![]() |
Metamath
Proof Explorer Theorem List (p. 389 of 479) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30166) |
![]() (30167-31689) |
![]() (31690-47842) |
Type | Label | Description |
---|---|---|
Statement | ||
Definition | df-psubclN 38801* | Define set of all closed projective subspaces, which are those sets of atoms that equal their double polarity. Based on definition in [Holland95] p. 223. (Contributed by NM, 23-Jan-2012.) |
β’ PSubCl = (π β V β¦ {π β£ (π β (Atomsβπ) β§ ((β₯πβπ)β((β₯πβπ)βπ )) = π )}) | ||
Theorem | psubclsetN 38802* | The set of closed projective subspaces in a Hilbert lattice. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ β₯ = (β₯πβπΎ) & β’ πΆ = (PSubClβπΎ) β β’ (πΎ β π΅ β πΆ = {π β£ (π β π΄ β§ ( β₯ β( β₯ βπ )) = π )}) | ||
Theorem | ispsubclN 38803 | The predicate "is a closed projective subspace". (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ β₯ = (β₯πβπΎ) & β’ πΆ = (PSubClβπΎ) β β’ (πΎ β π· β (π β πΆ β (π β π΄ β§ ( β₯ β( β₯ βπ)) = π))) | ||
Theorem | psubcliN 38804 | Property of a closed projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ β₯ = (β₯πβπΎ) & β’ πΆ = (PSubClβπΎ) β β’ ((πΎ β π· β§ π β πΆ) β (π β π΄ β§ ( β₯ β( β₯ βπ)) = π)) | ||
Theorem | psubcli2N 38805 | Property of a closed projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
β’ β₯ = (β₯πβπΎ) & β’ πΆ = (PSubClβπΎ) β β’ ((πΎ β π· β§ π β πΆ) β ( β₯ β( β₯ βπ)) = π) | ||
Theorem | psubclsubN 38806 | A closed projective subspace is a projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
β’ π = (PSubSpβπΎ) & β’ πΆ = (PSubClβπΎ) β β’ ((πΎ β HL β§ π β πΆ) β π β π) | ||
Theorem | psubclssatN 38807 | A closed projective subspace is a set of atoms. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ πΆ = (PSubClβπΎ) β β’ ((πΎ β π· β§ π β πΆ) β π β π΄) | ||
Theorem | pmapidclN 38808 | Projective map of the LUB of a closed subspace. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.) |
β’ π = (lubβπΎ) & β’ π = (pmapβπΎ) & β’ πΆ = (PSubClβπΎ) β β’ ((πΎ β HL β§ π β πΆ) β (πβ(πβπ)) = π) | ||
Theorem | 0psubclN 38809 | The empty set is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
β’ πΆ = (PSubClβπΎ) β β’ (πΎ β HL β β β πΆ) | ||
Theorem | 1psubclN 38810 | The set of all atoms is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ πΆ = (PSubClβπΎ) β β’ (πΎ β HL β π΄ β πΆ) | ||
Theorem | atpsubclN 38811 | A point (singleton of an atom) is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ πΆ = (PSubClβπΎ) β β’ ((πΎ β HL β§ π β π΄) β {π} β πΆ) | ||
Theorem | pmapsubclN 38812 | A projective map value is a closed projective subspace. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ π = (pmapβπΎ) & β’ πΆ = (PSubClβπΎ) β β’ ((πΎ β HL β§ π β π΅) β (πβπ) β πΆ) | ||
Theorem | ispsubcl2N 38813* | Alternate predicate for "is a closed projective subspace". Remark in [Holland95] p. 223. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ π = (pmapβπΎ) & β’ πΆ = (PSubClβπΎ) β β’ (πΎ β HL β (π β πΆ β βπ¦ β π΅ π = (πβπ¦))) | ||
Theorem | psubclinN 38814 | The intersection of two closed subspaces is closed. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.) |
β’ πΆ = (PSubClβπΎ) β β’ ((πΎ β HL β§ π β πΆ β§ π β πΆ) β (π β© π) β πΆ) | ||
Theorem | paddatclN 38815 | The projective sum of a closed subspace and an atom is a closed projective subspace. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ + = (+πβπΎ) & β’ πΆ = (PSubClβπΎ) β β’ ((πΎ β HL β§ π β πΆ β§ π β π΄) β (π + {π}) β πΆ) | ||
