Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubclsetN Structured version   Visualization version   GIF version

Theorem psubclsetN 39937
Description: The set of closed projective subspaces in a Hilbert lattice. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
psubclset.a 𝐴 = (Atoms‘𝐾)
psubclset.p = (⊥𝑃𝐾)
psubclset.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
psubclsetN (𝐾𝐵𝐶 = {𝑠 ∣ (𝑠𝐴 ∧ ( ‘( 𝑠)) = 𝑠)})
Distinct variable groups:   𝐴,𝑠   𝐾,𝑠
Allowed substitution hints:   𝐵(𝑠)   𝐶(𝑠)   (𝑠)

Proof of Theorem psubclsetN
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3471 . 2 (𝐾𝐵𝐾 ∈ V)
2 psubclset.c . . 3 𝐶 = (PSubCl‘𝐾)
3 fveq2 6861 . . . . . . . 8 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
4 psubclset.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
53, 4eqtr4di 2783 . . . . . . 7 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
65sseq2d 3982 . . . . . 6 (𝑘 = 𝐾 → (𝑠 ⊆ (Atoms‘𝑘) ↔ 𝑠𝐴))
7 fveq2 6861 . . . . . . . . 9 (𝑘 = 𝐾 → (⊥𝑃𝑘) = (⊥𝑃𝐾))
8 psubclset.p . . . . . . . . 9 = (⊥𝑃𝐾)
97, 8eqtr4di 2783 . . . . . . . 8 (𝑘 = 𝐾 → (⊥𝑃𝑘) = )
109fveq1d 6863 . . . . . . . 8 (𝑘 = 𝐾 → ((⊥𝑃𝑘)‘𝑠) = ( 𝑠))
119, 10fveq12d 6868 . . . . . . 7 (𝑘 = 𝐾 → ((⊥𝑃𝑘)‘((⊥𝑃𝑘)‘𝑠)) = ( ‘( 𝑠)))
1211eqeq1d 2732 . . . . . 6 (𝑘 = 𝐾 → (((⊥𝑃𝑘)‘((⊥𝑃𝑘)‘𝑠)) = 𝑠 ↔ ( ‘( 𝑠)) = 𝑠))
136, 12anbi12d 632 . . . . 5 (𝑘 = 𝐾 → ((𝑠 ⊆ (Atoms‘𝑘) ∧ ((⊥𝑃𝑘)‘((⊥𝑃𝑘)‘𝑠)) = 𝑠) ↔ (𝑠𝐴 ∧ ( ‘( 𝑠)) = 𝑠)))
1413abbidv 2796 . . . 4 (𝑘 = 𝐾 → {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧ ((⊥𝑃𝑘)‘((⊥𝑃𝑘)‘𝑠)) = 𝑠)} = {𝑠 ∣ (𝑠𝐴 ∧ ( ‘( 𝑠)) = 𝑠)})
15 df-psubclN 39936 . . . 4 PSubCl = (𝑘 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧ ((⊥𝑃𝑘)‘((⊥𝑃𝑘)‘𝑠)) = 𝑠)})
164fvexi 6875 . . . . . 6 𝐴 ∈ V
1716pwex 5338 . . . . 5 𝒫 𝐴 ∈ V
18 velpw 4571 . . . . . . . 8 (𝑠 ∈ 𝒫 𝐴𝑠𝐴)
1918anbi1i 624 . . . . . . 7 ((𝑠 ∈ 𝒫 𝐴 ∧ ( ‘( 𝑠)) = 𝑠) ↔ (𝑠𝐴 ∧ ( ‘( 𝑠)) = 𝑠))
2019abbii 2797 . . . . . 6 {𝑠 ∣ (𝑠 ∈ 𝒫 𝐴 ∧ ( ‘( 𝑠)) = 𝑠)} = {𝑠 ∣ (𝑠𝐴 ∧ ( ‘( 𝑠)) = 𝑠)}
21 ssab2 4045 . . . . . 6 {𝑠 ∣ (𝑠 ∈ 𝒫 𝐴 ∧ ( ‘( 𝑠)) = 𝑠)} ⊆ 𝒫 𝐴
2220, 21eqsstrri 3997 . . . . 5 {𝑠 ∣ (𝑠𝐴 ∧ ( ‘( 𝑠)) = 𝑠)} ⊆ 𝒫 𝐴
2317, 22ssexi 5280 . . . 4 {𝑠 ∣ (𝑠𝐴 ∧ ( ‘( 𝑠)) = 𝑠)} ∈ V
2414, 15, 23fvmpt 6971 . . 3 (𝐾 ∈ V → (PSubCl‘𝐾) = {𝑠 ∣ (𝑠𝐴 ∧ ( ‘( 𝑠)) = 𝑠)})
252, 24eqtrid 2777 . 2 (𝐾 ∈ V → 𝐶 = {𝑠 ∣ (𝑠𝐴 ∧ ( ‘( 𝑠)) = 𝑠)})
261, 25syl 17 1 (𝐾𝐵𝐶 = {𝑠 ∣ (𝑠𝐴 ∧ ( ‘( 𝑠)) = 𝑠)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2708  Vcvv 3450  wss 3917  𝒫 cpw 4566  cfv 6514  Atomscatm 39263  𝑃cpolN 39903  PSubClcpscN 39935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-psubclN 39936
This theorem is referenced by:  ispsubclN  39938
  Copyright terms: Public domain W3C validator