Step | Hyp | Ref
| Expression |
1 | | cpscN 38400 |
. 2
class
PSubCl |
2 | | vk |
. . 3
setvar π |
3 | | cvv 3446 |
. . 3
class
V |
4 | | vs |
. . . . . . 7
setvar π |
5 | 4 | cv 1541 |
. . . . . 6
class π |
6 | 2 | cv 1541 |
. . . . . . 7
class π |
7 | | catm 37728 |
. . . . . . 7
class
Atoms |
8 | 6, 7 | cfv 6497 |
. . . . . 6
class
(Atomsβπ) |
9 | 5, 8 | wss 3911 |
. . . . 5
wff π β (Atomsβπ) |
10 | | cpolN 38368 |
. . . . . . . . 9
class
β₯π |
11 | 6, 10 | cfv 6497 |
. . . . . . . 8
class
(β₯πβπ) |
12 | 5, 11 | cfv 6497 |
. . . . . . 7
class
((β₯πβπ)βπ ) |
13 | 12, 11 | cfv 6497 |
. . . . . 6
class
((β₯πβπ)β((β₯πβπ)βπ )) |
14 | 13, 5 | wceq 1542 |
. . . . 5
wff
((β₯πβπ)β((β₯πβπ)βπ )) = π |
15 | 9, 14 | wa 397 |
. . . 4
wff (π β (Atomsβπ) β§
((β₯πβπ)β((β₯πβπ)βπ )) = π ) |
16 | 15, 4 | cab 2714 |
. . 3
class {π β£ (π β (Atomsβπ) β§
((β₯πβπ)β((β₯πβπ)βπ )) = π )} |
17 | 2, 3, 16 | cmpt 5189 |
. 2
class (π β V β¦ {π β£ (π β (Atomsβπ) β§
((β₯πβπ)β((β₯πβπ)βπ )) = π )}) |
18 | 1, 17 | wceq 1542 |
1
wff PSubCl =
(π β V β¦ {π β£ (π β (Atomsβπ) β§
((β₯πβπ)β((β₯πβπ)βπ )) = π )}) |