HomeHome Metamath Proof Explorer
Theorem List (p. 389 of 479)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30166)
  Hilbert Space Explorer  Hilbert Space Explorer
(30167-31689)
  Users' Mathboxes  Users' Mathboxes
(31690-47842)
 

Theorem List for Metamath Proof Explorer - 38801-38900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Definitiondf-psubclN 38801* Define set of all closed projective subspaces, which are those sets of atoms that equal their double polarity. Based on definition in [Holland95] p. 223. (Contributed by NM, 23-Jan-2012.)
PSubCl = (π‘˜ ∈ V ↦ {𝑠 ∣ (𝑠 βŠ† (Atomsβ€˜π‘˜) ∧ ((βŠ₯π‘ƒβ€˜π‘˜)β€˜((βŠ₯π‘ƒβ€˜π‘˜)β€˜π‘ )) = 𝑠)})
 
TheorempsubclsetN 38802* The set of closed projective subspaces in a Hilbert lattice. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)
𝐴 = (Atomsβ€˜πΎ)    &    βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)    &   πΆ = (PSubClβ€˜πΎ)    β‡’   (𝐾 ∈ 𝐡 β†’ 𝐢 = {𝑠 ∣ (𝑠 βŠ† 𝐴 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘ )) = 𝑠)})
 
TheoremispsubclN 38803 The predicate "is a closed projective subspace". (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)
𝐴 = (Atomsβ€˜πΎ)    &    βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)    &   πΆ = (PSubClβ€˜πΎ)    β‡’   (𝐾 ∈ 𝐷 β†’ (𝑋 ∈ 𝐢 ↔ (𝑋 βŠ† 𝐴 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋)))
 
TheorempsubcliN 38804 Property of a closed projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)
𝐴 = (Atomsβ€˜πΎ)    &    βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)    &   πΆ = (PSubClβ€˜πΎ)    β‡’   ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐢) β†’ (𝑋 βŠ† 𝐴 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋))
 
Theorempsubcli2N 38805 Property of a closed projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)
βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)    &   πΆ = (PSubClβ€˜πΎ)    β‡’   ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐢) β†’ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋)
 
TheorempsubclsubN 38806 A closed projective subspace is a projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)
𝑆 = (PSubSpβ€˜πΎ)    &   πΆ = (PSubClβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐢) β†’ 𝑋 ∈ 𝑆)
 
TheorempsubclssatN 38807 A closed projective subspace is a set of atoms. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.)
𝐴 = (Atomsβ€˜πΎ)    &   πΆ = (PSubClβ€˜πΎ)    β‡’   ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐢) β†’ 𝑋 βŠ† 𝐴)
 
TheorempmapidclN 38808 Projective map of the LUB of a closed subspace. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)
π‘ˆ = (lubβ€˜πΎ)    &   π‘€ = (pmapβ€˜πΎ)    &   πΆ = (PSubClβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐢) β†’ (π‘€β€˜(π‘ˆβ€˜π‘‹)) = 𝑋)
 
Theorem0psubclN 38809 The empty set is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.)
𝐢 = (PSubClβ€˜πΎ)    β‡’   (𝐾 ∈ HL β†’ βˆ… ∈ 𝐢)
 
Theorem1psubclN 38810 The set of all atoms is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.)
𝐴 = (Atomsβ€˜πΎ)    &   πΆ = (PSubClβ€˜πΎ)    β‡’   (𝐾 ∈ HL β†’ 𝐴 ∈ 𝐢)
 
TheorematpsubclN 38811 A point (singleton of an atom) is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.)
𝐴 = (Atomsβ€˜πΎ)    &   πΆ = (PSubClβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) β†’ {𝑄} ∈ 𝐢)
 
TheorempmapsubclN 38812 A projective map value is a closed projective subspace. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &   π‘€ = (pmapβ€˜πΎ)    &   πΆ = (PSubClβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) β†’ (π‘€β€˜π‘‹) ∈ 𝐢)
 
Theoremispsubcl2N 38813* Alternate predicate for "is a closed projective subspace". Remark in [Holland95] p. 223. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &   π‘€ = (pmapβ€˜πΎ)    &   πΆ = (PSubClβ€˜πΎ)    β‡’   (𝐾 ∈ HL β†’ (𝑋 ∈ 𝐢 ↔ βˆƒπ‘¦ ∈ 𝐡 𝑋 = (π‘€β€˜π‘¦)))
 
TheorempsubclinN 38814 The intersection of two closed subspaces is closed. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
𝐢 = (PSubClβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐢 ∧ π‘Œ ∈ 𝐢) β†’ (𝑋 ∩ π‘Œ) ∈ 𝐢)
 
TheorempaddatclN 38815 The projective sum of a closed subspace and an atom is a closed projective subspace. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)
𝐴 = (Atomsβ€˜πΎ)    &    + = (+π‘ƒβ€˜πΎ)    &   πΆ = (PSubClβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐢 ∧ 𝑄 ∈ 𝐴) β†’ (𝑋 + {𝑄}) ∈ 𝐢)
 
TheorempclfinclN 38816 The projective subspace closure of a finite set of atoms is a closed subspace. Compare the (non-closed) subspace version pclfinN 38766 and also pclcmpatN 38767. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.)
𝐴 = (Atomsβ€˜πΎ)    &   π‘ˆ = (PClβ€˜πΎ)    &   π‘† = (PSubClβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ 𝑋 ∈ Fin) β†’ (π‘ˆβ€˜π‘‹) ∈ 𝑆)
 