Theorem | pclfinclN 38816 | The projective subspace closure of a finite set of atoms is a closed subspace. Compare the (non-closed) subspace version pclfinN 38766 and also pclcmpatN 38767. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ π = (PClβπΎ) & β’ π = (PSubClβπΎ) β β’ ((πΎ β HL β§ π β π΄ β§ π β Fin) β (πβπ) β π) | ||
Theorem | linepsubclN 38817 | A line is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
β’ π = (LinesβπΎ) & β’ πΆ = (PSubClβπΎ) β β’ ((πΎ β HL β§ π β π) β π β πΆ) | ||
Theorem | polsubclN 38818 | A polarity is a closed projective subspace. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ β₯ = (β₯πβπΎ) & β’ πΆ = (PSubClβπΎ) β β’ ((πΎ β HL β§ π β π΄) β ( β₯ βπ) β πΆ) | ||
Theorem | poml4N 38819 | Orthomodular law for projective lattices. Lemma 3.3(1) in [Holland95] p. 215. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ β₯ = (β₯πβπΎ) β β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β ((π β π β§ ( β₯ β( β₯ βπ)) = π) β (( β₯ β(( β₯ βπ) β© π)) β© π) = ( β₯ β( β₯ βπ)))) | ||
Theorem | poml5N 38820 | Orthomodular law for projective lattices. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ β₯ = (β₯πβπΎ) β β’ ((πΎ β HL β§ π β π΄ β§ π β ( β₯ βπ)) β (( β₯ β(( β₯ βπ) β© ( β₯ βπ))) β© ( β₯ βπ)) = ( β₯ β( β₯ βπ))) | ||
Theorem | poml6N 38821 | Orthomodular law for projective lattices. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.) |
β’ πΆ = (PSubClβπΎ) & β’ β₯ = (β₯πβπΎ) β β’ (((πΎ β HL β§ π β πΆ β§ π β πΆ) β§ π β π) β (( β₯ β(( β₯ βπ) β© π)) β© π) = π) | ||
Theorem | osumcllem1N 38822 | Lemma for osumclN 38833. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ + = (+πβπΎ) & β’ β₯ = (β₯πβπΎ) & β’ πΆ = (PSubClβπΎ) & β’ π = (π + {π}) & β’ π = ( β₯ β( β₯ β(π + π))) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ π β π) β (π β© π) = π) | ||
Theorem | osumcllem2N 38823 | Lemma for osumclN 38833. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ + = (+πβπΎ) & β’ β₯ = (β₯πβπΎ) & β’ πΆ = (PSubClβπΎ) & β’ π = (π + {π}) & β’ π = ( β₯ β( β₯ β(π + π))) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ π β π) β π β (π β© π)) | ||
Theorem | osumcllem3N 38824 | Lemma for osumclN 38833. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ + = (+πβπΎ) & β’ β₯ = (β₯πβπΎ) & β’ πΆ = (PSubClβπΎ) & β’ π = (π + {π}) & β’ π = ( β₯ β( β₯ β(π + π))) β β’ ((πΎ β HL β§ π β πΆ β§ π β ( β₯ βπ)) β (( β₯ βπ) β© π) = π) | ||
Theorem | osumcllem4N 38825 | Lemma for osumclN 38833. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ + = (+πβπΎ) & β’ β₯ = (β₯πβπΎ) & β’ πΆ = (PSubClβπΎ) & β’ π = (π + {π}) & β’ π = ( β₯ β( β₯ β(π + π))) β β’ (((πΎ β HL β§ π β π΄ β§ π β ( β₯ βπ)) β§ (π β π β§ π β π)) β π β π) | ||
Theorem | osumcllem5N 38826 | Lemma for osumclN 38833. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ + = (+πβπΎ) & β’ β₯ = (β₯πβπΎ) & β’ πΆ = (PSubClβπΎ) & β’ π = (π + {π}) & β’ π = ( β₯ β( β₯ β(π + π))) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ π β π΄ β§ (π β π β§ π β π β§ π β€ (π β¨ π))) β π β (π + π)) | ||
Theorem | osumcllem6N 38827 | Lemma for osumclN 38833. Use atom exchange hlatexch1 38261 to swap π and π. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ + = (+πβπΎ) & β’ β₯ = (β₯πβπΎ) & β’ πΆ = (PSubClβπΎ) & β’ π = (π + {π}) & β’ π = ( β₯ β( β₯ β(π + π))) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β ( β₯ βπ) β§ π β π΄) β§ (π β π β§ π β π β§ π β€ (π β¨ π))) β π β (π + π)) | ||
