![]() |
Metamath
Proof Explorer Theorem List (p. 389 of 435) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28326) |
![]() (28327-29851) |
![]() (29852-43457) |
Type | Label | Description |
---|---|---|
Statement | ||
Definition | df-rcl 38801* | Reflexive closure of a relation. This is the smallest superset which has the reflexive property. (Contributed by RP, 5-Jun-2020.) |
⊢ r* = (𝑥 ∈ V ↦ ∩ {𝑧 ∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)}) | ||
Theorem | dfrcl2 38802 | Reflexive closure of a relation as union with restricted identity relation. (Contributed by RP, 6-Jun-2020.) |
⊢ r* = (𝑥 ∈ V ↦ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥)) | ||
Theorem | dfrcl3 38803 | Reflexive closure of a relation as union of powers of the relation. (Contributed by RP, 6-Jun-2020.) |
⊢ r* = (𝑥 ∈ V ↦ ((𝑥↑𝑟0) ∪ (𝑥↑𝑟1))) | ||
Theorem | dfrcl4 38804* | Reflexive closure of a relation as indexed union of powers of the relation. (Contributed by RP, 8-Jun-2020.) |
⊢ r* = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ {0, 1} (𝑟↑𝑟𝑛)) | ||
In order for theorems on the transitive closure of a relation to be grouped together before the concept of continuity, we really need an analogue of ↑𝑟 that works on finite ordinals or finite sets instead of natural numbers. | ||
Theorem | relexp2 38805 | A set operated on by the relation exponent to the second power is equal to the composition of the set with itself. (Contributed by RP, 1-Jun-2020.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟2) = (𝑅 ∘ 𝑅)) | ||
Theorem | relexpnul 38806 | If the domain and range of powers of a relation are disjoint then the relation raised to the sum of those exponents is empty. (Contributed by RP, 1-Jun-2020.) |
⊢ (((𝑅 ∈ 𝑉 ∧ Rel 𝑅) ∧ (𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0)) → ((dom (𝑅↑𝑟𝑁) ∩ ran (𝑅↑𝑟𝑀)) = ∅ ↔ (𝑅↑𝑟(𝑁 + 𝑀)) = ∅)) | ||
Theorem | eliunov2 38807* | Membership in the indexed union over operator values where the index varies the second input is equivalent to the existence of at least one index such that the element is a member of that operator value. Generalized from dfrtrclrec2 14181. (Contributed by RP, 1-Jun-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) ⇒ ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑋 ∈ (𝐶‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛))) | ||
Theorem | eltrclrec 38808* | Membership in the indexed union of relation exponentiation over the natural numbers is equivalent to the existence of at least one number such that the element is a member of that relationship power. (Contributed by RP, 2-Jun-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) ⇒ ⊢ (𝑅 ∈ 𝑉 → (𝑋 ∈ (𝐶‘𝑅) ↔ ∃𝑛 ∈ ℕ 𝑋 ∈ (𝑅↑𝑟𝑛))) | ||
Theorem | elrtrclrec 38809* | Membership in the indexed union of relation exponentiation over the natural numbers (including zero) is equivalent to the existence of at least one number such that the element is a member of that relationship power. (Contributed by RP, 2-Jun-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) ⇒ ⊢ (𝑅 ∈ 𝑉 → (𝑋 ∈ (𝐶‘𝑅) ↔ ∃𝑛 ∈ ℕ0 𝑋 ∈ (𝑅↑𝑟𝑛))) | ||
Theorem | briunov2 38810* | Two classes related by the indexed union over operator values where the index varies the second input is equivalent to the existence of at least one index such that the two classes are related by that operator value. (Contributed by RP, 1-Jun-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) ⇒ ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑋(𝐶‘𝑅)𝑌 ↔ ∃𝑛 ∈ 𝑁 𝑋(𝑅 ↑ 𝑛)𝑌)) | ||
Theorem | brmptiunrelexpd 38811* | If two elements are connected by an indexed union of relational powers, then they are connected via 𝑛 instances the relation, for some 𝑛. Generalization of dfrtrclrec2 14181. (Contributed by RP, 21-Jul-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) & ⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝑁 ⊆ ℕ0) ⇒ ⊢ (𝜑 → (𝐴(𝐶‘𝑅)𝐵 ↔ ∃𝑛 ∈ 𝑁 𝐴(𝑅↑𝑟𝑛)𝐵)) | ||
Theorem | fvmptiunrelexplb0d 38812* | If the indexed union ranges over the zeroth power of the relation, then a restriction of the identity relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) & ⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝑁 ∈ V) & ⊢ (𝜑 → 0 ∈ 𝑁) ⇒ ⊢ (𝜑 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (𝐶‘𝑅)) | ||
Theorem | fvmptiunrelexplb0da 38813* | If the indexed union ranges over the zeroth power of the relation, then a restriction of the identity relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) & ⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝑁 ∈ V) & ⊢ (𝜑 → Rel 𝑅) & ⊢ (𝜑 → 0 ∈ 𝑁) ⇒ ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (𝐶‘𝑅)) | ||
