Detailed syntax breakdown of Definition df-psubclN
| Step | Hyp | Ref
| Expression |
| 1 | | cpscN 39936 |
. 2
class
PSubCl |
| 2 | | vk |
. . 3
setvar 𝑘 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vs |
. . . . . . 7
setvar 𝑠 |
| 5 | 4 | cv 1539 |
. . . . . 6
class 𝑠 |
| 6 | 2 | cv 1539 |
. . . . . . 7
class 𝑘 |
| 7 | | catm 39264 |
. . . . . . 7
class
Atoms |
| 8 | 6, 7 | cfv 6561 |
. . . . . 6
class
(Atoms‘𝑘) |
| 9 | 5, 8 | wss 3951 |
. . . . 5
wff 𝑠 ⊆ (Atoms‘𝑘) |
| 10 | | cpolN 39904 |
. . . . . . . . 9
class
⊥𝑃 |
| 11 | 6, 10 | cfv 6561 |
. . . . . . . 8
class
(⊥𝑃‘𝑘) |
| 12 | 5, 11 | cfv 6561 |
. . . . . . 7
class
((⊥𝑃‘𝑘)‘𝑠) |
| 13 | 12, 11 | cfv 6561 |
. . . . . 6
class
((⊥𝑃‘𝑘)‘((⊥𝑃‘𝑘)‘𝑠)) |
| 14 | 13, 5 | wceq 1540 |
. . . . 5
wff
((⊥𝑃‘𝑘)‘((⊥𝑃‘𝑘)‘𝑠)) = 𝑠 |
| 15 | 9, 14 | wa 395 |
. . . 4
wff (𝑠 ⊆ (Atoms‘𝑘) ∧
((⊥𝑃‘𝑘)‘((⊥𝑃‘𝑘)‘𝑠)) = 𝑠) |
| 16 | 15, 4 | cab 2714 |
. . 3
class {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧
((⊥𝑃‘𝑘)‘((⊥𝑃‘𝑘)‘𝑠)) = 𝑠)} |
| 17 | 2, 3, 16 | cmpt 5225 |
. 2
class (𝑘 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧
((⊥𝑃‘𝑘)‘((⊥𝑃‘𝑘)‘𝑠)) = 𝑠)}) |
| 18 | 1, 17 | wceq 1540 |
1
wff PSubCl =
(𝑘 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧
((⊥𝑃‘𝑘)‘((⊥𝑃‘𝑘)‘𝑠)) = 𝑠)}) |