Theorem | osumcllem7N 38828* | Lemma for osumclN 38833. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ + = (+πβπΎ) & β’ β₯ = (β₯πβπΎ) & β’ πΆ = (PSubClβπΎ) & β’ π = (π + {π}) & β’ π = ( β₯ β( β₯ β(π + π))) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β ( β₯ βπ) β§ π β β β§ π β π΄) β§ π β (π β© π)) β π β (π + π)) | ||
Theorem | osumcllem8N 38829 | Lemma for osumclN 38833. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ + = (+πβπΎ) & β’ β₯ = (β₯πβπΎ) & β’ πΆ = (PSubClβπΎ) & β’ π = (π + {π}) & β’ π = ( β₯ β( β₯ β(π + π))) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β ( β₯ βπ) β§ π β β β§ π β π΄) β§ Β¬ π β (π + π)) β (π β© π) = β ) | ||
Theorem | osumcllem9N 38830 | Lemma for osumclN 38833. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ + = (+πβπΎ) & β’ β₯ = (β₯πβπΎ) & β’ πΆ = (PSubClβπΎ) & β’ π = (π + {π}) & β’ π = ( β₯ β( β₯ β(π + π))) β β’ (((πΎ β HL β§ π β πΆ β§ π β πΆ) β§ (π β ( β₯ βπ) β§ π β β β§ π β π) β§ Β¬ π β (π + π)) β π = π) | ||
Theorem | osumcllem10N 38831 | Lemma for osumclN 38833. Contradict osumcllem9N 38830. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ + = (+πβπΎ) & β’ β₯ = (β₯πβπΎ) & β’ πΆ = (PSubClβπΎ) & β’ π = (π + {π}) & β’ π = ( β₯ β( β₯ β(π + π))) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ π β π΄ β§ Β¬ π β (π + π)) β π β π) | ||
Theorem | osumcllem11N 38832 | Lemma for osumclN 38833. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.) |
β’ + = (+πβπΎ) & β’ β₯ = (β₯πβπΎ) & β’ πΆ = (PSubClβπΎ) β β’ (((πΎ β HL β§ π β πΆ β§ π β πΆ) β§ (π β ( β₯ βπ) β§ π β β )) β (π + π) = ( β₯ β( β₯ β(π + π)))) | ||
Theorem | osumclN 38833 | Closure of orthogonal sum. If π and π are orthogonal closed projective subspaces, then their sum is closed. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.) |
β’ + = (+πβπΎ) & β’ β₯ = (β₯πβπΎ) & β’ πΆ = (PSubClβπΎ) β β’ (((πΎ β HL β§ π β πΆ β§ π β πΆ) β§ π β ( β₯ βπ)) β (π + π) β πΆ) | ||
Theorem | pmapojoinN 38834 | For orthogonal elements, projective map of join equals projective sum. Compare pmapjoin 38718 where only one direction holds. (Contributed by NM, 11-Apr-2012.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π = (pmapβπΎ) & β’ β₯ = (ocβπΎ) & β’ + = (+πβπΎ) β β’ (((πΎ β HL β§ π β π΅ β§ π β π΅) β§ π β€ ( β₯ βπ)) β (πβ(π β¨ π)) = ((πβπ) + (πβπ))) | ||
Theorem | pexmidN 38835 | Excluded middle law for closed projective subspaces, which can be shown to be equivalent to (and derivable from) the orthomodular law poml4N 38819. Lemma 3.3(2) in [Holland95] p. 215, which we prove as a special case of osumclN 38833. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ + = (+πβπΎ) & β’ β₯ = (β₯πβπΎ) β β’ (((πΎ β HL β§ π β π΄) β§ ( β₯ β( β₯ βπ)) = π) β (π + ( β₯ βπ)) = π΄) | ||
Theorem | pexmidlem1N 38836 | Lemma for pexmidN 38835. Holland's proof implicitly requires π β π, which we prove here. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ + = (+πβπΎ) & β’ β₯ = (β₯πβπΎ) & β’ π = (π + {π}) β β’ (((πΎ β HL β§ π β π΄) β§ (π β π β§ π β ( β₯ βπ))) β π β π) | ||
Theorem | pexmidlem2N 38837 | Lemma for pexmidN 38835. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ + = (+πβπΎ) & β’ β₯ = (β₯πβπΎ) & β’ π = (π + {π}) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π β§ π β ( β₯ βπ) β§ π β€ (π β¨ π))) β π β (π + ( β₯ βπ))) | ||