TheoremlinepsubclN 38817 A line is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.)
𝑁 = (Linesβ€˜πΎ)    &   πΆ = (PSubClβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) β†’ 𝑋 ∈ 𝐢)
 
TheorempolsubclN 38818 A polarity is a closed projective subspace. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.)
𝐴 = (Atomsβ€˜πΎ)    &    βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)    &   πΆ = (PSubClβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ( βŠ₯ β€˜π‘‹) ∈ 𝐢)
 
Theorempoml4N 38819 Orthomodular law for projective lattices. Lemma 3.3(1) in [Holland95] p. 215. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.)
𝐴 = (Atomsβ€˜πΎ)    &    βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴) β†’ ((𝑋 βŠ† π‘Œ ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘Œ)) = π‘Œ) β†’ (( βŠ₯ β€˜(( βŠ₯ β€˜π‘‹) ∩ π‘Œ)) ∩ π‘Œ) = ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹))))
 
Theorempoml5N 38820 Orthomodular law for projective lattices. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.)
𝐴 = (Atomsβ€˜πΎ)    &    βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ π‘Œ βŠ† 𝐴 ∧ 𝑋 βŠ† ( βŠ₯ β€˜π‘Œ)) β†’ (( βŠ₯ β€˜(( βŠ₯ β€˜π‘‹) ∩ ( βŠ₯ β€˜π‘Œ))) ∩ ( βŠ₯ β€˜π‘Œ)) = ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)))
 
Theorempoml6N 38821 Orthomodular law for projective lattices. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
𝐢 = (PSubClβ€˜πΎ)    &    βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐢 ∧ π‘Œ ∈ 𝐢) ∧ 𝑋 βŠ† π‘Œ) β†’ (( βŠ₯ β€˜(( βŠ₯ β€˜π‘‹) ∩ π‘Œ)) ∩ π‘Œ) = 𝑋)
 
Theoremosumcllem1N 38822 Lemma for osumclN 38833. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &    + = (+π‘ƒβ€˜πΎ)    &    βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)    &   πΆ = (PSubClβ€˜πΎ)    &   π‘€ = (𝑋 + {𝑝})    &   π‘ˆ = ( βŠ₯ β€˜( βŠ₯ β€˜(𝑋 + π‘Œ)))    β‡’   (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴) ∧ 𝑝 ∈ π‘ˆ) β†’ (π‘ˆ ∩ 𝑀) = 𝑀)
 
Theoremosumcllem2N 38823 Lemma for osumclN 38833. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &    + = (+π‘ƒβ€˜πΎ)    &    βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)    &   πΆ = (PSubClβ€˜πΎ)    &   π‘€ = (𝑋 + {𝑝})    &   π‘ˆ = ( βŠ₯ β€˜( βŠ₯ β€˜(𝑋 + π‘Œ)))    β‡’   (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴) ∧ 𝑝 ∈ π‘ˆ) β†’ 𝑋 βŠ† (π‘ˆ ∩ 𝑀))
 
Theoremosumcllem3N 38824 Lemma for osumclN 38833. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &    + = (+π‘ƒβ€˜πΎ)    &    βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)    &   πΆ = (PSubClβ€˜πΎ)    &   π‘€ = (𝑋 + {𝑝})    &   π‘ˆ = ( βŠ₯ β€˜( βŠ₯ β€˜(𝑋 + π‘Œ)))    β‡’   ((𝐾 ∈ HL ∧ π‘Œ ∈ 𝐢 ∧ 𝑋 βŠ† ( βŠ₯ β€˜π‘Œ)) β†’ (( βŠ₯ β€˜π‘‹) ∩ π‘ˆ) = π‘Œ)
 
Theoremosumcllem4N 38825 Lemma for osumclN 38833. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &    + = (+π‘ƒβ€˜πΎ)    &    βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)    &   πΆ = (PSubClβ€˜πΎ)    &   π‘€ = (𝑋 + {𝑝})    &   π‘ˆ = ( βŠ₯ β€˜( βŠ₯ β€˜(𝑋 + π‘Œ)))    β‡’   (((𝐾 ∈ HL ∧ π‘Œ βŠ† 𝐴 ∧ 𝑋 βŠ† ( βŠ₯ β€˜π‘Œ)) ∧ (π‘Ÿ ∈ 𝑋 ∧ π‘ž ∈ π‘Œ)) β†’ π‘ž β‰  π‘Ÿ)
 
Theoremosumcllem5N 38826 Lemma for osumclN 38833. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &    + = (+π‘ƒβ€˜πΎ)    &    βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)    &   πΆ = (PSubClβ€˜πΎ)    &   π‘€ = (𝑋 + {𝑝})    &   π‘ˆ = ( βŠ₯ β€˜( βŠ₯ β€˜(𝑋 + π‘Œ)))    β‡’   (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴) ∧ 𝑝 ∈ 𝐴 ∧ (π‘Ÿ ∈ 𝑋 ∧ π‘ž ∈ π‘Œ ∧ 𝑝 ≀ (π‘Ÿ ∨ π‘ž))) β†’ 𝑝 ∈ (𝑋 + π‘Œ))
 