Theorem | fvmptiunrelexplb1d 38814* | If the indexed union ranges over the first power of the relation, then the relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) & ⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝑁 ∈ V) & ⊢ (𝜑 → 1 ∈ 𝑁) ⇒ ⊢ (𝜑 → 𝑅 ⊆ (𝐶‘𝑅)) | ||
Theorem | brfvid 38815 | If two elements are connected by a value of the identity relation, then they are connected via the argument. (Contributed by RP, 21-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → (𝐴( I ‘𝑅)𝐵 ↔ 𝐴𝑅𝐵)) | ||
Theorem | brfvidRP 38816 | If two elements are connected by a value of the identity relation, then they are connected via the argument. This is an example which uses brmptiunrelexpd 38811. (Contributed by RP, 21-Jul-2020.) (Proof modification is discouraged.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → (𝐴( I ‘𝑅)𝐵 ↔ 𝐴𝑅𝐵)) | ||
Theorem | fvilbd 38817 | A set is a subset of its image under the identity relation. (Contributed by RP, 22-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → 𝑅 ⊆ ( I ‘𝑅)) | ||
Theorem | fvilbdRP 38818 | A set is a subset of its image under the identity relation. (Contributed by RP, 22-Jul-2020.) (Proof modification is discouraged.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → 𝑅 ⊆ ( I ‘𝑅)) | ||
Theorem | brfvrcld 38819 | If two elements are connected by the reflexive closure of a relation, then they are connected via zero or one instances the relation. (Contributed by RP, 21-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → (𝐴(r*‘𝑅)𝐵 ↔ (𝐴(𝑅↑𝑟0)𝐵 ∨ 𝐴(𝑅↑𝑟1)𝐵))) | ||
Theorem | brfvrcld2 38820 | If two elements are connected by the reflexive closure of a relation, then they are equal or related by relation. (Contributed by RP, 21-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → (𝐴(r*‘𝑅)𝐵 ↔ ((𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐴 = 𝐵) ∨ 𝐴𝑅𝐵))) | ||
Theorem | fvrcllb0d 38821 | A restriction of the identity relation is a subset of the reflexive closure of a set. (Contributed by RP, 22-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (r*‘𝑅)) | ||
Theorem | fvrcllb0da 38822 | A restriction of the identity relation is a subset of the reflexive closure of a relation. (Contributed by RP, 22-Jul-2020.) |
⊢ (𝜑 → Rel 𝑅) & ⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (r*‘𝑅)) | ||
Theorem | fvrcllb1d 38823 | A set is a subset of its image under the reflexive closure. (Contributed by RP, 22-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → 𝑅 ⊆ (r*‘𝑅)) | ||
Theorem | brtrclrec 38824* | Two classes related by the indexed union of relation exponentiation over the natural numbers is equivalent to the existence of at least one number such that the two classes are related by that relationship power. (Contributed by RP, 2-Jun-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) ⇒ ⊢ (𝑅 ∈ 𝑉 → (𝑋(𝐶‘𝑅)𝑌 ↔ ∃𝑛 ∈ ℕ 𝑋(𝑅↑𝑟𝑛)𝑌)) | ||
Theorem | brrtrclrec 38825* | Two classes related by the indexed union of relation exponentiation over the natural numbers (including zero) is equivalent to the existence of at least one number such that the two classes are related by that relationship power. (Contributed by RP, 2-Jun-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) ⇒ ⊢ (𝑅 ∈ 𝑉 → (𝑋(𝐶‘𝑅)𝑌 ↔ ∃𝑛 ∈ ℕ0 𝑋(𝑅↑𝑟𝑛)𝑌)) | ||
Theorem | briunov2uz 38826* | Two classes related by the indexed union over operator values where the index varies the second input is equivalent to the existence of at least one index such that the two classes are related by that operator value. The index set 𝑁 is restricted to an upper range of integers. (Contributed by RP, 2-Jun-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) ⇒ ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 = (ℤ≥‘𝑀)) → (𝑋(𝐶‘𝑅)𝑌 ↔ ∃𝑛 ∈ 𝑁 𝑋(𝑅 ↑ 𝑛)𝑌)) | ||
Theorem | eliunov2uz 38827* | Membership in the indexed union over operator values where the index varies the second input is equivalent to the existence of at least one index such that the element is a member of that operator value. The index set 𝑁 is restricted to an upper range of integers. (Contributed by RP, 2-Jun-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) ⇒ ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 = (ℤ≥‘𝑀)) → (𝑋 ∈ (𝐶‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛))) | ||
Theorem | ov2ssiunov2 38828* | Any particular operator value is the subset of the index union over a set of operator values. Generalized from rtrclreclem1 14182 and rtrclreclem2 . (Contributed by RP, 4-Jun-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) ⇒ ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → (𝑅 ↑ 𝑀) ⊆ (𝐶‘𝑅)) | ||