Theorem | pexmidlem3N 38838 | Lemma for pexmidN 38835. Use atom exchange hlatexch1 38261 to swap π and π. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ + = (+πβπΎ) & β’ β₯ = (β₯πβπΎ) & β’ π = (π + {π}) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π β§ π β ( β₯ βπ)) β§ π β€ (π β¨ π)) β π β (π + ( β₯ βπ))) | ||
Theorem | pexmidlem4N 38839* | Lemma for pexmidN 38835. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ + = (+πβπΎ) & β’ β₯ = (β₯πβπΎ) & β’ π = (π + {π}) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β β β§ π β (( β₯ βπ) β© π))) β π β (π + ( β₯ βπ))) | ||
Theorem | pexmidlem5N 38840 | Lemma for pexmidN 38835. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ + = (+πβπΎ) & β’ β₯ = (β₯πβπΎ) & β’ π = (π + {π}) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β β β§ Β¬ π β (π + ( β₯ βπ)))) β (( β₯ βπ) β© π) = β ) | ||
Theorem | pexmidlem6N 38841 | Lemma for pexmidN 38835. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ + = (+πβπΎ) & β’ β₯ = (β₯πβπΎ) & β’ π = (π + {π}) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (( β₯ β( β₯ βπ)) = π β§ π β β β§ Β¬ π β (π + ( β₯ βπ)))) β π = π) | ||
Theorem | pexmidlem7N 38842 | Lemma for pexmidN 38835. Contradict pexmidlem6N 38841. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ + = (+πβπΎ) & β’ β₯ = (β₯πβπΎ) & β’ π = (π + {π}) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (( β₯ β( β₯ βπ)) = π β§ π β β β§ Β¬ π β (π + ( β₯ βπ)))) β π β π) | ||
Theorem | pexmidlem8N 38843 | Lemma for pexmidN 38835. The contradiction of pexmidlem6N 38841 and pexmidlem7N 38842 shows that there can be no atom π that is not in π + ( β₯ βπ), which is therefore the whole atom space. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ + = (+πβπΎ) & β’ β₯ = (β₯πβπΎ) β β’ (((πΎ β HL β§ π β π΄) β§ (( β₯ β( β₯ βπ)) = π β§ π β β )) β (π + ( β₯ βπ)) = π΄) | ||
Theorem | pexmidALTN 38844 | Excluded middle law for closed projective subspaces, which is equivalent to (and derived from) the orthomodular law poml4N 38819. Lemma 3.3(2) in [Holland95] p. 215. In our proof, we use the variables π, π, π, π, π in place of Hollands' l, m, P, Q, L respectively. TODO: should we make this obsolete? (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ + = (+πβπΎ) & β’ β₯ = (β₯πβπΎ) β β’ (((πΎ β HL β§ π β π΄) β§ ( β₯ β( β₯ βπ)) = π) β (π + ( β₯ βπ)) = π΄) | ||
Theorem | pl42lem1N 38845 | Lemma for pl42N 38849. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ β₯ = (ocβπΎ) & β’ πΉ = (pmapβπΎ) & β’ + = (+πβπΎ) β β’ (((πΎ β HL β§ π β π΅ β§ π β π΅) β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β ((π β€ ( β₯ βπ) β§ π β€ ( β₯ βπ)) β (πΉβ((((π β¨ π) β§ π) β¨ π) β§ π)) = (((((πΉβπ) + (πΉβπ)) β© (πΉβπ)) + (πΉβπ)) β© (πΉβπ)))) | ||
Theorem | pl42lem2N 38846 | Lemma for pl42N 38849. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ β₯ = (ocβπΎ) & β’ πΉ = (pmapβπΎ) & β’ + = (+πβπΎ) β β’ (((πΎ β HL β§ π β π΅ β§ π β π΅) β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β (((πΉβπ) + (πΉβπ)) + (((πΉβπ) + (πΉβπ)) β© ((πΉβπ) + (πΉβπ)))) β (πΉβ((π β¨ π) β¨ ((π β¨ π) β§ (π β¨ π))))) | ||
Theorem | pl42lem3N 38847 | Lemma for pl42N 38849. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ β₯ = (ocβπΎ) & β’ πΉ = (pmapβπΎ) & β’ + = (+πβπΎ) β β’ (((πΎ β HL β§ π β π΅ β§ π β π΅) β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β (((((πΉβπ) + (πΉβπ)) β© (πΉβπ)) + (πΉβπ)) β© (πΉβπ)) β ((((πΉβπ) + (πΉβπ)) + (πΉβπ)) β© (((πΉβπ) + (πΉβπ)) + (πΉβπ)))) | ||