Theoremosumcllem6N 38827 Lemma for osumclN 38833. Use atom exchange hlatexch1 38261 to swap 𝑝 and π‘ž. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &    + = (+π‘ƒβ€˜πΎ)    &    βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)    &   πΆ = (PSubClβ€˜πΎ)    &   π‘€ = (𝑋 + {𝑝})    &   π‘ˆ = ( βŠ₯ β€˜( βŠ₯ β€˜(𝑋 + π‘Œ)))    β‡’   (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴) ∧ (𝑋 βŠ† ( βŠ₯ β€˜π‘Œ) ∧ 𝑝 ∈ 𝐴) ∧ (π‘Ÿ ∈ 𝑋 ∧ π‘ž ∈ π‘Œ ∧ π‘ž ≀ (π‘Ÿ ∨ 𝑝))) β†’ 𝑝 ∈ (𝑋 + π‘Œ))
 
Theoremosumcllem7N 38828* Lemma for osumclN 38833. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &    + = (+π‘ƒβ€˜πΎ)    &    βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)    &   πΆ = (PSubClβ€˜πΎ)    &   π‘€ = (𝑋 + {𝑝})    &   π‘ˆ = ( βŠ₯ β€˜( βŠ₯ β€˜(𝑋 + π‘Œ)))    β‡’   (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴) ∧ (𝑋 βŠ† ( βŠ₯ β€˜π‘Œ) ∧ 𝑋 β‰  βˆ… ∧ 𝑝 ∈ 𝐴) ∧ π‘ž ∈ (π‘Œ ∩ 𝑀)) β†’ 𝑝 ∈ (𝑋 + π‘Œ))
 
Theoremosumcllem8N 38829 Lemma for osumclN 38833. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &    + = (+π‘ƒβ€˜πΎ)    &    βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)    &   πΆ = (PSubClβ€˜πΎ)    &   π‘€ = (𝑋 + {𝑝})    &   π‘ˆ = ( βŠ₯ β€˜( βŠ₯ β€˜(𝑋 + π‘Œ)))    β‡’   (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴) ∧ (𝑋 βŠ† ( βŠ₯ β€˜π‘Œ) ∧ 𝑋 β‰  βˆ… ∧ 𝑝 ∈ 𝐴) ∧ Β¬ 𝑝 ∈ (𝑋 + π‘Œ)) β†’ (π‘Œ ∩ 𝑀) = βˆ…)
 
Theoremosumcllem9N 38830 Lemma for osumclN 38833. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &    + = (+π‘ƒβ€˜πΎ)    &    βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)    &   πΆ = (PSubClβ€˜πΎ)    &   π‘€ = (𝑋 + {𝑝})    &   π‘ˆ = ( βŠ₯ β€˜( βŠ₯ β€˜(𝑋 + π‘Œ)))    β‡’   (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐢 ∧ π‘Œ ∈ 𝐢) ∧ (𝑋 βŠ† ( βŠ₯ β€˜π‘Œ) ∧ 𝑋 β‰  βˆ… ∧ 𝑝 ∈ π‘ˆ) ∧ Β¬ 𝑝 ∈ (𝑋 + π‘Œ)) β†’ 𝑀 = 𝑋)
 
Theoremosumcllem10N 38831 Lemma for osumclN 38833. Contradict osumcllem9N 38830. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &    + = (+π‘ƒβ€˜πΎ)    &    βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)    &   πΆ = (PSubClβ€˜πΎ)    &   π‘€ = (𝑋 + {𝑝})    &   π‘ˆ = ( βŠ₯ β€˜( βŠ₯ β€˜(𝑋 + π‘Œ)))    β‡’   (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴) ∧ 𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ∈ (𝑋 + π‘Œ)) β†’ 𝑀 β‰  𝑋)
 
Theoremosumcllem11N 38832 Lemma for osumclN 38833. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
+ = (+π‘ƒβ€˜πΎ)    &    βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)    &   πΆ = (PSubClβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐢 ∧ π‘Œ ∈ 𝐢) ∧ (𝑋 βŠ† ( βŠ₯ β€˜π‘Œ) ∧ 𝑋 β‰  βˆ…)) β†’ (𝑋 + π‘Œ) = ( βŠ₯ β€˜( βŠ₯ β€˜(𝑋 + π‘Œ))))
 
TheoremosumclN 38833 Closure of orthogonal sum. If 𝑋 and π‘Œ are orthogonal closed projective subspaces, then their sum is closed. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
+ = (+π‘ƒβ€˜πΎ)    &    βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)    &   πΆ = (PSubClβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐢 ∧ π‘Œ ∈ 𝐢) ∧ 𝑋 βŠ† ( βŠ₯ β€˜π‘Œ)) β†’ (𝑋 + π‘Œ) ∈ 𝐢)
 
TheorempmapojoinN 38834 For orthogonal elements, projective map of join equals projective sum. Compare pmapjoin 38718 where only one direction holds. (Contributed by NM, 11-Apr-2012.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π‘€ = (pmapβ€˜πΎ)    &    βŠ₯ = (ocβ€˜πΎ)    &    + = (+π‘ƒβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 ≀ ( βŠ₯ β€˜π‘Œ)) β†’ (π‘€β€˜(𝑋 ∨ π‘Œ)) = ((π‘€β€˜π‘‹) + (π‘€β€˜π‘Œ)))
 
