Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubclsetN Structured version   Visualization version   GIF version

Theorem psubclsetN 39893
Description: The set of closed projective subspaces in a Hilbert lattice. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
psubclset.a 𝐴 = (Atoms‘𝐾)
psubclset.p = (⊥𝑃𝐾)
psubclset.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
psubclsetN (𝐾𝐵𝐶 = {𝑠 ∣ (𝑠𝐴 ∧ ( ‘( 𝑠)) = 𝑠)})
Distinct variable groups:   𝐴,𝑠   𝐾,𝑠
Allowed substitution hints:   𝐵(𝑠)   𝐶(𝑠)   (𝑠)

Proof of Theorem psubclsetN
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3509 . 2 (𝐾𝐵𝐾 ∈ V)
2 psubclset.c . . 3 𝐶 = (PSubCl‘𝐾)
3 fveq2 6920 . . . . . . . 8 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
4 psubclset.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
53, 4eqtr4di 2798 . . . . . . 7 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
65sseq2d 4041 . . . . . 6 (𝑘 = 𝐾 → (𝑠 ⊆ (Atoms‘𝑘) ↔ 𝑠𝐴))
7 fveq2 6920 . . . . . . . . 9 (𝑘 = 𝐾 → (⊥𝑃𝑘) = (⊥𝑃𝐾))
8 psubclset.p . . . . . . . . 9 = (⊥𝑃𝐾)
97, 8eqtr4di 2798 . . . . . . . 8 (𝑘 = 𝐾 → (⊥𝑃𝑘) = )
109fveq1d 6922 . . . . . . . 8 (𝑘 = 𝐾 → ((⊥𝑃𝑘)‘𝑠) = ( 𝑠))
119, 10fveq12d 6927 . . . . . . 7 (𝑘 = 𝐾 → ((⊥𝑃𝑘)‘((⊥𝑃𝑘)‘𝑠)) = ( ‘( 𝑠)))
1211eqeq1d 2742 . . . . . 6 (𝑘 = 𝐾 → (((⊥𝑃𝑘)‘((⊥𝑃𝑘)‘𝑠)) = 𝑠 ↔ ( ‘( 𝑠)) = 𝑠))
136, 12anbi12d 631 . . . . 5 (𝑘 = 𝐾 → ((𝑠 ⊆ (Atoms‘𝑘) ∧ ((⊥𝑃𝑘)‘((⊥𝑃𝑘)‘𝑠)) = 𝑠) ↔ (𝑠𝐴 ∧ ( ‘( 𝑠)) = 𝑠)))
1413abbidv 2811 . . . 4 (𝑘 = 𝐾 → {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧ ((⊥𝑃𝑘)‘((⊥𝑃𝑘)‘𝑠)) = 𝑠)} = {𝑠 ∣ (𝑠𝐴 ∧ ( ‘( 𝑠)) = 𝑠)})
15 df-psubclN 39892 . . . 4 PSubCl = (𝑘 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧ ((⊥𝑃𝑘)‘((⊥𝑃𝑘)‘𝑠)) = 𝑠)})
164fvexi 6934 . . . . . 6 𝐴 ∈ V
1716pwex 5398 . . . . 5 𝒫 𝐴 ∈ V
18 velpw 4627 . . . . . . . 8 (𝑠 ∈ 𝒫 𝐴𝑠𝐴)
1918anbi1i 623 . . . . . . 7 ((𝑠 ∈ 𝒫 𝐴 ∧ ( ‘( 𝑠)) = 𝑠) ↔ (𝑠𝐴 ∧ ( ‘( 𝑠)) = 𝑠))
2019abbii 2812 . . . . . 6 {𝑠 ∣ (𝑠 ∈ 𝒫 𝐴 ∧ ( ‘( 𝑠)) = 𝑠)} = {𝑠 ∣ (𝑠𝐴 ∧ ( ‘( 𝑠)) = 𝑠)}
21 ssab2 4102 . . . . . 6 {𝑠 ∣ (𝑠 ∈ 𝒫 𝐴 ∧ ( ‘( 𝑠)) = 𝑠)} ⊆ 𝒫 𝐴
2220, 21eqsstrri 4044 . . . . 5 {𝑠 ∣ (𝑠𝐴 ∧ ( ‘( 𝑠)) = 𝑠)} ⊆ 𝒫 𝐴
2317, 22ssexi 5340 . . . 4 {𝑠 ∣ (𝑠𝐴 ∧ ( ‘( 𝑠)) = 𝑠)} ∈ V
2414, 15, 23fvmpt 7029 . . 3 (𝐾 ∈ V → (PSubCl‘𝐾) = {𝑠 ∣ (𝑠𝐴 ∧ ( ‘( 𝑠)) = 𝑠)})
252, 24eqtrid 2792 . 2 (𝐾 ∈ V → 𝐶 = {𝑠 ∣ (𝑠𝐴 ∧ ( ‘( 𝑠)) = 𝑠)})
261, 25syl 17 1 (𝐾𝐵𝐶 = {𝑠 ∣ (𝑠𝐴 ∧ ( ‘( 𝑠)) = 𝑠)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {cab 2717  Vcvv 3488  wss 3976  𝒫 cpw 4622  cfv 6573  Atomscatm 39219  𝑃cpolN 39859  PSubClcpscN 39891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-psubclN 39892
This theorem is referenced by:  ispsubclN  39894
  Copyright terms: Public domain W3C validator