Theorem | pl42lem4N 38848 | Lemma for pl42N 38849. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ β₯ = (ocβπΎ) & β’ πΉ = (pmapβπΎ) & β’ + = (+πβπΎ) β β’ (((πΎ β HL β§ π β π΅ β§ π β π΅) β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β ((π β€ ( β₯ βπ) β§ π β€ ( β₯ βπ)) β (πΉβ((((π β¨ π) β§ π) β¨ π) β§ π)) β (πΉβ((π β¨ π) β¨ ((π β¨ π) β§ (π β¨ π)))))) | ||
Theorem | pl42N 38849 | Law holding in a Hilbert lattice that fails in orthomodular lattice L42 (Figure 7 in [MegPav2000] p. 2366). (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ β₯ = (ocβπΎ) β β’ (((πΎ β HL β§ π β π΅ β§ π β π΅) β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β ((π β€ ( β₯ βπ) β§ π β€ ( β₯ βπ)) β ((((π β¨ π) β§ π) β¨ π) β§ π) β€ ((π β¨ π) β¨ ((π β¨ π) β§ (π β¨ π))))) | ||
Syntax | clh 38850 | Extend class notation with set of all co-atoms (lattice hyperplanes). |
class LHyp | ||
Syntax | claut 38851 | Extend class notation with set of all lattice automorphisms. |
class LAut | ||
Syntax | cwpointsN 38852 | Extend class notation with W points. |
class WAtoms | ||
Syntax | cpautN 38853 | Extend class notation with set of all projective automorphisms. |
class PAut | ||
Definition | df-lhyp 38854* | Define the set of lattice hyperplanes, which are all lattice elements covered by 1 (i.e., all co-atoms). We call them "hyperplanes" instead of "co-atoms" in analogy with projective geometry hyperplanes. (Contributed by NM, 11-May-2012.) |
β’ LHyp = (π β V β¦ {π₯ β (Baseβπ) β£ π₯( β βπ)(1.βπ)}) | ||
Definition | df-laut 38855* | Define set of lattice autoisomorphisms. (Contributed by NM, 11-May-2012.) |
β’ LAut = (π β V β¦ {π β£ (π:(Baseβπ)β1-1-ontoβ(Baseβπ) β§ βπ₯ β (Baseβπ)βπ¦ β (Baseβπ)(π₯(leβπ)π¦ β (πβπ₯)(leβπ)(πβπ¦)))}) | ||
Definition | df-watsN 38856* | Define W-atoms corresponding to an arbitrary "fiducial (i.e. reference) atom" π. These are all atoms not in the polarity of {π}), which is the hyperplane determined by π. Definition of set W in [Crawley] p. 111. (Contributed by NM, 26-Jan-2012.) |
β’ WAtoms = (π β V β¦ (π β (Atomsβπ) β¦ ((Atomsβπ) β ((β₯πβπ)β{π})))) | ||
Definition | df-pautN 38857* | Define set of all projective automorphisms. This is the intended definition of automorphism in [Crawley] p. 112. (Contributed by NM, 26-Jan-2012.) |
β’ PAut = (π β V β¦ {π β£ (π:(PSubSpβπ)β1-1-ontoβ(PSubSpβπ) β§ βπ₯ β (PSubSpβπ)βπ¦ β (PSubSpβπ)(π₯ β π¦ β (πβπ₯) β (πβπ¦)))}) | ||
Theorem | watfvalN 38858* | The W atoms function. (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ π = (β₯πβπΎ) & β’ π = (WAtomsβπΎ) β β’ (πΎ β π΅ β π = (π β π΄ β¦ (π΄ β ((β₯πβπΎ)β{π})))) | ||
Theorem | watvalN 38859 | Value of the W atoms function. (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ π = (β₯πβπΎ) & β’ π = (WAtomsβπΎ) β β’ ((πΎ β π΅ β§ π· β π΄) β (πβπ·) = (π΄ β ((β₯πβπΎ)β{π·}))) | ||
Theorem | iswatN 38860 | The predicate "is a W atom" (corresponding to fiducial atom π·). (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ π = (β₯πβπΎ) & β’ π = (WAtomsβπΎ) β β’ ((πΎ β π΅ β§ π· β π΄) β (π β (πβπ·) β (π β π΄ β§ Β¬ π β ((β₯πβπΎ)β{π·})))) | ||
Theorem | lhpset 38861* | The set of co-atoms (lattice hyperplanes). (Contributed by NM, 11-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ 1 = (1.βπΎ) & β’ πΆ = ( β βπΎ) & β’ π» = (LHypβπΎ) β β’ (πΎ β π΄ β π» = {π€ β π΅ β£ π€πΆ 1 }) | ||