TheorempexmidN 38835 Excluded middle law for closed projective subspaces, which can be shown to be equivalent to (and derivable from) the orthomodular law poml4N 38819. Lemma 3.3(2) in [Holland95] p. 215, which we prove as a special case of osumclN 38833. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
𝐴 = (Atomsβ€˜πΎ)    &    + = (+π‘ƒβ€˜πΎ)    &    βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋) β†’ (𝑋 + ( βŠ₯ β€˜π‘‹)) = 𝐴)
 
Theorempexmidlem1N 38836 Lemma for pexmidN 38835. Holland's proof implicitly requires π‘ž β‰  π‘Ÿ, which we prove here. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &    + = (+π‘ƒβ€˜πΎ)    &    βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)    &   π‘€ = (𝑋 + {𝑝})    β‡’   (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ (π‘Ÿ ∈ 𝑋 ∧ π‘ž ∈ ( βŠ₯ β€˜π‘‹))) β†’ π‘ž β‰  π‘Ÿ)
 
Theorempexmidlem2N 38837 Lemma for pexmidN 38835. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &    + = (+π‘ƒβ€˜πΎ)    &    βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)    &   π‘€ = (𝑋 + {𝑝})    β‡’   (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (π‘Ÿ ∈ 𝑋 ∧ π‘ž ∈ ( βŠ₯ β€˜π‘‹) ∧ 𝑝 ≀ (π‘Ÿ ∨ π‘ž))) β†’ 𝑝 ∈ (𝑋 + ( βŠ₯ β€˜π‘‹)))
 
Theorempexmidlem3N 38838 Lemma for pexmidN 38835. Use atom exchange hlatexch1 38261 to swap 𝑝 and π‘ž. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &    + = (+π‘ƒβ€˜πΎ)    &    βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)    &   π‘€ = (𝑋 + {𝑝})    β‡’   (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (π‘Ÿ ∈ 𝑋 ∧ π‘ž ∈ ( βŠ₯ β€˜π‘‹)) ∧ π‘ž ≀ (π‘Ÿ ∨ 𝑝)) β†’ 𝑝 ∈ (𝑋 + ( βŠ₯ β€˜π‘‹)))
 
Theorempexmidlem4N 38839* Lemma for pexmidN 38835. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &    + = (+π‘ƒβ€˜πΎ)    &    βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)    &   π‘€ = (𝑋 + {𝑝})    β‡’   (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 β‰  βˆ… ∧ π‘ž ∈ (( βŠ₯ β€˜π‘‹) ∩ 𝑀))) β†’ 𝑝 ∈ (𝑋 + ( βŠ₯ β€˜π‘‹)))
 
Theorempexmidlem5N 38840 Lemma for pexmidN 38835. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &    + = (+π‘ƒβ€˜πΎ)    &    βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)    &   π‘€ = (𝑋 + {𝑝})    β‡’   (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 β‰  βˆ… ∧ Β¬ 𝑝 ∈ (𝑋 + ( βŠ₯ β€˜π‘‹)))) β†’ (( βŠ₯ β€˜π‘‹) ∩ 𝑀) = βˆ…)
 
Theorempexmidlem6N 38841 Lemma for pexmidN 38835. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &    + = (+π‘ƒβ€˜πΎ)    &    βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)    &   π‘€ = (𝑋 + {𝑝})    β‡’   (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋 ∧ 𝑋 β‰  βˆ… ∧ Β¬ 𝑝 ∈ (𝑋 + ( βŠ₯ β€˜π‘‹)))) β†’ 𝑀 = 𝑋)
 
Theorempexmidlem7N 38842 Lemma for pexmidN 38835. Contradict pexmidlem6N 38841. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &    + = (+π‘ƒβ€˜πΎ)    &    βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)    &   π‘€ = (𝑋 + {𝑝})    β‡’   (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋 ∧ 𝑋 β‰  βˆ… ∧ Β¬ 𝑝 ∈ (𝑋 + ( βŠ₯ β€˜π‘‹)))) β†’ 𝑀 β‰  𝑋)
 
Theorempexmidlem8N 38843 Lemma for pexmidN 38835. The contradiction of pexmidlem6N 38841 and pexmidlem7N 38842 shows that there can be no atom 𝑝 that is not in 𝑋 + ( βŠ₯ β€˜π‘‹), which is therefore the whole atom space. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)
𝐴 = (Atomsβ€˜πΎ)    &    + = (+π‘ƒβ€˜πΎ)    &    βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ (( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋 ∧ 𝑋 β‰  βˆ…)) β†’ (𝑋 + ( βŠ₯ β€˜π‘‹)) = 𝐴)
 
TheorempexmidALTN 38844 Excluded middle law for closed projective subspaces, which is equivalent to (and derived from) the orthomodular law poml4N 38819. Lemma 3.3(2) in [Holland95] p. 215. In our proof, we use the variables 𝑋, 𝑀, 𝑝, π‘ž, π‘Ÿ in place of Hollands' l, m, P, Q, L respectively. TODO: should we make this obsolete? (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)
𝐴 = (Atomsβ€˜πΎ)    &    + = (+π‘ƒβ€˜πΎ)    &    βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋) β†’ (𝑋 + ( βŠ₯ β€˜π‘‹)) = 𝐴)
 