Theorem | relexp0eq 38829 | The zeroth power of relationships is the same if and only if the union of their domain and ranges is the same. (Contributed by RP, 11-Jun-2020.) |
⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) → ((dom 𝐴 ∪ ran 𝐴) = (dom 𝐵 ∪ ran 𝐵) ↔ (𝐴↑𝑟0) = (𝐵↑𝑟0))) | ||
Theorem | iunrelexp0 38830* | Simplification of zeroth power of indexed union of powers of relations. (Contributed by RP, 19-Jun-2020.) |
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ⊆ ℕ0 ∧ ({0, 1} ∩ 𝑍) ≠ ∅) → (∪ 𝑥 ∈ 𝑍 (𝑅↑𝑟𝑥)↑𝑟0) = (𝑅↑𝑟0)) | ||
Theorem | relexpxpnnidm 38831 | Any positive power of a cross product of non-disjoint sets is itself. (Contributed by RP, 13-Jun-2020.) |
⊢ (𝑁 ∈ ℕ → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑁) = (𝐴 × 𝐵))) | ||
Theorem | relexpiidm 38832 | Any power of any restriction of the identity relation is itself. (Contributed by RP, 12-Jun-2020.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (( I ↾ 𝐴)↑𝑟𝑁) = ( I ↾ 𝐴)) | ||
Theorem | relexpss1d 38833 | The relational power of a subset is a subset. (Contributed by RP, 17-Jun-2020.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴↑𝑟𝑁) ⊆ (𝐵↑𝑟𝑁)) | ||
Theorem | comptiunov2i 38834* | The composition two indexed unions is sometimes a similar indexed union. (Contributed by RP, 10-Jun-2020.) |
⊢ 𝑋 = (𝑎 ∈ V ↦ ∪ 𝑖 ∈ 𝐼 (𝑎 ↑ 𝑖)) & ⊢ 𝑌 = (𝑏 ∈ V ↦ ∪ 𝑗 ∈ 𝐽 (𝑏 ↑ 𝑗)) & ⊢ 𝑍 = (𝑐 ∈ V ↦ ∪ 𝑘 ∈ 𝐾 (𝑐 ↑ 𝑘)) & ⊢ 𝐼 ∈ V & ⊢ 𝐽 ∈ V & ⊢ 𝐾 = (𝐼 ∪ 𝐽) & ⊢ ∪ 𝑘 ∈ 𝐼 (𝑑 ↑ 𝑘) ⊆ ∪ 𝑖 ∈ 𝐼 (∪ 𝑗 ∈ 𝐽 (𝑑 ↑ 𝑗) ↑ 𝑖) & ⊢ ∪ 𝑘 ∈ 𝐽 (𝑑 ↑ 𝑘) ⊆ ∪ 𝑖 ∈ 𝐼 (∪ 𝑗 ∈ 𝐽 (𝑑 ↑ 𝑗) ↑ 𝑖) & ⊢ ∪ 𝑖 ∈ 𝐼 (∪ 𝑗 ∈ 𝐽 (𝑑 ↑ 𝑗) ↑ 𝑖) ⊆ ∪ 𝑘 ∈ (𝐼 ∪ 𝐽)(𝑑 ↑ 𝑘) ⇒ ⊢ (𝑋 ∘ 𝑌) = 𝑍 | ||
Theorem | corclrcl 38835 | The reflexive closure is idempotent. (Contributed by RP, 13-Jun-2020.) |
⊢ (r* ∘ r*) = r* | ||
Theorem | iunrelexpmin1 38836* | The indexed union of relation exponentiation over the natural numbers is the minimum transitive relation that includes the relation. (Contributed by RP, 4-Jun-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ) → ∀𝑠((𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → (𝐶‘𝑅) ⊆ 𝑠)) | ||
Theorem | relexpmulnn 38837 | With exponents limited to the counting numbers, the composition of powers of a relation is the relation raised to the product of exponents. (Contributed by RP, 13-Jun-2020.) |
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ (𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → ((𝑅↑𝑟𝐽)↑𝑟𝐾) = (𝑅↑𝑟𝐼)) | ||
Theorem | relexpmulg 38838 | With ordered exponents, the composition of powers of a relation is the relation raised to the product of exponents. (Contributed by RP, 13-Jun-2020.) |
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽 ≤ 𝐾)) ∧ (𝐽 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0)) → ((𝑅↑𝑟𝐽)↑𝑟𝐾) = (𝑅↑𝑟𝐼)) | ||
Theorem | trclrelexplem 38839* | The union of relational powers to positive multiples of 𝑁 is a subset to the transitive closure raised to the power of 𝑁. (Contributed by RP, 15-Jun-2020.) |
⊢ (𝑁 ∈ ℕ → ∪ 𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟𝑁) ⊆ (∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑁)) | ||
Theorem | iunrelexpmin2 38840* | The indexed union of relation exponentiation over the natural numbers (including zero) is the minimum reflexive-transitive relation that includes the relation. (Contributed by RP, 4-Jun-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ0) → ∀𝑠((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → (𝐶‘𝑅) ⊆ 𝑠)) | ||
Theorem | relexp01min 38841 | With exponents limited to 0 and 1, the composition of powers of a relation is the relation raised to the minimum of exponents. (Contributed by RP, 12-Jun-2020.) |
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾)) ∧ (𝐽 ∈ {0, 1} ∧ 𝐾 ∈ {0, 1})) → ((𝑅↑𝑟𝐽)↑𝑟𝐾) = (𝑅↑𝑟𝐼)) | ||
Theorem | relexp1idm 38842 | Repeated raising a relation to the first power is idempotent. (Contributed by RP, 12-Jun-2020.) |
⊢ (𝑅 ∈ 𝑉 → ((𝑅↑𝑟1)↑𝑟1) = (𝑅↑𝑟1)) | ||
Theorem | relexp0idm 38843 | Repeated raising a relation to the zeroth power is idempotent. (Contributed by RP, 12-Jun-2020.) |
⊢ (𝑅 ∈ 𝑉 → ((𝑅↑𝑟0)↑𝑟0) = (𝑅↑𝑟0)) | ||
Theorem | relexp0a 38844 | Absorbtion law for zeroth power of a relation. (Contributed by RP, 17-Jun-2020.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ((𝐴↑𝑟𝑁)↑𝑟0) ⊆ (𝐴↑𝑟0)) | ||
Theorem | relexpxpmin 38845 | The composition of powers of a cross-product of non-disjoint sets is the cross product raised to the minimum exponent. (Contributed by RP, 13-Jun-2020.) |
⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) ∧ (𝐼 = if(𝐽 < 𝐾, 𝐽, 𝐾) ∧ 𝐽 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0)) → (((𝐴 × 𝐵)↑𝑟𝐽)↑𝑟𝐾) = ((𝐴 × 𝐵)↑𝑟𝐼)) | ||
Theorem | relexpaddss 38846 | The composition of two powers of a relation is a subset of the relation raised to the sum of those exponents. This is equality where 𝑅 is a relation as shown by relexpaddd 14178 or when the sum of the powers isn't 1 as shown by relexpaddg 14177. (Contributed by RP, 3-Jun-2020.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉) → ((𝑅↑𝑟𝑁) ∘ (𝑅↑𝑟𝑀)) ⊆ (𝑅↑𝑟(𝑁 + 𝑀))) | ||
Theorem | iunrelexpuztr 38847* | The indexed union of relation exponentiation over upper integers is a transive relation. Generalized from rtrclreclem3 14184. (Contributed by RP, 4-Jun-2020.) |
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℕ0) → ((𝐶‘𝑅) ∘ (𝐶‘𝑅)) ⊆ (𝐶‘𝑅)) | ||
Theorem | dftrcl3 38848* | Transitive closure of a relation, expressed as indexed union of powers of relations. (Contributed by RP, 5-Jun-2020.) |
⊢ t+ = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) | ||
Theorem | brfvtrcld 38849* | If two elements are connected by the transitive closure of a relation, then they are connected via 𝑛 instances the relation, for some counting number 𝑛. (Contributed by RP, 22-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ 𝐴(𝑅↑𝑟𝑛)𝐵)) | ||
Theorem | fvtrcllb1d 38850 | A set is a subset of its image under the transitive closure. (Contributed by RP, 22-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → 𝑅 ⊆ (t+‘𝑅)) | ||
Theorem | trclfvcom 38851 | The transitive closure of a relation commutes with the relation. (Contributed by RP, 18-Jul-2020.) |
⊢ (𝑅 ∈ 𝑉 → ((t+‘𝑅) ∘ 𝑅) = (𝑅 ∘ (t+‘𝑅))) | ||
Theorem | cnvtrclfv 38852 | The converse of the transitive closure is equal to the transitive closure of the converse relation. (Contributed by RP, 19-Jul-2020.) |
⊢ (𝑅 ∈ 𝑉 → ◡(t+‘𝑅) = (t+‘◡𝑅)) | ||
Theorem | cotrcltrcl 38853 | The transitive closure is idempotent. (Contributed by RP, 16-Jun-2020.) |
⊢ (t+ ∘ t+) = t+ | ||
Theorem | trclimalb2 38854 | Lower bound for image under a transitive closure. (Contributed by RP, 1-Jul-2020.) |
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 “ (𝐴 ∪ 𝐵)) ⊆ 𝐵) → ((t+‘𝑅) “ 𝐴) ⊆ 𝐵) | ||
Theorem | brtrclfv2 38855* | Two ways to indicate two elements are related by the transitive closure of a relation. (Contributed by RP, 1-Jul-2020.) |
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑋(t+‘𝑅)𝑌 ↔ 𝑌 ∈ ∩ {𝑓 ∣ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓})) | ||
Theorem | trclfvdecomr 38856 | The transitive closure of a relation may be decomposed into a union of the relation and the composition of the relation with its transitive closure. (Contributed by RP, 18-Jul-2020.) |
⊢ (𝑅 ∈ 𝑉 → (t+‘𝑅) = (𝑅 ∪ ((t+‘𝑅) ∘ 𝑅))) | ||
Theorem | trclfvdecoml 38857 | The transitive closure of a relation may be decomposed into a union of the relation and the composition of the relation with its transitive closure. (Contributed by RP, 18-Jul-2020.) |
⊢ (𝑅 ∈ 𝑉 → (t+‘𝑅) = (𝑅 ∪ (𝑅 ∘ (t+‘𝑅)))) | ||
Theorem | dmtrclfvRP 38858 | The domain of the transitive closure is equal to the domain of the relation. (Contributed by RP, 18-Jul-2020.) (Proof modification is discouraged.) |
⊢ (𝑅 ∈ 𝑉 → dom (t+‘𝑅) = dom 𝑅) | ||
Theorem | rntrclfvRP 38859 | The range of the transitive closure is equal to the range of the relation. (Contributed by RP, 19-Jul-2020.) (Proof modification is discouraged.) |
⊢ (𝑅 ∈ 𝑉 → ran (t+‘𝑅) = ran 𝑅) | ||
Theorem | rntrclfv 38860 | The range of the transitive closure is equal to the range of the relation. (Contributed by RP, 18-Jul-2020.) (Proof modification is discouraged.) |
⊢ (𝑅 ∈ 𝑉 → ran (t+‘𝑅) = ran 𝑅) | ||
Theorem | dfrtrcl3 38861* | Reflexive-transitive closure of a relation, expressed as indexed union of powers of relations. Generalized from dfrtrcl2 14186. (Contributed by RP, 5-Jun-2020.) |
⊢ t* = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) | ||
Theorem | brfvrtrcld 38862* | If two elements are connected by the reflexive-transitive closure of a relation, then they are connected via 𝑛 instances the relation, for some natural number 𝑛. Similar of dfrtrclrec2 14181. (Contributed by RP, 22-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → (𝐴(t*‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵)) | ||
Theorem | fvrtrcllb0d 38863 | A restriction of the identity relation is a subset of the reflexive-transitive closure of a set. (Contributed by RP, 22-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*‘𝑅)) | ||
Theorem | fvrtrcllb0da 38864 | A restriction of the identity relation is a subset of the reflexive-transitive closure of a relation. (Contributed by RP, 22-Jul-2020.) |