Theorem | islhp 38862 | The predicate "is a co-atom (lattice hyperplane)". (Contributed by NM, 11-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ 1 = (1.βπΎ) & β’ πΆ = ( β βπΎ) & β’ π» = (LHypβπΎ) β β’ (πΎ β π΄ β (π β π» β (π β π΅ β§ ππΆ 1 ))) | ||
Theorem | islhp2 38863 | The predicate "is a co-atom (lattice hyperplane)". (Contributed by NM, 18-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ 1 = (1.βπΎ) & β’ πΆ = ( β βπΎ) & β’ π» = (LHypβπΎ) β β’ ((πΎ β π΄ β§ π β π΅) β (π β π» β ππΆ 1 )) | ||
Theorem | lhpbase 38864 | A co-atom is a member of the lattice base set (i.e., a lattice element). (Contributed by NM, 18-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) β β’ (π β π» β π β π΅) | ||
Theorem | lhp1cvr 38865 | The lattice unity covers a co-atom (lattice hyperplane). (Contributed by NM, 18-May-2012.) |
β’ 1 = (1.βπΎ) & β’ πΆ = ( β βπΎ) & β’ π» = (LHypβπΎ) β β’ ((πΎ β π΄ β§ π β π») β ππΆ 1 ) | ||
Theorem | lhplt 38866 | An atom under a co-atom is strictly less than it. TODO: is this needed? (Contributed by NM, 1-Jun-2012.) |
β’ β€ = (leβπΎ) & β’ < = (ltβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ π β€ π)) β π < π) | ||
Theorem | lhp2lt 38867 | The join of two atoms under a co-atom is strictly less than it. (Contributed by NM, 8-Jul-2013.) |
β’ β€ = (leβπΎ) & β’ < = (ltβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ π β€ π) β§ (π β π΄ β§ π β€ π)) β (π β¨ π) < π) | ||
Theorem | lhpexlt 38868* | There exists an atom less than a co-atom. TODO: is this needed? (Contributed by NM, 1-Jun-2012.) |
β’ < = (ltβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ ((πΎ β HL β§ π β π») β βπ β π΄ π < π) | ||
Theorem | lhp0lt 38869 | A co-atom is greater than zero. TODO: is this needed? (Contributed by NM, 1-Jun-2012.) |
β’ < = (ltβπΎ) & β’ 0 = (0.βπΎ) & β’ π» = (LHypβπΎ) β β’ ((πΎ β HL β§ π β π») β 0 < π) | ||
Theorem | lhpn0 38870 | A co-atom is nonzero. TODO: is this needed? (Contributed by NM, 26-Apr-2013.) |
β’ 0 = (0.βπΎ) & β’ π» = (LHypβπΎ) β β’ ((πΎ β HL β§ π β π») β π β 0 ) | ||
Theorem | lhpexle 38871* | There exists an atom under a co-atom. (Contributed by NM, 26-Apr-2013.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ ((πΎ β HL β§ π β π») β βπ β π΄ π β€ π) | ||
Theorem | lhpexnle 38872* | There exists an atom not under a co-atom. (Contributed by NM, 12-Apr-2013.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ ((πΎ β HL β§ π β π») β βπ β π΄ Β¬ π β€ π) | ||
Theorem | lhpexle1lem 38873* | Lemma for lhpexle1 38874 and others that eliminates restrictions on π. (Contributed by NM, 24-Jul-2013.) |
β’ (π β βπ β π΄ (π β€ π β§ π)) & β’ ((π β§ (π β π΄ β§ π β€ π)) β βπ β π΄ (π β€ π β§ π β§ π β π)) β β’ (π β βπ β π΄ (π β€ π β§ π β§ π β π)) | ||
Theorem | lhpexle1 38874* | There exists an atom under a co-atom different from any given element. (Contributed by NM, 24-Jul-2013.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ ((πΎ β HL β§ π β π») β βπ β π΄ (π β€ π β§ π β π)) | ||
Theorem | lhpexle2lem 38875* | Lemma for lhpexle2 38876. (Contributed by NM, 19-Jun-2013.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ π β€ π) β§ (π β π΄ β§ π β€ π)) β βπ β π΄ (π β€ π β§ π β π β§ π β π)) | ||
Theorem | lhpexle2 38876* | There exists atom under a co-atom different from any two other elements. (Contributed by NM, 24-Jul-2013.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ ((πΎ β HL β§ π β π») β βπ β π΄ (π β€ π β§ π β π β§ π β π)) | ||