Theorempl42lem1N 38845 Lemma for pl42N 38849. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &    βŠ₯ = (ocβ€˜πΎ)    &   πΉ = (pmapβ€˜πΎ)    &    + = (+π‘ƒβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡)) β†’ ((𝑋 ≀ ( βŠ₯ β€˜π‘Œ) ∧ 𝑍 ≀ ( βŠ₯ β€˜π‘Š)) β†’ (πΉβ€˜((((𝑋 ∨ π‘Œ) ∧ 𝑍) ∨ π‘Š) ∧ 𝑉)) = (((((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)) ∩ (πΉβ€˜π‘)) + (πΉβ€˜π‘Š)) ∩ (πΉβ€˜π‘‰))))
 
Theorempl42lem2N 38846 Lemma for pl42N 38849. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &    βŠ₯ = (ocβ€˜πΎ)    &   πΉ = (pmapβ€˜πΎ)    &    + = (+π‘ƒβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡)) β†’ (((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)) + (((πΉβ€˜π‘‹) + (πΉβ€˜π‘Š)) ∩ ((πΉβ€˜π‘Œ) + (πΉβ€˜π‘‰)))) βŠ† (πΉβ€˜((𝑋 ∨ π‘Œ) ∨ ((𝑋 ∨ π‘Š) ∧ (π‘Œ ∨ 𝑉)))))
 
Theorempl42lem3N 38847 Lemma for pl42N 38849. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &    βŠ₯ = (ocβ€˜πΎ)    &   πΉ = (pmapβ€˜πΎ)    &    + = (+π‘ƒβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡)) β†’ (((((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)) ∩ (πΉβ€˜π‘)) + (πΉβ€˜π‘Š)) ∩ (πΉβ€˜π‘‰)) βŠ† ((((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)) + (πΉβ€˜π‘Š)) ∩ (((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)) + (πΉβ€˜π‘‰))))
 
Theorempl42lem4N 38848 Lemma for pl42N 38849. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &    βŠ₯ = (ocβ€˜πΎ)    &   πΉ = (pmapβ€˜πΎ)    &    + = (+π‘ƒβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡)) β†’ ((𝑋 ≀ ( βŠ₯ β€˜π‘Œ) ∧ 𝑍 ≀ ( βŠ₯ β€˜π‘Š)) β†’ (πΉβ€˜((((𝑋 ∨ π‘Œ) ∧ 𝑍) ∨ π‘Š) ∧ 𝑉)) βŠ† (πΉβ€˜((𝑋 ∨ π‘Œ) ∨ ((𝑋 ∨ π‘Š) ∧ (π‘Œ ∨ 𝑉))))))
 
Theorempl42N 38849 Law holding in a Hilbert lattice that fails in orthomodular lattice L42 (Figure 7 in [MegPav2000] p. 2366). (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &    βŠ₯ = (ocβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑍 ∈ 𝐡 ∧ π‘Š ∈ 𝐡 ∧ 𝑉 ∈ 𝐡)) β†’ ((𝑋 ≀ ( βŠ₯ β€˜π‘Œ) ∧ 𝑍 ≀ ( βŠ₯ β€˜π‘Š)) β†’ ((((𝑋 ∨ π‘Œ) ∧ 𝑍) ∨ π‘Š) ∧ 𝑉) ≀ ((𝑋 ∨ π‘Œ) ∨ ((𝑋 ∨ π‘Š) ∧ (π‘Œ ∨ 𝑉)))))
 
Syntaxclh 38850 Extend class notation with set of all co-atoms (lattice hyperplanes).
class LHyp
 
Syntaxclaut 38851 Extend class notation with set of all lattice automorphisms.
class LAut
 
SyntaxcwpointsN 38852 Extend class notation with W points.
class WAtoms
 
SyntaxcpautN 38853 Extend class notation with set of all projective automorphisms.
class PAut
 
Definitiondf-lhyp 38854* Define the set of lattice hyperplanes, which are all lattice elements covered by 1 (i.e., all co-atoms). We call them "hyperplanes" instead of "co-atoms" in analogy with projective geometry hyperplanes. (Contributed by NM, 11-May-2012.)
LHyp = (π‘˜ ∈ V ↦ {π‘₯ ∈ (Baseβ€˜π‘˜) ∣ π‘₯( β‹– β€˜π‘˜)(1.β€˜π‘˜)})
 
Definitiondf-laut 38855* Define set of lattice autoisomorphisms. (Contributed by NM, 11-May-2012.)
LAut = (π‘˜ ∈ V ↦ {𝑓 ∣ (𝑓:(Baseβ€˜π‘˜)–1-1-ontoβ†’(Baseβ€˜π‘˜) ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘˜)βˆ€π‘¦ ∈ (Baseβ€˜π‘˜)(π‘₯(leβ€˜π‘˜)𝑦 ↔ (π‘“β€˜π‘₯)(leβ€˜π‘˜)(π‘“β€˜π‘¦)))})
 
Definitiondf-watsN 38856* Define W-atoms corresponding to an arbitrary "fiducial (i.e. reference) atom" 𝑑. These are all atoms not in the polarity of {𝑑}), which is the hyperplane determined by 𝑑. Definition of set W in [Crawley] p. 111. (Contributed by NM, 26-Jan-2012.)
WAtoms = (π‘˜ ∈ V ↦ (𝑑 ∈ (Atomsβ€˜π‘˜) ↦ ((Atomsβ€˜π‘˜) βˆ– ((βŠ₯π‘ƒβ€˜π‘˜)β€˜{𝑑}))))
 