⊢ (𝜑 → Rel 𝑅) & ⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (t*‘𝑅)) | ||
Theorem | fvrtrcllb1d 38865 | A set is a subset of its image under the reflexive-transitive closure. (Contributed by RP, 22-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → 𝑅 ⊆ (t*‘𝑅)) | ||
Theorem | dfrtrcl4 38866 | Reflexive-transitive closure of a relation, expressed as the union of the zeroth power and the transitive closure. (Contributed by RP, 5-Jun-2020.) |
⊢ t* = (𝑟 ∈ V ↦ ((𝑟↑𝑟0) ∪ (t+‘𝑟))) | ||
Theorem | corcltrcl 38867 | The composition of the reflexive and transitive closures is the reflexive-transitive closure. (Contributed by RP, 17-Jun-2020.) |
⊢ (r* ∘ t+) = t* | ||
Theorem | cortrcltrcl 38868 | Composition with the reflexive-transitive closure absorbs the transitive closure. (Contributed by RP, 13-Jun-2020.) |
⊢ (t* ∘ t+) = t* | ||
Theorem | corclrtrcl 38869 | Composition with the reflexive-transitive closure absorbs the reflexive closure. (Contributed by RP, 13-Jun-2020.) |
⊢ (r* ∘ t*) = t* | ||
Theorem | cotrclrcl 38870 | The composition of the reflexive and transitive closures is the reflexive-transitive closure. (Contributed by RP, 21-Jun-2020.) |
⊢ (t+ ∘ r*) = t* | ||
Theorem | cortrclrcl 38871 | Composition with the reflexive-transitive closure absorbs the reflexive closure. (Contributed by RP, 13-Jun-2020.) |
⊢ (t* ∘ r*) = t* | ||
Theorem | cotrclrtrcl 38872 | Composition with the reflexive-transitive closure absorbs the transitive closure. (Contributed by RP, 13-Jun-2020.) |
⊢ (t+ ∘ t*) = t* | ||
Theorem | cortrclrtrcl 38873 | The reflexive-transitive closure is idempotent. (Contributed by RP, 13-Jun-2020.) |
⊢ (t* ∘ t*) = t* | ||
Theorems inspired by Begriffsschrift without restricting form and content to closely parallel those in [Frege1879]. | ||
Theorem | frege77d 38874 | If the images of both {𝐴} and 𝑈 are subsets of 𝑈 and 𝐵 follows 𝐴 in the transitive closure of 𝑅, then 𝐵 is an element of 𝑈. Similar to Proposition 77 of [Frege1879] p. 62. Compare with frege77 39069. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) & ⊢ (𝜑 → (𝑅 “ 𝑈) ⊆ 𝑈) & ⊢ (𝜑 → (𝑅 “ {𝐴}) ⊆ 𝑈) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝑈) | ||
Theorem | frege81d 38875 | If the image of 𝑈 is a subset 𝑈, 𝐴 is an element of 𝑈 and 𝐵 follows 𝐴 in the transitive closure of 𝑅, then 𝐵 is an element of 𝑈. Similar to Proposition 81 of [Frege1879] p. 63. Compare with frege81 39073. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) & ⊢ (𝜑 → (𝑅 “ 𝑈) ⊆ 𝑈) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝑈) | ||
Theorem | frege83d 38876 | If the image of the union of 𝑈 and 𝑉 is a subset of the union of 𝑈 and 𝑉, 𝐴 is an element of 𝑈 and 𝐵 follows 𝐴 in the transitive closure of 𝑅, then 𝐵 is an element of the union of 𝑈 and 𝑉. Similar to Proposition 83 of [Frege1879] p. 65. Compare with frege83 39075. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) & ⊢ (𝜑 → (𝑅 “ (𝑈 ∪ 𝑉)) ⊆ (𝑈 ∪ 𝑉)) ⇒ ⊢ (𝜑 → 𝐵 ∈ (𝑈 ∪ 𝑉)) | ||
Theorem | frege96d 38877 | If 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 follows 𝐶 in 𝑅, then 𝐵 follows 𝐴 in the transitive closure of 𝑅. Similar to Proposition 96 of [Frege1879] p. 71. Compare with frege96 39088. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐶 ∈ V) & ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐶) & ⊢ (𝜑 → 𝐶𝑅𝐵) ⇒ ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) | ||
Theorem | frege87d 38878 | If the images of both {𝐴} and 𝑈 are subsets of 𝑈 and 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 follows 𝐶 in 𝑅, then 𝐵 is an element of 𝑈. Similar to Proposition 87 of [Frege1879] p. 66. Compare with frege87 39079. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐶 ∈ V) & ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐶) & ⊢ (𝜑 → 𝐶𝑅𝐵) & ⊢ (𝜑 → (𝑅 “ {𝐴}) ⊆ 𝑈) & ⊢ (𝜑 → (𝑅 “ 𝑈) ⊆ 𝑈) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝑈) | ||
Theorem | frege91d 38879 | If 𝐵 follows 𝐴 in 𝑅 then 𝐵 follows 𝐴 in the transitive closure of 𝑅. Similar to Proposition 91 of [Frege1879] p. 68. Comparw with frege91 39083. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴𝑅𝐵) ⇒ ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) | ||
Theorem | frege97d 38880 | If 𝐴 contains all elements after those in 𝑈 in the transitive closure of 𝑅, then the image under 𝑅 of 𝐴 is a subclass of 𝐴. Similar to Proposition 97 of [Frege1879] p. 71. Compare with frege97 39089. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴 = ((t+‘𝑅) “ 𝑈)) ⇒ ⊢ (𝜑 → (𝑅 “ 𝐴) ⊆ 𝐴) | ||
