| Step | Hyp | Ref
| Expression |
| 1 | | elex 3484 |
. 2
⊢ (𝐾 ∈ 𝐵 → 𝐾 ∈ V) |
| 2 | | psubclset.c |
. . 3
⊢ 𝐶 = (PSubCl‘𝐾) |
| 3 | | fveq2 6886 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾)) |
| 4 | | psubclset.a |
. . . . . . . 8
⊢ 𝐴 = (Atoms‘𝐾) |
| 5 | 3, 4 | eqtr4di 2787 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴) |
| 6 | 5 | sseq2d 3996 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (𝑠 ⊆ (Atoms‘𝑘) ↔ 𝑠 ⊆ 𝐴)) |
| 7 | | fveq2 6886 |
. . . . . . . . 9
⊢ (𝑘 = 𝐾 →
(⊥𝑃‘𝑘) = (⊥𝑃‘𝐾)) |
| 8 | | psubclset.p |
. . . . . . . . 9
⊢ ⊥ =
(⊥𝑃‘𝐾) |
| 9 | 7, 8 | eqtr4di 2787 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 →
(⊥𝑃‘𝑘) = ⊥ ) |
| 10 | 9 | fveq1d 6888 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 →
((⊥𝑃‘𝑘)‘𝑠) = ( ⊥ ‘𝑠)) |
| 11 | 9, 10 | fveq12d 6893 |
. . . . . . 7
⊢ (𝑘 = 𝐾 →
((⊥𝑃‘𝑘)‘((⊥𝑃‘𝑘)‘𝑠)) = ( ⊥ ‘( ⊥
‘𝑠))) |
| 12 | 11 | eqeq1d 2736 |
. . . . . 6
⊢ (𝑘 = 𝐾 →
(((⊥𝑃‘𝑘)‘((⊥𝑃‘𝑘)‘𝑠)) = 𝑠 ↔ ( ⊥ ‘( ⊥
‘𝑠)) = 𝑠)) |
| 13 | 6, 12 | anbi12d 632 |
. . . . 5
⊢ (𝑘 = 𝐾 → ((𝑠 ⊆ (Atoms‘𝑘) ∧
((⊥𝑃‘𝑘)‘((⊥𝑃‘𝑘)‘𝑠)) = 𝑠) ↔ (𝑠 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥
‘𝑠)) = 𝑠))) |
| 14 | 13 | abbidv 2800 |
. . . 4
⊢ (𝑘 = 𝐾 → {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧
((⊥𝑃‘𝑘)‘((⊥𝑃‘𝑘)‘𝑠)) = 𝑠)} = {𝑠 ∣ (𝑠 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥
‘𝑠)) = 𝑠)}) |
| 15 | | df-psubclN 39912 |
. . . 4
⊢ PSubCl =
(𝑘 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧
((⊥𝑃‘𝑘)‘((⊥𝑃‘𝑘)‘𝑠)) = 𝑠)}) |
| 16 | 4 | fvexi 6900 |
. . . . . 6
⊢ 𝐴 ∈ V |
| 17 | 16 | pwex 5360 |
. . . . 5
⊢ 𝒫
𝐴 ∈ V |
| 18 | | velpw 4585 |
. . . . . . . 8
⊢ (𝑠 ∈ 𝒫 𝐴 ↔ 𝑠 ⊆ 𝐴) |
| 19 | 18 | anbi1i 624 |
. . . . . . 7
⊢ ((𝑠 ∈ 𝒫 𝐴 ∧ ( ⊥ ‘( ⊥
‘𝑠)) = 𝑠) ↔ (𝑠 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥
‘𝑠)) = 𝑠)) |
| 20 | 19 | abbii 2801 |
. . . . . 6
⊢ {𝑠 ∣ (𝑠 ∈ 𝒫 𝐴 ∧ ( ⊥ ‘( ⊥
‘𝑠)) = 𝑠)} = {𝑠 ∣ (𝑠 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥
‘𝑠)) = 𝑠)} |
| 21 | | ssab2 4059 |
. . . . . 6
⊢ {𝑠 ∣ (𝑠 ∈ 𝒫 𝐴 ∧ ( ⊥ ‘( ⊥
‘𝑠)) = 𝑠)} ⊆ 𝒫 𝐴 |
| 22 | 20, 21 | eqsstrri 4011 |
. . . . 5
⊢ {𝑠 ∣ (𝑠 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥
‘𝑠)) = 𝑠)} ⊆ 𝒫 𝐴 |
| 23 | 17, 22 | ssexi 5302 |
. . . 4
⊢ {𝑠 ∣ (𝑠 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥
‘𝑠)) = 𝑠)} ∈ V |
| 24 | 14, 15, 23 | fvmpt 6996 |
. . 3
⊢ (𝐾 ∈ V →
(PSubCl‘𝐾) = {𝑠 ∣ (𝑠 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥
‘𝑠)) = 𝑠)}) |
| 25 | 2, 24 | eqtrid 2781 |
. 2
⊢ (𝐾 ∈ V → 𝐶 = {𝑠 ∣ (𝑠 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥
‘𝑠)) = 𝑠)}) |
| 26 | 1, 25 | syl 17 |
1
⊢ (𝐾 ∈ 𝐵 → 𝐶 = {𝑠 ∣ (𝑠 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥
‘𝑠)) = 𝑠)}) |