Definitiondf-pautN 38857* Define set of all projective automorphisms. This is the intended definition of automorphism in [Crawley] p. 112. (Contributed by NM, 26-Jan-2012.)
PAut = (π‘˜ ∈ V ↦ {𝑓 ∣ (𝑓:(PSubSpβ€˜π‘˜)–1-1-ontoβ†’(PSubSpβ€˜π‘˜) ∧ βˆ€π‘₯ ∈ (PSubSpβ€˜π‘˜)βˆ€π‘¦ ∈ (PSubSpβ€˜π‘˜)(π‘₯ βŠ† 𝑦 ↔ (π‘“β€˜π‘₯) βŠ† (π‘“β€˜π‘¦)))})
 
TheoremwatfvalN 38858* The W atoms function. (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.)
𝐴 = (Atomsβ€˜πΎ)    &   π‘ƒ = (βŠ₯π‘ƒβ€˜πΎ)    &   π‘Š = (WAtomsβ€˜πΎ)    β‡’   (𝐾 ∈ 𝐡 β†’ π‘Š = (𝑑 ∈ 𝐴 ↦ (𝐴 βˆ– ((βŠ₯π‘ƒβ€˜πΎ)β€˜{𝑑}))))
 
TheoremwatvalN 38859 Value of the W atoms function. (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.)
𝐴 = (Atomsβ€˜πΎ)    &   π‘ƒ = (βŠ₯π‘ƒβ€˜πΎ)    &   π‘Š = (WAtomsβ€˜πΎ)    β‡’   ((𝐾 ∈ 𝐡 ∧ 𝐷 ∈ 𝐴) β†’ (π‘Šβ€˜π·) = (𝐴 βˆ– ((βŠ₯π‘ƒβ€˜πΎ)β€˜{𝐷})))
 
TheoremiswatN 38860 The predicate "is a W atom" (corresponding to fiducial atom 𝐷). (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.)
𝐴 = (Atomsβ€˜πΎ)    &   π‘ƒ = (βŠ₯π‘ƒβ€˜πΎ)    &   π‘Š = (WAtomsβ€˜πΎ)    β‡’   ((𝐾 ∈ 𝐡 ∧ 𝐷 ∈ 𝐴) β†’ (𝑃 ∈ (π‘Šβ€˜π·) ↔ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ∈ ((βŠ₯π‘ƒβ€˜πΎ)β€˜{𝐷}))))
 
Theoremlhpset 38861* The set of co-atoms (lattice hyperplanes). (Contributed by NM, 11-May-2012.)
𝐡 = (Baseβ€˜πΎ)    &    1 = (1.β€˜πΎ)    &   πΆ = ( β‹– β€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   (𝐾 ∈ 𝐴 β†’ 𝐻 = {𝑀 ∈ 𝐡 ∣ 𝑀𝐢 1 })
 
Theoremislhp 38862 The predicate "is a co-atom (lattice hyperplane)". (Contributed by NM, 11-May-2012.)
𝐡 = (Baseβ€˜πΎ)    &    1 = (1.β€˜πΎ)    &   πΆ = ( β‹– β€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   (𝐾 ∈ 𝐴 β†’ (π‘Š ∈ 𝐻 ↔ (π‘Š ∈ 𝐡 ∧ π‘ŠπΆ 1 )))
 
Theoremislhp2 38863 The predicate "is a co-atom (lattice hyperplane)". (Contributed by NM, 18-May-2012.)
𝐡 = (Baseβ€˜πΎ)    &    1 = (1.β€˜πΎ)    &   πΆ = ( β‹– β€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   ((𝐾 ∈ 𝐴 ∧ π‘Š ∈ 𝐡) β†’ (π‘Š ∈ 𝐻 ↔ π‘ŠπΆ 1 ))
 
Theoremlhpbase 38864 A co-atom is a member of the lattice base set (i.e., a lattice element). (Contributed by NM, 18-May-2012.)
𝐡 = (Baseβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   (π‘Š ∈ 𝐻 β†’ π‘Š ∈ 𝐡)
 
Theoremlhp1cvr 38865 The lattice unity covers a co-atom (lattice hyperplane). (Contributed by NM, 18-May-2012.)
1 = (1.β€˜πΎ)    &   πΆ = ( β‹– β€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   ((𝐾 ∈ 𝐴 ∧ π‘Š ∈ 𝐻) β†’ π‘ŠπΆ 1 )
 
Theoremlhplt 38866 An atom under a co-atom is strictly less than it. TODO: is this needed? (Contributed by NM, 1-Jun-2012.)
≀ = (leβ€˜πΎ)    &    < = (ltβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≀ π‘Š)) β†’ 𝑃 < π‘Š)
 
Theoremlhp2lt 38867 The join of two atoms under a co-atom is strictly less than it. (Contributed by NM, 8-Jul-2013.)
≀ = (leβ€˜πΎ)    &    < = (ltβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≀ π‘Š)) β†’ (𝑃 ∨ 𝑄) < π‘Š)
 
Theoremlhpexlt 38868* There exists an atom less than a co-atom. TODO: is this needed? (Contributed by NM, 1-Jun-2012.)
< = (ltβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ βˆƒπ‘ ∈ 𝐴 𝑝 < π‘Š)
 