Theorem | frege98d 38881 | If 𝐶 follows 𝐴 and 𝐵 follows 𝐶 in the transitive closure of 𝑅, then 𝐵 follows 𝐴 in the transitive closure of 𝑅. Similar to Proposition 98 of [Frege1879] p. 71. Compare with frege98 39090. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐶 ∈ V) & ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐶) & ⊢ (𝜑 → 𝐶(t+‘𝑅)𝐵) ⇒ ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) | ||
Theorem | frege102d 38882 | If either 𝐴 and 𝐶 are the same or 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 is the successor to 𝐶, then 𝐵 follows 𝐴 in the transitive closure of 𝑅. Similar to Proposition 102 of [Frege1879] p. 72. Compare with frege102 39094. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐶 ∈ V) & ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐶 ∨ 𝐴 = 𝐶)) & ⊢ (𝜑 → 𝐶𝑅𝐵) ⇒ ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) | ||
Theorem | frege106d 38883 | If 𝐵 follows 𝐴 in 𝑅, then either 𝐴 and 𝐵 are the same or 𝐵 follows 𝐴 in 𝑅. Similar to Proposition 106 of [Frege1879] p. 73. Compare with frege106 39098. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝐴𝑅𝐵) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐵 ∨ 𝐴 = 𝐵)) | ||
Theorem | frege108d 38884 | If either 𝐴 and 𝐶 are the same or 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 is the successor to 𝐶, then either 𝐴 and 𝐵 are the same or 𝐵 follows 𝐴 in the transitive closure of 𝑅. Similar to Proposition 108 of [Frege1879] p. 74. Compare with frege108 39100. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐶 ∈ V) & ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐶 ∨ 𝐴 = 𝐶)) & ⊢ (𝜑 → 𝐶𝑅𝐵) ⇒ ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐵 ∨ 𝐴 = 𝐵)) | ||
Theorem | frege109d 38885 | If 𝐴 contains all elements of 𝑈 and all elements after those in 𝑈 in the transitive closure of 𝑅, then the image under 𝑅 of 𝐴 is a subclass of 𝐴. Similar to Proposition 109 of [Frege1879] p. 74. Compare with frege109 39101. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴 = (𝑈 ∪ ((t+‘𝑅) “ 𝑈))) ⇒ ⊢ (𝜑 → (𝑅 “ 𝐴) ⊆ 𝐴) | ||
Theorem | frege114d 38886 | If either 𝑅 relates 𝐴 and 𝐵 or 𝐴 and 𝐵 are the same, then either 𝐴 and 𝐵 are the same, 𝑅 relates 𝐴 and 𝐵, 𝑅 relates 𝐵 and 𝐴. Similar to Proposition 114 of [Frege1879] p. 76. Compare with frege114 39106. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → (𝐴𝑅𝐵 ∨ 𝐴 = 𝐵)) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵𝑅𝐴)) | ||
Theorem | frege111d 38887 | If either 𝐴 and 𝐶 are the same or 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 is the successor to 𝐶, then either 𝐴 and 𝐵 are the same or 𝐴 follows 𝐵 or 𝐵 and 𝐴 in the transitive closure of 𝑅. Similar to Proposition 111 of [Frege1879] p. 75. Compare with frege111 39103. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐶 ∈ V) & ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐶 ∨ 𝐴 = 𝐶)) & ⊢ (𝜑 → 𝐶𝑅𝐵) ⇒ ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵(t+‘𝑅)𝐴)) | ||
Theorem | frege122d 38888 | If 𝐹 is a function, 𝐴 is the successor of 𝑋, and 𝐵 is the successor of 𝑋, then 𝐴 and 𝐵 are the same (or 𝐵 follows 𝐴 in the transitive closure of 𝐹). Similar to Proposition 122 of [Frege1879] p. 79. Compare with frege122 39114. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝐴 = (𝐹‘𝑋)) & ⊢ (𝜑 → 𝐵 = (𝐹‘𝑋)) ⇒ ⊢ (𝜑 → (𝐴(t+‘𝐹)𝐵 ∨ 𝐴 = 𝐵)) | ||
Theorem | frege124d 38889 | If 𝐹 is a function, 𝐴 is the successor of 𝑋, and 𝐵 follows 𝑋 in the transitive closure of 𝐹, then 𝐴 and 𝐵 are the same or 𝐵 follows 𝐴 in the transitive closure of 𝐹. Similar to Proposition 124 of [Frege1879] p. 80. Compare with frege124 39116. (Contributed by RP, 16-Jul-2020.) |
⊢ (𝜑 → 𝐹 ∈ V) & ⊢ (𝜑 → 𝑋 ∈ dom 𝐹) & ⊢ (𝜑 → 𝐴 = (𝐹‘𝑋)) & ⊢ (𝜑 → 𝑋(t+‘𝐹)𝐵) & ⊢ (𝜑 → Fun 𝐹) ⇒ ⊢ (𝜑 → (𝐴(t+‘𝐹)𝐵 ∨ 𝐴 = 𝐵)) | ||
Theorem | frege126d 38890 | If 𝐹 is a function, 𝐴 is the successor of 𝑋, and 𝐵 follows 𝑋 in the transitive closure of 𝐹, then (for distinct 𝐴 and 𝐵) either 𝐴 follows 𝐵 or 𝐵 follows 𝐴 in the transitive closure of 𝐹. Similar to Proposition 126 of [Frege1879] p. 81. Compare with frege126 39118. (Contributed by RP, 16-Jul-2020.) |
⊢ (𝜑 → 𝐹 ∈ V) & ⊢ (𝜑 → 𝑋 ∈ dom 𝐹) & ⊢ (𝜑 → 𝐴 = (𝐹‘𝑋)) & ⊢ (𝜑 → 𝑋(t+‘𝐹)𝐵) & ⊢ (𝜑 → Fun 𝐹) ⇒ ⊢ (𝜑 → (𝐴(t+‘𝐹)𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵(t+‘𝐹)𝐴)) | ||
Theorem | frege129d 38891 | If 𝐹 is a function and (for distinct 𝐴 and 𝐵) either 𝐴 follows 𝐵 or 𝐵 follows 𝐴 in the transitive closure of 𝐹, the successor of 𝐴 is either 𝐵 or it follows 𝐵 or it comes before 𝐵 in the transitive closure of 𝐹. Similar to Proposition 129 of [Frege1879] p. 83. Comparw with frege129 39121. (Contributed by RP, 16-Jul-2020.) |
