∈
𝑎 ∃𝑦 ∈ 𝑏 𝑧 = (𝑥𝑑𝑦)}) = (𝑎 ∈ (𝑋 / ∼ ), 𝑏 ∈ (𝑋 / ∼ ) ↦ ∪ {𝑧
∣ ∃𝑥 ∈
𝑎 ∃𝑦 ∈ 𝑏 𝑧 = (𝑥𝐷𝑦)})) |
28 | | elfvdm 6806 |
. . . 4
⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ dom PsMet) |
29 | | fveq2 6774 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (PsMet‘𝑥) = (PsMet‘𝑋)) |
30 | 29 | eleq2d 2824 |
. . . . 5
⊢ (𝑥 = 𝑋 → (𝐷 ∈ (PsMet‘𝑥) ↔ 𝐷 ∈ (PsMet‘𝑋))) |
31 | 30 | rspcev 3561 |
. . . 4
⊢ ((𝑋 ∈ dom PsMet ∧ 𝐷 ∈ (PsMet‘𝑋)) → ∃𝑥 ∈ dom PsMet𝐷 ∈ (PsMet‘𝑥)) |
32 | 28, 31 | mpancom 685 |
. . 3
⊢ (𝐷 ∈ (PsMet‘𝑋) → ∃𝑥 ∈ dom PsMet𝐷 ∈ (PsMet‘𝑥)) |
33 | | df-psmet 20589 |
. . . . 5
⊢ PsMet =
(𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*
↑m (𝑥
× 𝑥)) ∣
∀𝑎 ∈ 𝑥 ((𝑎𝑑𝑎) = 0 ∧ ∀𝑏 ∈ 𝑥 ∀𝑐 ∈ 𝑥 (𝑎𝑑𝑏) ≤ ((𝑐𝑑𝑎) +𝑒 (𝑐𝑑𝑏)))}) |
34 | 33 | funmpt2 6473 |
. . . 4
⊢ Fun
PsMet |
35 | | elunirn 7124 |
. . . 4
⊢ (Fun
PsMet → (𝐷 ∈
∪ ran PsMet ↔ ∃𝑥 ∈ dom PsMet𝐷 ∈ (PsMet‘𝑥))) |
36 | 34, 35 | ax-mp 5 |
. . 3
⊢ (𝐷 ∈ ∪ ran PsMet ↔ ∃𝑥 ∈ dom PsMet𝐷 ∈ (PsMet‘𝑥)) |
37 | 32, 36 | sylibr 233 |
. 2
⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷 ∈ ∪ ran
PsMet) |
38 | | elfvex 6807 |
. . . 4
⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ V) |
39 | | qsexg 8564 |
. . . 4
⊢ (𝑋 ∈ V → (𝑋 / ∼ ) ∈
V) |
40 | 38, 39 | syl 17 |
. . 3
⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝑋 / ∼ ) ∈
V) |
41 | | mpoexga 7918 |
. . 3
⊢ (((𝑋 / ∼ ) ∈ V ∧
(𝑋 / ∼ )
∈ V) → (𝑎 ∈
(𝑋 / ∼ ),
𝑏 ∈ (𝑋 / ∼ ) ↦ ∪ {𝑧
∣ ∃𝑥 ∈
𝑎 ∃𝑦 ∈ 𝑏 𝑧 = (𝑥𝐷𝑦)}) ∈ V) |
42 | 40, 40, 41 | syl2anc 584 |
. 2
⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝑎 ∈ (𝑋 / ∼ ), 𝑏 ∈ (𝑋 / ∼ ) ↦ ∪ {𝑧
∣ ∃𝑥 ∈
𝑎 ∃𝑦 ∈ 𝑏 𝑧 = (𝑥𝐷𝑦)}) ∈ V) |
43 | 2, 27, 37, 42 | fvmptd 6882 |
1
⊢ (𝐷 ∈ (PsMet‘𝑋) → (pstoMet‘𝐷) = (𝑎 ∈ (𝑋 / ∼ ), 𝑏 ∈ (𝑋 / ∼ ) ↦ ∪ {𝑧
∣ ∃𝑥 ∈
𝑎 ∃𝑦 ∈ 𝑏 𝑧 = (𝑥𝐷𝑦)})) |