Detailed syntax breakdown of Definition df-ptdf
Step | Hyp | Ref
| Expression |
1 | | cA |
. . 3
class 𝐴 |
2 | | cB |
. . 3
class 𝐵 |
3 | 1, 2 | cptdfc 41537 |
. 2
class
PtDf(𝐴, 𝐵) |
4 | | vx |
. . 3
setvar 𝑥 |
5 | | cr 10574 |
. . 3
class
ℝ |
6 | 4 | cv 1537 |
. . . . . 6
class 𝑥 |
7 | | cminusr 41535 |
. . . . . . 7
class
-𝑟 |
8 | 2, 1, 7 | co 7150 |
. . . . . 6
class (𝐵-𝑟𝐴) |
9 | | ctimesr 41536 |
. . . . . 6
class
.𝑣 |
10 | 6, 8, 9 | co 7150 |
. . . . 5
class (𝑥.𝑣(𝐵-𝑟𝐴)) |
11 | | cpv 28467 |
. . . . 5
class
+𝑣 |
12 | 10, 1, 11 | co 7150 |
. . . 4
class ((𝑥.𝑣(𝐵-𝑟𝐴)) +𝑣 𝐴) |
13 | | c1 10576 |
. . . . 5
class
1 |
14 | | c2 11729 |
. . . . 5
class
2 |
15 | | c3 11730 |
. . . . 5
class
3 |
16 | 13, 14, 15 | ctp 4526 |
. . . 4
class {1, 2,
3} |
17 | 12, 16 | cima 5527 |
. . 3
class (((𝑥.𝑣(𝐵-𝑟𝐴)) +𝑣 𝐴) “ {1, 2,
3}) |
18 | 4, 5, 17 | cmpt 5112 |
. 2
class (𝑥 ∈ ℝ ↦ (((𝑥.𝑣(𝐵-𝑟𝐴)) +𝑣 𝐴) “ {1, 2,
3})) |
19 | 3, 18 | wceq 1538 |
1
wff PtDf(𝐴, 𝐵) = (𝑥 ∈ ℝ ↦ (((𝑥.𝑣(𝐵-𝑟𝐴)) +𝑣 𝐴) “ {1, 2, 3})) |