⊢ (𝜑 → 𝐹 ∈ V) & ⊢ (𝜑 → 𝐴 ∈ dom 𝐹) & ⊢ (𝜑 → 𝐶 = (𝐹‘𝐴)) & ⊢ (𝜑 → (𝐴(t+‘𝐹)𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵(t+‘𝐹)𝐴)) & ⊢ (𝜑 → Fun 𝐹) ⇒ ⊢ (𝜑 → (𝐵(t+‘𝐹)𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶(t+‘𝐹)𝐵)) | ||
Theorem | frege131d 38892 | If 𝐹 is a function and 𝐴 contains all elements of 𝑈 and all elements before or after those elements of 𝑈 in the transitive closure of 𝐹, then the image under 𝐹 of 𝐴 is a subclass of 𝐴. Similar to Proposition 131 of [Frege1879] p. 85. Compare with frege131 39123. (Contributed by RP, 17-Jul-2020.) |
⊢ (𝜑 → 𝐹 ∈ V) & ⊢ (𝜑 → 𝐴 = (𝑈 ∪ ((◡(t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))) & ⊢ (𝜑 → Fun 𝐹) ⇒ ⊢ (𝜑 → (𝐹 “ 𝐴) ⊆ 𝐴) | ||
Theorem | frege133d 38893 | If 𝐹 is a function and 𝐴 and 𝐵 both follow 𝑋 in the transitive closure of 𝐹, then (for distinct 𝐴 and 𝐵) either 𝐴 follows 𝐵 or 𝐵 follows 𝐴 in the transitive closure of 𝐹 (or both if it loops). Similar to Proposition 133 of [Frege1879] p. 86. Compare with frege133 39125. (Contributed by RP, 18-Jul-2020.) |
⊢ (𝜑 → 𝐹 ∈ V) & ⊢ (𝜑 → 𝑋(t+‘𝐹)𝐴) & ⊢ (𝜑 → 𝑋(t+‘𝐹)𝐵) & ⊢ (𝜑 → Fun 𝐹) ⇒ ⊢ (𝜑 → (𝐴(t+‘𝐹)𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵(t+‘𝐹)𝐴)) | ||
In 1879, Frege introduced notation for documenting formal reasoning about propositions (and classes) which covered elements of propositional logic, predicate calculus and reasoning about relations. However, due to the pitfalls of naive set theory, adapting this work for inclusion in set.mm required dividing statements about propositions from those about classes and identifying when a restriction to sets is required. For an overview comparing the details of Frege's two-dimensional notation and that used in set.mm, see mmfrege.html. See ru 3661 for discussion of an example of a class that is not a set. Numbered propositions from [Frege1879]. ax-frege1 38919, ax-frege2 38920, ax-frege8 38938, ax-frege28 38959, ax-frege31 38963, ax-frege41 38974, frege52 (see ax-frege52a 38986, frege52b 39018, and ax-frege52c 39017 for translations), frege54 (see ax-frege54a 38991, frege54b 39022 and ax-frege54c 39021 for translations) and frege58 (see ax-frege58a 39004, ax-frege58b 39030 and frege58c 39050 for translations) are considered "core" or axioms. However, at least ax-frege8 38938 can be derived from ax-frege1 38919 and ax-frege2 38920, see axfrege8 38936. Frege introduced implication, negation and the universal quantifier as primitives and did not in the numbered propositions use other logical connectives other than equivalence introduced in ax-frege52a 38986, frege52b 39018, and ax-frege52c 39017. In dffrege69 39061, Frege introduced 𝑅 hereditary 𝐴 to say that relation 𝑅, when restricted to operate on elements of class 𝐴, will only have elements of class 𝐴 in its domain; see df-he 38902 for a definition in terms of image and subset. In dffrege76 39068, Frege introduced notation for the concept of two sets related by the transitive closure of a relation, for which we write 𝑋(t+‘𝑅)𝑌, which requires 𝑅 to also be a set. In dffrege99 39091, Frege introduced notation for the concept of two sets either identical or related by the transitive closure of a relation, for which we write 𝑋((t+‘𝑅) ∪ I )𝑌, which is a superclass of sets related by the reflexive-transitive relation 𝑋(t*‘𝑅)𝑌. Finally, in dffrege115 39107, Frege introduced notation for the concept of a relation having the property elements in its domain pair up with only one element each in its range, for which we write Fun ◡◡𝑅 (to ignore any non-relational content of the class 𝑅). Frege did this without the expressing concept of a relation (or its transitive closure) as a class, and needed to invent conventions for discussing indeterminate propositions with two slots free and how to recognize which of the slots was domain and which was range. See mmfrege.html for details. English translations for specific propositions lifted in part from a translation by Stefan Bauer-Mengelberg as reprinted in From Frege to Goedel: A Source Book in Mathematical Logic, 1879-1931. An attempt to align these propositions in the larger set.mm database has also been made. See frege77d 38874 for an example. | ||