Theoremlhp0lt 38869 A co-atom is greater than zero. TODO: is this needed? (Contributed by NM, 1-Jun-2012.)
< = (ltβ€˜πΎ)    &    0 = (0.β€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 0 < π‘Š)
 
Theoremlhpn0 38870 A co-atom is nonzero. TODO: is this needed? (Contributed by NM, 26-Apr-2013.)
0 = (0.β€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ π‘Š β‰  0 )
 
Theoremlhpexle 38871* There exists an atom under a co-atom. (Contributed by NM, 26-Apr-2013.)
≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ βˆƒπ‘ ∈ 𝐴 𝑝 ≀ π‘Š)
 
Theoremlhpexnle 38872* There exists an atom not under a co-atom. (Contributed by NM, 12-Apr-2013.)
≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ βˆƒπ‘ ∈ 𝐴 Β¬ 𝑝 ≀ π‘Š)
 
Theoremlhpexle1lem 38873* Lemma for lhpexle1 38874 and others that eliminates restrictions on 𝑋. (Contributed by NM, 24-Jul-2013.)
(πœ‘ β†’ βˆƒπ‘ ∈ 𝐴 (𝑝 ≀ π‘Š ∧ πœ“))    &   ((πœ‘ ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š)) β†’ βˆƒπ‘ ∈ 𝐴 (𝑝 ≀ π‘Š ∧ πœ“ ∧ 𝑝 β‰  𝑋))    β‡’   (πœ‘ β†’ βˆƒπ‘ ∈ 𝐴 (𝑝 ≀ π‘Š ∧ πœ“ ∧ 𝑝 β‰  𝑋))
 
Theoremlhpexle1 38874* There exists an atom under a co-atom different from any given element. (Contributed by NM, 24-Jul-2013.)
≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ βˆƒπ‘ ∈ 𝐴 (𝑝 ≀ π‘Š ∧ 𝑝 β‰  𝑋))
 
Theoremlhpexle2lem 38875* Lemma for lhpexle2 38876. (Contributed by NM, 19-Jun-2013.)
≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) β†’ βˆƒπ‘ ∈ 𝐴 (𝑝 ≀ π‘Š ∧ 𝑝 β‰  𝑋 ∧ 𝑝 β‰  π‘Œ))
 
Theoremlhpexle2 38876* There exists atom under a co-atom different from any two other elements. (Contributed by NM, 24-Jul-2013.)
≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ βˆƒπ‘ ∈ 𝐴 (𝑝 ≀ π‘Š ∧ 𝑝 β‰  𝑋 ∧ 𝑝 β‰  π‘Œ))
 
Theoremlhpexle3lem 38877* There exists atom under a co-atom different from any three other atoms. TODO: study if adant*, simp* usage can be improved. (Contributed by NM, 9-Jul-2013.)
≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ π‘Œ ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) ∧ (𝑋 ≀ π‘Š ∧ π‘Œ ≀ π‘Š ∧ 𝑍 ≀ π‘Š)) β†’ βˆƒπ‘ ∈ 𝐴 (𝑝 ≀ π‘Š ∧ (𝑝 β‰  𝑋 ∧ 𝑝 β‰  π‘Œ ∧ 𝑝 β‰  𝑍)))
 
Theoremlhpexle3 38878* There exists atom under a co-atom different from any three other elements. (Contributed by NM, 24-Jul-2013.)
≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ βˆƒπ‘ ∈ 𝐴 (𝑝 ≀ π‘Š ∧ (𝑝 β‰  𝑋 ∧ 𝑝 β‰  π‘Œ ∧ 𝑝 β‰  𝑍)))
 
Theoremlhpex2leN 38879* There exist at least two different atoms under a co-atom. This allows to create a line under the co-atom. TODO: is this needed? (Contributed by NM, 1-Jun-2012.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ βˆƒπ‘ ∈ 𝐴 βˆƒπ‘ž ∈ 𝐴 (𝑝 ≀ π‘Š ∧ π‘ž ≀ π‘Š ∧ 𝑝 β‰  π‘ž))
 
Theoremlhpoc 38880 The orthocomplement of a co-atom (lattice hyperplane) is an atom. (Contributed by NM, 18-May-2012.)
𝐡 = (Baseβ€˜πΎ)    &    βŠ₯ = (ocβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐡) β†’ (π‘Š ∈ 𝐻 ↔ ( βŠ₯ β€˜π‘Š) ∈ 𝐴))
 
Theoremlhpoc2N 38881 The orthocomplement of an atom is a co-atom (lattice hyperplane). (Contributed by NM, 20-Jun-2012.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    βŠ₯ = (ocβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐡) β†’ (π‘Š ∈ 𝐴 ↔ ( βŠ₯ β€˜π‘Š) ∈ 𝐻))
 
Theoremlhpocnle 38882 The orthocomplement of a co-atom is not under it. (Contributed by NM, 22-May-2012.)
≀ = (leβ€˜πΎ)    &    βŠ₯ = (ocβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ Β¬ ( βŠ₯ β€˜π‘Š) ≀ π‘Š)
 
Theoremlhpocat 38883 The orthocomplement of a co-atom is an atom. (Contributed by NM, 9-Feb-2013.)
βŠ₯ = (ocβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ ( βŠ₯ β€˜π‘Š) ∈ 𝐴)
 
