Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubclsetN Structured version   Visualization version   GIF version

Theorem psubclsetN 37877
Description: The set of closed projective subspaces in a Hilbert lattice. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
psubclset.a 𝐴 = (Atoms‘𝐾)
psubclset.p = (⊥𝑃𝐾)
psubclset.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
psubclsetN (𝐾𝐵𝐶 = {𝑠 ∣ (𝑠𝐴 ∧ ( ‘( 𝑠)) = 𝑠)})
Distinct variable groups:   𝐴,𝑠   𝐾,𝑠
Allowed substitution hints:   𝐵(𝑠)   𝐶(𝑠)   (𝑠)

Proof of Theorem psubclsetN
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3440 . 2 (𝐾𝐵𝐾 ∈ V)
2 psubclset.c . . 3 𝐶 = (PSubCl‘𝐾)
3 fveq2 6756 . . . . . . . 8 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
4 psubclset.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
53, 4eqtr4di 2797 . . . . . . 7 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
65sseq2d 3949 . . . . . 6 (𝑘 = 𝐾 → (𝑠 ⊆ (Atoms‘𝑘) ↔ 𝑠𝐴))
7 fveq2 6756 . . . . . . . . 9 (𝑘 = 𝐾 → (⊥𝑃𝑘) = (⊥𝑃𝐾))
8 psubclset.p . . . . . . . . 9 = (⊥𝑃𝐾)
97, 8eqtr4di 2797 . . . . . . . 8 (𝑘 = 𝐾 → (⊥𝑃𝑘) = )
109fveq1d 6758 . . . . . . . 8 (𝑘 = 𝐾 → ((⊥𝑃𝑘)‘𝑠) = ( 𝑠))
119, 10fveq12d 6763 . . . . . . 7 (𝑘 = 𝐾 → ((⊥𝑃𝑘)‘((⊥𝑃𝑘)‘𝑠)) = ( ‘( 𝑠)))
1211eqeq1d 2740 . . . . . 6 (𝑘 = 𝐾 → (((⊥𝑃𝑘)‘((⊥𝑃𝑘)‘𝑠)) = 𝑠 ↔ ( ‘( 𝑠)) = 𝑠))
136, 12anbi12d 630 . . . . 5 (𝑘 = 𝐾 → ((𝑠 ⊆ (Atoms‘𝑘) ∧ ((⊥𝑃𝑘)‘((⊥𝑃𝑘)‘𝑠)) = 𝑠) ↔ (𝑠𝐴 ∧ ( ‘( 𝑠)) = 𝑠)))
1413abbidv 2808 . . . 4 (𝑘 = 𝐾 → {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧ ((⊥𝑃𝑘)‘((⊥𝑃𝑘)‘𝑠)) = 𝑠)} = {𝑠 ∣ (𝑠𝐴 ∧ ( ‘( 𝑠)) = 𝑠)})
15 df-psubclN 37876 . . . 4 PSubCl = (𝑘 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧ ((⊥𝑃𝑘)‘((⊥𝑃𝑘)‘𝑠)) = 𝑠)})
164fvexi 6770 . . . . . 6 𝐴 ∈ V
1716pwex 5298 . . . . 5 𝒫 𝐴 ∈ V
18 velpw 4535 . . . . . . . 8 (𝑠 ∈ 𝒫 𝐴𝑠𝐴)
1918anbi1i 623 . . . . . . 7 ((𝑠 ∈ 𝒫 𝐴 ∧ ( ‘( 𝑠)) = 𝑠) ↔ (𝑠𝐴 ∧ ( ‘( 𝑠)) = 𝑠))
2019abbii 2809 . . . . . 6 {𝑠 ∣ (𝑠 ∈ 𝒫 𝐴 ∧ ( ‘( 𝑠)) = 𝑠)} = {𝑠 ∣ (𝑠𝐴 ∧ ( ‘( 𝑠)) = 𝑠)}
21 ssab2 4008 . . . . . 6 {𝑠 ∣ (𝑠 ∈ 𝒫 𝐴 ∧ ( ‘( 𝑠)) = 𝑠)} ⊆ 𝒫 𝐴
2220, 21eqsstrri 3952 . . . . 5 {𝑠 ∣ (𝑠𝐴 ∧ ( ‘( 𝑠)) = 𝑠)} ⊆ 𝒫 𝐴
2317, 22ssexi 5241 . . . 4 {𝑠 ∣ (𝑠𝐴 ∧ ( ‘( 𝑠)) = 𝑠)} ∈ V
2414, 15, 23fvmpt 6857 . . 3 (𝐾 ∈ V → (PSubCl‘𝐾) = {𝑠 ∣ (𝑠𝐴 ∧ ( ‘( 𝑠)) = 𝑠)})
252, 24syl5eq 2791 . 2 (𝐾 ∈ V → 𝐶 = {𝑠 ∣ (𝑠𝐴 ∧ ( ‘( 𝑠)) = 𝑠)})
261, 25syl 17 1 (𝐾𝐵𝐶 = {𝑠 ∣ (𝑠𝐴 ∧ ( ‘( 𝑠)) = 𝑠)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {cab 2715  Vcvv 3422  wss 3883  𝒫 cpw 4530  cfv 6418  Atomscatm 37204  𝑃cpolN 37843  PSubClcpscN 37875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-psubclN 37876
This theorem is referenced by:  ispsubclN  37878
  Copyright terms: Public domain W3C validator