Section 2 introduces the turnstile ⊢ which turns an idea which may be true 𝜑 into an assertion that it does hold true ⊢ 𝜑. Section 5 introduces implication, (𝜑 → 𝜓). Section 6 introduces the single rule of interference relied upon, modus ponens ax-mp 5. Section 7 introduces negation and with in synonyms for or (¬ 𝜑 → 𝜓), and ¬ (𝜑 → ¬ 𝜓), and two for exclusive-or corresponding to df-or 879, df-an 387, dfxor4 38894, dfxor5 38895. Section 8 introduces the problematic notation for identity of conceptual content which must be separated into cases for biimplication (𝜑 ↔ 𝜓) or class equality 𝐴 = 𝐵 in this adaptation. Section 10 introduces "truth functions" for one or two variables in equally troubling notation, as the arguments may be understood to be logical predicates or collections. Here f(𝜑) is interpreted to mean if-(𝜑, 𝜓, 𝜒) where the content of the "function" is specified by the latter two argments or logical equivalent, while g(𝐴) is read as 𝐴 ∈ 𝐺 and h(𝐴, 𝐵) as 𝐴𝐻𝐵. This necessarily introduces a need for set theory as both 𝐴 ∈ 𝐺 and 𝐴𝐻𝐵 cannot hold unless 𝐴 is a set. (Also 𝐵.) Section 11 introduces notation for generality, but there is no standard notation for generality when the variable is a proposition because it was realized after Frege that the universe of all possible propositions includes paradoxical constructions leading to the failure of naive set theory. So adopting f(𝜑) as if-(𝜑, 𝜓, 𝜒) would result in the translation of ∀𝜑 f (𝜑) as (𝜓 ∧ 𝜒). For collections, we must generalize over set variables or run into the same problems; this leads to ∀𝐴 g(𝐴) being translated as ∀𝑎𝑎 ∈ 𝐺 and so forth. Under this interpreation the text of section 11 gives us sp 2224 (or simpl 476 and simpr 479 and anifp 1097 in the propositional case) and statements similar to cbvalivw 2111, ax-gen 1894, alrimiv 2026, and alrimdv 2028. These last four introduce a generality and have no useful definition in terms of propositional variables. Section 12 introduces some combinations of primitive symbols and their human language counterparts. Using class notation, these can also be expressed without dummy variables. All are A, ∀𝑥𝑥 ∈ 𝐴, ¬ ∃𝑥¬ 𝑥 ∈ 𝐴 alex 1924, 𝐴 = V eqv 3420; Some are not B, ¬ ∀𝑥𝑥 ∈ 𝐵, ∃𝑥¬ 𝑥 ∈ 𝐵 exnal 1925, 𝐵 ⊊ V pssv 4242, 𝐵 ≠ V nev 38898; There are no C, ∀𝑥¬ 𝑥 ∈ 𝐶, ¬ ∃𝑥𝑥 ∈ 𝐶 alnex 1880, 𝐶 = ∅ eq0 4160; There exist D, ¬ ∀𝑥¬ 𝑥 ∈ 𝐷, ∃𝑥𝑥 ∈ 𝐷 df-ex 1879, ∅ ⊊ 𝐷 0pss 4240, 𝐷 ≠ ∅ n0 4162. Notation for relations between expressions also can be written in various ways. All E are P, ∀𝑥(𝑥 ∈ 𝐸 → 𝑥 ∈ 𝑃), ¬ ∃𝑥(𝑥 ∈ 𝐸 ∧ ¬ 𝑥 ∈ 𝑃) dfss6 3817, 𝐸 = (𝐸 ∩ 𝑃) df-ss 3812, 𝐸 ⊆ 𝑃 dfss2 3815; No F are P, ∀𝑥(𝑥 ∈ 𝐹 → ¬ 𝑥 ∈ 𝑃), ¬ ∃𝑥(𝑥 ∈ 𝐹 ∧ 𝑥 ∈ 𝑃) alinexa 1943, (𝐹 ∩ 𝑃) = ∅ disj1 4245; Some G are not P, ¬ ∀𝑥(𝑥 ∈ 𝐺 → 𝑥 ∈ 𝑃), ∃𝑥(𝑥 ∈ 𝐺 ∧ ¬ 𝑥 ∈ 𝑃) exanali 1959, (𝐺 ∩ 𝑃) ⊊ 𝐺 nssinpss 4088, ¬ 𝐺 ⊆ 𝑃 nss 3888; Some H are P, ¬ ∀𝑥(𝑥 ∈ 𝐻 → ¬ 𝑥 ∈ 𝑃), ∃𝑥(𝑥 ∈ 𝐻 ∧ 𝑥 ∈ 𝑃) bj-exnalimn 33134, ∅ ⊊ (𝐻 ∩ 𝑃) 0pssin 38899, (𝐻 ∩ 𝑃) ≠ ∅ ndisj 4177. | ||
Theorem | dfxor4 38894 | Express exclusive-or in terms of implication and negation. Statement in [Frege1879] p. 12. (Contributed by RP, 14-Apr-2020.) |
⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ ((¬ 𝜑 → 𝜓) → ¬ (𝜑 → ¬ 𝜓))) | ||
Theorem | dfxor5 38895 | Express exclusive-or in terms of implication and negation. Statement in [Frege1879] p. 12. (Contributed by RP, 14-Apr-2020.) |
⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ ((𝜑 → ¬ 𝜓) → ¬ (¬ 𝜑 → 𝜓))) | ||
Theorem | df3or2 38896 | Express triple-or in terms of implication and negation. Statement in [Frege1879] p. 11. (Contributed by RP, 25-Jul-2020.) |
⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (¬ 𝜑 → (¬ 𝜓 → 𝜒))) | ||
Theorem | df3an2 38897 | Express triple-and in terms of implication and negation. Statement in [Frege1879] p. 12. (Contributed by RP, 25-Jul-2020.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ¬ (𝜑 → (𝜓 → ¬ 𝜒))) | ||
Theorem | nev 38898* | Express that not every set is in a class. (Contributed by RP, 16-Apr-2020.) |
⊢ (𝐴 ≠ V ↔ ¬ ∀𝑥 𝑥 ∈ 𝐴) | ||
Theorem | 0pssin 38899* | Express that an intersection is not empty. (Contributed by RP, 16-Apr-2020.) |
⊢ (∅ ⊊ (𝐴 ∩ 𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | ||
The statement 𝑅 hereditary 𝐴 means relation 𝑅 is hereditary (in the sense of Frege) in the class 𝐴 or (𝑅 “ 𝐴) ⊆ 𝐴. The former is only a slight reduction in the number of symbols, but this reduces the number of floating hypotheses needed to be checked. As Frege was not using the language of classes or sets, this naturally differs from the set-theoretic notion that a set is hereditary in a property: that all of its elements have a property and all of their elements have the property and so-on. | ||
Theorem | rp-imass 38900 | If the 𝑅-image of a class 𝐴 is a subclass of 𝐵, then the restriction of 𝑅 to 𝐴 is a subset of the Cartesian product of 𝐴 and 𝐵. (Contributed by Richard Penner, 24-Dec-2019.) |
⊢ ((𝑅 “ 𝐴) ⊆ 𝐵 ↔ (𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |