Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pstmval Structured version   Visualization version   GIF version

Theorem pstmval 33919
Description: Value of the metric induced by a pseudometric 𝐷. (Contributed by Thierry Arnoux, 7-Feb-2018.)
Hypothesis
Ref Expression
pstmval.1 = (~Met𝐷)
Assertion
Ref Expression
pstmval (𝐷 ∈ (PsMet‘𝑋) → (pstoMet‘𝐷) = (𝑎 ∈ (𝑋 / ), 𝑏 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑥𝑎𝑦𝑏 𝑧 = (𝑥𝐷𝑦)}))
Distinct variable groups:   𝑎,𝑏,𝑥,𝑦,𝑧,𝐷   𝑋,𝑎,𝑏,𝑥,𝑦,𝑧   ,𝑎,𝑏,𝑥,𝑦,𝑧

Proof of Theorem pstmval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 df-pstm 33913 . 2 pstoMet = (𝑑 ran PsMet ↦ (𝑎 ∈ (dom dom 𝑑 / (~Met𝑑)), 𝑏 ∈ (dom dom 𝑑 / (~Met𝑑)) ↦ {𝑧 ∣ ∃𝑥𝑎𝑦𝑏 𝑧 = (𝑥𝑑𝑦)}))
2 psmetdmdm 24230 . . . . . . . 8 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 = dom dom 𝐷)
32adantr 480 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → 𝑋 = dom dom 𝐷)
4 dmeq 5850 . . . . . . . . 9 (𝑑 = 𝐷 → dom 𝑑 = dom 𝐷)
54dmeqd 5852 . . . . . . . 8 (𝑑 = 𝐷 → dom dom 𝑑 = dom dom 𝐷)
65adantl 481 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → dom dom 𝑑 = dom dom 𝐷)
73, 6eqtr4d 2771 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → 𝑋 = dom dom 𝑑)
8 qseq1 8690 . . . . . 6 (𝑋 = dom dom 𝑑 → (𝑋 / ) = (dom dom 𝑑 / ))
97, 8syl 17 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (𝑋 / ) = (dom dom 𝑑 / ))
10 pstmval.1 . . . . . . . 8 = (~Met𝐷)
11 fveq2 6831 . . . . . . . 8 (𝑑 = 𝐷 → (~Met𝑑) = (~Met𝐷))
1210, 11eqtr4id 2787 . . . . . . 7 (𝑑 = 𝐷 = (~Met𝑑))
1312qseq2d 8694 . . . . . 6 (𝑑 = 𝐷 → (dom dom 𝑑 / ) = (dom dom 𝑑 / (~Met𝑑)))
1413adantl 481 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (dom dom 𝑑 / ) = (dom dom 𝑑 / (~Met𝑑)))
159, 14eqtr2d 2769 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (dom dom 𝑑 / (~Met𝑑)) = (𝑋 / ))
16 mpoeq12 7428 . . . 4 (((dom dom 𝑑 / (~Met𝑑)) = (𝑋 / ) ∧ (dom dom 𝑑 / (~Met𝑑)) = (𝑋 / )) → (𝑎 ∈ (dom dom 𝑑 / (~Met𝑑)), 𝑏 ∈ (dom dom 𝑑 / (~Met𝑑)) ↦ {𝑧 ∣ ∃𝑥𝑎𝑦𝑏 𝑧 = (𝑥𝑑𝑦)}) = (𝑎 ∈ (𝑋 / ), 𝑏 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑥𝑎𝑦𝑏 𝑧 = (𝑥𝑑𝑦)}))
1715, 15, 16syl2anc 584 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (𝑎 ∈ (dom dom 𝑑 / (~Met𝑑)), 𝑏 ∈ (dom dom 𝑑 / (~Met𝑑)) ↦ {𝑧 ∣ ∃𝑥𝑎𝑦𝑏 𝑧 = (𝑥𝑑𝑦)}) = (𝑎 ∈ (𝑋 / ), 𝑏 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑥𝑎𝑦𝑏 𝑧 = (𝑥𝑑𝑦)}))
18 simp1r 1199 . . . . . . . . 9 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) ∧ 𝑎 ∈ (𝑋 / ) ∧ 𝑏 ∈ (𝑋 / )) → 𝑑 = 𝐷)