Theorem | lhpexle3lem 38877* | There exists atom under a co-atom different from any three other atoms. TODO: study if adant*, simp* usage can be improved. (Contributed by NM, 9-Jul-2013.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β€ π β§ π β€ π β§ π β€ π)) β βπ β π΄ (π β€ π β§ (π β π β§ π β π β§ π β π))) | ||
Theorem | lhpexle3 38878* | There exists atom under a co-atom different from any three other elements. (Contributed by NM, 24-Jul-2013.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ ((πΎ β HL β§ π β π») β βπ β π΄ (π β€ π β§ (π β π β§ π β π β§ π β π))) | ||
Theorem | lhpex2leN 38879* | There exist at least two different atoms under a co-atom. This allows to create a line under the co-atom. TODO: is this needed? (Contributed by NM, 1-Jun-2012.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ ((πΎ β HL β§ π β π») β βπ β π΄ βπ β π΄ (π β€ π β§ π β€ π β§ π β π)) | ||
Theorem | lhpoc 38880 | The orthocomplement of a co-atom (lattice hyperplane) is an atom. (Contributed by NM, 18-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β₯ = (ocβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ ((πΎ β HL β§ π β π΅) β (π β π» β ( β₯ βπ) β π΄)) | ||
Theorem | lhpoc2N 38881 | The orthocomplement of an atom is a co-atom (lattice hyperplane). (Contributed by NM, 20-Jun-2012.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β₯ = (ocβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ ((πΎ β HL β§ π β π΅) β (π β π΄ β ( β₯ βπ) β π»)) | ||
Theorem | lhpocnle 38882 | The orthocomplement of a co-atom is not under it. (Contributed by NM, 22-May-2012.) |
β’ β€ = (leβπΎ) & β’ β₯ = (ocβπΎ) & β’ π» = (LHypβπΎ) β β’ ((πΎ β HL β§ π β π») β Β¬ ( β₯ βπ) β€ π) | ||
Theorem | lhpocat 38883 | The orthocomplement of a co-atom is an atom. (Contributed by NM, 9-Feb-2013.) |
β’ β₯ = (ocβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ ((πΎ β HL β§ π β π») β ( β₯ βπ) β π΄) | ||
Theorem | lhpocnel 38884 | The orthocomplement of a co-atom is an atom not under it. Provides a convenient construction when we need the existence of any object with this property. (Contributed by NM, 25-May-2012.) |
β’ β€ = (leβπΎ) & β’ β₯ = (ocβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ ((πΎ β HL β§ π β π») β (( β₯ βπ) β π΄ β§ Β¬ ( β₯ βπ) β€ π)) | ||
Theorem | lhpocnel2 38885 | The orthocomplement of a co-atom is an atom not under it. Provides a convenient construction when we need the existence of any object with this property. (Contributed by NM, 20-Feb-2014.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((ocβπΎ)βπ) β β’ ((πΎ β HL β§ π β π») β (π β π΄ β§ Β¬ π β€ π)) | ||
Theorem | lhpjat1 38886 | The join of a co-atom (hyperplane) and an atom not under it is the lattice unity. (Contributed by NM, 18-May-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ 1 = (1.βπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (π β¨ π) = 1 ) | ||
Theorem | lhpjat2 38887 | The join of a co-atom (hyperplane) and an atom not under it is the lattice unity. (Contributed by NM, 4-Jun-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ 1 = (1.βπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (π β¨ π) = 1 ) | ||
