Detailed syntax breakdown of Definition df-psubclN
Step | Hyp | Ref
| Expression |
1 | | cpscN 37532 |
. 2
class
PSubCl |
2 | | vk |
. . 3
setvar 𝑘 |
3 | | cvv 3409 |
. . 3
class
V |
4 | | vs |
. . . . . . 7
setvar 𝑠 |
5 | 4 | cv 1537 |
. . . . . 6
class 𝑠 |
6 | 2 | cv 1537 |
. . . . . . 7
class 𝑘 |
7 | | catm 36861 |
. . . . . . 7
class
Atoms |
8 | 6, 7 | cfv 6335 |
. . . . . 6
class
(Atoms‘𝑘) |
9 | 5, 8 | wss 3858 |
. . . . 5
wff 𝑠 ⊆ (Atoms‘𝑘) |
10 | | cpolN 37500 |
. . . . . . . . 9
class
⊥𝑃 |
11 | 6, 10 | cfv 6335 |
. . . . . . . 8
class
(⊥𝑃‘𝑘) |
12 | 5, 11 | cfv 6335 |
. . . . . . 7
class
((⊥𝑃‘𝑘)‘𝑠) |
13 | 12, 11 | cfv 6335 |
. . . . . 6
class
((⊥𝑃‘𝑘)‘((⊥𝑃‘𝑘)‘𝑠)) |
14 | 13, 5 | wceq 1538 |
. . . . 5
wff
((⊥𝑃‘𝑘)‘((⊥𝑃‘𝑘)‘𝑠)) = 𝑠 |
15 | 9, 14 | wa 399 |
. . . 4
wff (𝑠 ⊆ (Atoms‘𝑘) ∧
((⊥𝑃‘𝑘)‘((⊥𝑃‘𝑘)‘𝑠)) = 𝑠) |
16 | 15, 4 | cab 2735 |
. . 3
class {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧
((⊥𝑃‘𝑘)‘((⊥𝑃‘𝑘)‘𝑠)) = 𝑠)} |
17 | 2, 3, 16 | cmpt 5112 |
. 2
class (𝑘 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧
((⊥𝑃‘𝑘)‘((⊥𝑃‘𝑘)‘𝑠)) = 𝑠)}) |
18 | 1, 17 | wceq 1538 |
1
wff PSubCl =
(𝑘 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧
((⊥𝑃‘𝑘)‘((⊥𝑃‘𝑘)‘𝑠)) = 𝑠)}) |