Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubclsetN Structured version   Visualization version   GIF version

Theorem psubclsetN 37644
Description: The set of closed projective subspaces in a Hilbert lattice. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
psubclset.a 𝐴 = (Atoms‘𝐾)
psubclset.p = (⊥𝑃𝐾)
psubclset.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
psubclsetN (𝐾𝐵𝐶 = {𝑠 ∣ (𝑠𝐴 ∧ ( ‘( 𝑠)) = 𝑠)})
Distinct variable groups:   𝐴,𝑠   𝐾,𝑠
Allowed substitution hints:   𝐵(𝑠)   𝐶(𝑠)   (𝑠)

Proof of Theorem psubclsetN
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3419 . 2 (𝐾𝐵𝐾 ∈ V)
2 psubclset.c . . 3 𝐶 = (PSubCl‘𝐾)
3 fveq2 6706 . . . . . . . 8 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
4 psubclset.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
53, 4eqtr4di 2792 . . . . . . 7 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
65sseq2d 3923 . . . . . 6 (𝑘 = 𝐾 → (𝑠 ⊆ (Atoms‘𝑘) ↔ 𝑠𝐴))
7 fveq2 6706 . . . . . . . . 9 (𝑘 = 𝐾 → (⊥𝑃𝑘) = (⊥𝑃𝐾))
8 psubclset.p . . . . . . . . 9 = (⊥𝑃𝐾)
97, 8eqtr4di 2792 . . . . . . . 8 (𝑘 = 𝐾 → (⊥𝑃𝑘) = )
109fveq1d 6708 . . . . . . . 8 (𝑘 = 𝐾 → ((⊥𝑃𝑘)‘𝑠) = ( 𝑠))
119, 10fveq12d 6713 . . . . . . 7 (𝑘 = 𝐾 → ((⊥𝑃𝑘)‘((⊥𝑃𝑘)‘𝑠)) = ( ‘( 𝑠)))
1211eqeq1d 2736 . . . . . 6 (𝑘 = 𝐾 → (((⊥𝑃𝑘)‘((⊥𝑃𝑘)‘𝑠)) = 𝑠 ↔ ( ‘( 𝑠)) = 𝑠))
136, 12anbi12d 634 . . . . 5 (𝑘 = 𝐾 → ((𝑠 ⊆ (Atoms‘𝑘) ∧ ((⊥𝑃𝑘)‘((⊥𝑃𝑘)‘𝑠)) = 𝑠) ↔ (𝑠𝐴 ∧ ( ‘( 𝑠)) = 𝑠)))
1413abbidv 2803 . . . 4 (𝑘 = 𝐾 → {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧ ((⊥𝑃𝑘)‘((⊥𝑃𝑘)‘𝑠)) = 𝑠)} = {𝑠 ∣ (𝑠𝐴 ∧ ( ‘( 𝑠)) = 𝑠)})
15 df-psubclN 37643 . . . 4 PSubCl = (𝑘 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧ ((⊥𝑃𝑘)‘((⊥𝑃𝑘)‘𝑠)) = 𝑠)})
164fvexi 6720 . . . . . 6 𝐴 ∈ V
1716pwex 5262 . . . . 5 𝒫 𝐴 ∈ V
18 velpw 4508 . . . . . . . 8 (𝑠 ∈ 𝒫 𝐴𝑠𝐴)
1918anbi1i 627 . . . . . . 7 ((𝑠 ∈ 𝒫 𝐴 ∧ ( ‘( 𝑠)) = 𝑠) ↔ (𝑠𝐴 ∧ ( ‘( 𝑠)) = 𝑠))
2019abbii 2804 . . . . . 6 {𝑠 ∣ (𝑠 ∈ 𝒫 𝐴 ∧ ( ‘( 𝑠)) = 𝑠)} = {𝑠 ∣ (𝑠𝐴 ∧ ( ‘( 𝑠)) = 𝑠)}
21 ssab2 3982 . . . . . 6 {𝑠 ∣ (𝑠 ∈ 𝒫 𝐴 ∧ ( ‘( 𝑠)) = 𝑠)} ⊆ 𝒫 𝐴
2220, 21eqsstrri 3926 . . . . 5 {𝑠 ∣ (𝑠𝐴 ∧ ( ‘( 𝑠)) = 𝑠)} ⊆ 𝒫 𝐴
2317, 22ssexi 5204 . . . 4 {𝑠 ∣ (𝑠𝐴 ∧ ( ‘( 𝑠)) = 𝑠)} ∈ V
2414, 15, 23fvmpt 6807 . . 3 (𝐾 ∈ V → (PSubCl‘𝐾) = {𝑠 ∣ (𝑠𝐴 ∧ ( ‘( 𝑠)) = 𝑠)})
252, 24syl5eq 2786 . 2 (𝐾 ∈ V → 𝐶 = {𝑠 ∣ (𝑠𝐴 ∧ ( ‘( 𝑠)) = 𝑠)})
261, 25syl 17 1 (𝐾𝐵𝐶 = {𝑠 ∣ (𝑠𝐴 ∧ ( ‘( 𝑠)) = 𝑠)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  {cab 2712  Vcvv 3401  wss 3857  𝒫 cpw 4503  cfv 6369  Atomscatm 36971  𝑃cpolN 37610  PSubClcpscN 37642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3403  df-sbc 3688  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-op 4538  df-uni 4810  df-br 5044  df-opab 5106  df-mpt 5125  df-id 5444  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-iota 6327  df-fun 6371  df-fv 6377  df-psubclN 37643
This theorem is referenced by:  ispsubclN  37645
  Copyright terms: Public domain W3C validator