1918oveqd 7372 . . . . . . . 8 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) ∧ 𝑎 ∈ (𝑋 / ) ∧ 𝑏 ∈ (𝑋 / )) → (𝑥𝑑𝑦) = (𝑥𝐷𝑦))
2019eqeq2d 2744 . . . . . . 7 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) ∧ 𝑎 ∈ (𝑋 / ) ∧ 𝑏 ∈ (𝑋 / )) → (𝑧 = (𝑥𝑑𝑦) ↔ 𝑧 = (𝑥𝐷𝑦)))
21202rexbidv 3199 . . . . . 6 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) ∧ 𝑎 ∈ (𝑋 / ) ∧ 𝑏 ∈ (𝑋 / )) → (∃𝑥𝑎𝑦𝑏 𝑧 = (𝑥𝑑𝑦) ↔ ∃𝑥𝑎𝑦𝑏 𝑧 = (𝑥𝐷𝑦)))
2221abbidv 2799 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) ∧ 𝑎 ∈ (𝑋 / ) ∧ 𝑏 ∈ (𝑋 / )) → {𝑧 ∣ ∃𝑥𝑎𝑦𝑏 𝑧 = (𝑥𝑑𝑦)} = {𝑧 ∣ ∃𝑥𝑎𝑦𝑏 𝑧 = (𝑥𝐷𝑦)})
2322unieqd 4873 . . . 4 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) ∧ 𝑎 ∈ (𝑋 / ) ∧ 𝑏 ∈ (𝑋 / )) → {𝑧 ∣ ∃𝑥𝑎𝑦𝑏 𝑧 = (𝑥𝑑𝑦)} = {𝑧 ∣ ∃𝑥𝑎𝑦𝑏 𝑧 = (𝑥𝐷𝑦)})
2423mpoeq3dva 7432 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (𝑎 ∈ (𝑋 / ), 𝑏 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑥𝑎𝑦𝑏 𝑧 = (𝑥𝑑𝑦)}) = (𝑎 ∈ (𝑋 / ), 𝑏 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑥𝑎𝑦𝑏 𝑧 = (𝑥𝐷𝑦)}))
2517, 24eqtrd 2768 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (𝑎 ∈ (dom dom 𝑑 / (~Met𝑑)), 𝑏 ∈ (dom dom 𝑑 / (~Met𝑑)) ↦ {𝑧 ∣ ∃𝑥𝑎𝑦𝑏 𝑧 = (𝑥𝑑𝑦)}) = (𝑎 ∈ (𝑋 / ), 𝑏 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑥𝑎𝑦𝑏 𝑧 = (𝑥𝐷𝑦)}))
26 elfvunirn 6861 . 2 (𝐷 ∈ (PsMet‘𝑋) → 𝐷 ran PsMet)
27 elfvex 6866 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ V)
28 qsexg 8705 . . . 4 (𝑋 ∈ V → (𝑋 / ) ∈ V)
2927, 28syl 17 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (𝑋 / ) ∈ V)
30 mpoexga 8018 . . 3 (((𝑋 / ) ∈ V ∧ (𝑋 / ) ∈ V) → (𝑎 ∈ (𝑋 / ), 𝑏 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑥𝑎𝑦𝑏 𝑧 = (𝑥𝐷𝑦)}) ∈ V)
3129, 29, 30syl2anc 584 . 2 (𝐷 ∈ (PsMet‘𝑋) → (𝑎 ∈ (𝑋 / ), 𝑏 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑥𝑎𝑦𝑏 𝑧 = (𝑥𝐷𝑦)}) ∈ V)
321, 25, 26, 31fvmptd2 6946 1 (𝐷 ∈ (PsMet‘𝑋) → (pstoMet‘𝐷) = (𝑎 ∈ (𝑋 / ), 𝑏 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑥𝑎𝑦𝑏 𝑧 = (𝑥𝐷𝑦)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  {cab 2711  wrex 3058  Vcvv 3438   cuni 4860  dom cdm 5621  ran crn 5622  cfv 6489  (class class class)co 7355  cmpo 7357   / cqs 8630  PsMetcpsmet 21285  ~Metcmetid 33910  pstoMetcpstm 33911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-ec 8633  df-qs 8637  df-map 8761  df-xr 11160  df-psmet 21293  df-pstm 33913
This theorem is referenced by:  pstmfval  33920  pstmxmet  33921
  Copyright terms: Public domain W3C validator