Theoremlhpocnel 38884 The orthocomplement of a co-atom is an atom not under it. Provides a convenient construction when we need the existence of any object with this property. (Contributed by NM, 25-May-2012.)
≀ = (leβ€˜πΎ)    &    βŠ₯ = (ocβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (( βŠ₯ β€˜π‘Š) ∈ 𝐴 ∧ Β¬ ( βŠ₯ β€˜π‘Š) ≀ π‘Š))
 
Theoremlhpocnel2 38885 The orthocomplement of a co-atom is an atom not under it. Provides a convenient construction when we need the existence of any object with this property. (Contributed by NM, 20-Feb-2014.)
≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    β‡’   ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
 
Theoremlhpjat1 38886 The join of a co-atom (hyperplane) and an atom not under it is the lattice unity. (Contributed by NM, 18-May-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    1 = (1.β€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (π‘Š ∨ 𝑃) = 1 )
 
Theoremlhpjat2 38887 The join of a co-atom (hyperplane) and an atom not under it is the lattice unity. (Contributed by NM, 4-Jun-2012.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    1 = (1.β€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (𝑃 ∨ π‘Š) = 1 )
 
Theoremlhpj1 38888 The join of a co-atom (hyperplane) and an element not under it is the lattice unity. (Contributed by NM, 7-Dec-2012.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    1 = (1.β€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) β†’ (π‘Š ∨ 𝑋) = 1 )
 
Theoremlhpmcvr 38889 The meet of a lattice hyperplane with an element not under it is covered by the element. (Contributed by NM, 7-Dec-2012.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   πΆ = ( β‹– β€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) β†’ (𝑋 ∧ π‘Š)𝐢𝑋)
 
Theoremlhpmcvr2 38890* Alternate way to express that the meet of a lattice hyperplane with an element not under it is covered by the element. (Contributed by NM, 9-Apr-2013.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) β†’ βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝 ≀ π‘Š ∧ (𝑝 ∨ (𝑋 ∧ π‘Š)) = 𝑋))
 
Theoremlhpmcvr3 38891 Specialization of lhpmcvr2 38890. TODO: Use this to simplify many uses of (𝑃 ∨ (𝑋 ∧ π‘Š)) = 𝑋 to become 𝑃 ≀ 𝑋. (Contributed by NM, 6-Apr-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (𝑃 ≀ 𝑋 ↔ (𝑃 ∨ (𝑋 ∧ π‘Š)) = 𝑋))
 
Theoremlhpmcvr4N 38892 Specialization of lhpmcvr2 38890. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (π‘Œ ∈ 𝐡 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š ∧ 𝑃 ≀ 𝑋)) β†’ Β¬ 𝑃 ≀ π‘Œ)
 
Theoremlhpmcvr5N 38893* Specialization of lhpmcvr2 38890. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š)) β†’ βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝 ≀ π‘Š ∧ Β¬ 𝑝 ≀ π‘Œ ∧ (𝑝 ∨ (𝑋 ∧ π‘Š)) = 𝑋))
 
Theoremlhpmcvr6N 38894* Specialization of lhpmcvr2 38890. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š)) β†’ βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝 ≀ π‘Š ∧ Β¬ 𝑝 ≀ π‘Œ ∧ 𝑝 ≀ 𝑋))
 
Theoremlhpm0atN 38895 If the meet of a lattice hyperplane with a nonzero element is zero, the element is an atom. (Contributed by NM, 28-Apr-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &    0 = (0.β€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 β‰  0 ∧ (𝑋 ∧ π‘Š) = 0 )) β†’ 𝑋 ∈ 𝐴)
 
Theoremlhpmat 38896 An element covered by the lattice unity, when conjoined with an atom not under it, equals the lattice zero. (Contributed by NM, 6-Jun-2012.)
≀ = (leβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &    0 = (0.β€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (𝑃 ∧ π‘Š) = 0 )
 
Theoremlhpmatb 38897 An element covered by the lattice unity, when conjoined with an atom, equals zero iff the atom is not under it. (Contributed by NM, 15-Jun-2013.)
≀ = (leβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &    0 = (0.β€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑃 ∈ 𝐴) β†’ (Β¬ 𝑃 ≀ π‘Š ↔ (𝑃 ∧ π‘Š) = 0 ))
 
Theoremlhp2at0 38898 Join and meet with different atoms under co-atom π‘Š. (Contributed by NM, 15-Jun-2013.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &    0 = (0.β€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ π‘ˆ β‰  𝑉) ∧ (π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) β†’ ((𝑃 ∨ π‘ˆ) ∧ 𝑉) = 0 )
 
Theoremlhp2atnle 38899 Inequality for 2 different atoms under co-atom π‘Š. (Contributed by NM, 17-Jun-2013.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ π‘ˆ β‰  𝑉) ∧ (π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) β†’ Β¬ 𝑉 ≀ (𝑃 ∨ π‘ˆ))
 
Theoremlhp2atne 38900 Inequality for joins with 2 different atoms under co-atom π‘Š. (Contributed by NM, 22-Jul-2013.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((π‘ˆ ∈ 𝐴 ∧ π‘ˆ ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ π‘ˆ β‰  𝑉) β†’ (𝑃 ∨ π‘ˆ) β‰  (𝑄 ∨ 𝑉))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47842
  Copyright terms: Public domain < Previous  Next >