Theorem | lhpj1 38888 | The join of a co-atom (hyperplane) and an element not under it is the lattice unity. (Contributed by NM, 7-Dec-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ 1 = (1.βπΎ) & β’ π» = (LHypβπΎ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ Β¬ π β€ π)) β (π β¨ π) = 1 ) | ||
Theorem | lhpmcvr 38889 | The meet of a lattice hyperplane with an element not under it is covered by the element. (Contributed by NM, 7-Dec-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β§ = (meetβπΎ) & β’ πΆ = ( β βπΎ) & β’ π» = (LHypβπΎ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ Β¬ π β€ π)) β (π β§ π)πΆπ) | ||
Theorem | lhpmcvr2 38890* | Alternate way to express that the meet of a lattice hyperplane with an element not under it is covered by the element. (Contributed by NM, 9-Apr-2013.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ Β¬ π β€ π)) β βπ β π΄ (Β¬ π β€ π β§ (π β¨ (π β§ π)) = π)) | ||
Theorem | lhpmcvr3 38891 | Specialization of lhpmcvr2 38890. TODO: Use this to simplify many uses of (π β¨ (π β§ π)) = π to become π β€ π. (Contributed by NM, 6-Apr-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β (π β€ π β (π β¨ (π β§ π)) = π)) | ||
Theorem | lhpmcvr4N 38892 | Specialization of lhpmcvr2 38890. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΅ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ (π β§ π) β€ π β§ π β€ π)) β Β¬ π β€ π) | ||
Theorem | lhpmcvr5N 38893* | Specialization of lhpmcvr2 38890. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ Β¬ π β€ π) β§ (π β π΅ β§ (π β§ π) β€ π)) β βπ β π΄ (Β¬ π β€ π β§ Β¬ π β€ π β§ (π β¨ (π β§ π)) = π)) | ||
Theorem | lhpmcvr6N 38894* | Specialization of lhpmcvr2 38890. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ Β¬ π β€ π) β§ (π β π΅ β§ (π β§ π) β€ π)) β βπ β π΄ (Β¬ π β€ π β§ Β¬ π β€ π β§ π β€ π)) | ||
Theorem | lhpm0atN 38895 | If the meet of a lattice hyperplane with a nonzero element is zero, the element is an atom. (Contributed by NM, 28-Apr-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β§ = (meetβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β 0 β§ (π β§ π) = 0 )) β π β π΄) | ||
Theorem | lhpmat 38896 | An element covered by the lattice unity, when conjoined with an atom not under it, equals the lattice zero. (Contributed by NM, 6-Jun-2012.) |
β’ β€ = (leβπΎ) & β’ β§ = (meetβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (π β§ π) = 0 ) | ||
Theorem | lhpmatb 38897 | An element covered by the lattice unity, when conjoined with an atom, equals zero iff the atom is not under it. (Contributed by NM, 15-Jun-2013.) |
β’ β€ = (leβπΎ) & β’ β§ = (meetβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ (((πΎ β HL β§ π β π») β§ π β π΄) β (Β¬ π β€ π β (π β§ π) = 0 )) | ||
Theorem | lhp2at0 38898 | Join and meet with different atoms under co-atom π. (Contributed by NM, 15-Jun-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π) β§ (π β π΄ β§ π β€ π) β§ (π β π΄ β§ π β€ π)) β ((π β¨ π) β§ π) = 0 ) | ||
Theorem | lhp2atnle 38899 | Inequality for 2 different atoms under co-atom π. (Contributed by NM, 17-Jun-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π) β§ (π β π΄ β§ π β€ π) β§ (π β π΄ β§ π β€ π)) β Β¬ π β€ (π β¨ π)) | ||
Theorem | lhp2atne 38900 | Inequality for joins with 2 different atoms under co-atom π. (Contributed by NM, 22-Jul-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π β π΄ β§ π β€ π) β§ (π β π΄ β§ π β€ π)) β§ π β π) β (π β¨ π) β (π β¨ π)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |