Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  addrcom Structured version   Visualization version   GIF version

Theorem addrcom 44474
Description: Vector addition is commutative. (Contributed by Andrew Salmon, 28-Jan-2012.)
Assertion
Ref Expression
addrcom ((𝐴𝐶𝐵𝐷) → (𝐴+𝑟𝐵) = (𝐵+𝑟𝐴))

Proof of Theorem addrcom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 addrfn 44471 . 2 ((𝐴𝐶𝐵𝐷) → (𝐴+𝑟𝐵) Fn ℝ)
2 addrfn 44471 . . 3 ((𝐵𝐷𝐴𝐶) → (𝐵+𝑟𝐴) Fn ℝ)
32ancoms 458 . 2 ((𝐴𝐶𝐵𝐷) → (𝐵+𝑟𝐴) Fn ℝ)
4 addcomgi 44455 . . . . . 6 ((𝐴𝑥) + (𝐵𝑥)) = ((𝐵𝑥) + (𝐴𝑥))
5 addrfv 44468 . . . . . 6 ((𝐴𝐶𝐵𝐷𝑥 ∈ ℝ) → ((𝐴+𝑟𝐵)‘𝑥) = ((𝐴𝑥) + (𝐵𝑥)))
6 addrfv 44468 . . . . . . 7 ((𝐵𝐷𝐴𝐶𝑥 ∈ ℝ) → ((𝐵+𝑟𝐴)‘𝑥) = ((𝐵𝑥) + (𝐴𝑥)))
763com12 1123 . . . . . 6 ((𝐴𝐶𝐵𝐷𝑥 ∈ ℝ) → ((𝐵+𝑟𝐴)‘𝑥) = ((𝐵𝑥) + (𝐴𝑥)))
84, 5, 73eqtr4a 2797 . . . . 5 ((𝐴𝐶𝐵𝐷𝑥 ∈ ℝ) → ((𝐴+𝑟𝐵)‘𝑥) = ((𝐵+𝑟𝐴)‘𝑥))
983expia 1121 . . . 4 ((𝐴𝐶𝐵𝐷) → (𝑥 ∈ ℝ → ((𝐴+𝑟𝐵)‘𝑥) = ((𝐵+𝑟𝐴)‘𝑥)))
109ralrimiv 3132 . . 3 ((𝐴𝐶𝐵𝐷) → ∀𝑥 ∈ ℝ ((𝐴+𝑟𝐵)‘𝑥) = ((𝐵+𝑟𝐴)‘𝑥))
11 eqfnfv 7026 . . 3 (((𝐴+𝑟𝐵) Fn ℝ ∧ (𝐵+𝑟𝐴) Fn ℝ) → ((𝐴+𝑟𝐵) = (𝐵+𝑟𝐴) ↔ ∀𝑥 ∈ ℝ ((𝐴+𝑟𝐵)‘𝑥) = ((𝐵+𝑟𝐴)‘𝑥)))
1210, 11syl5ibrcom 247 . 2 ((𝐴𝐶𝐵𝐷) → (((𝐴+𝑟𝐵) Fn ℝ ∧ (𝐵+𝑟𝐴) Fn ℝ) → (𝐴+𝑟𝐵) = (𝐵+𝑟𝐴)))
131, 3, 12mp2and 699 1 ((𝐴𝐶𝐵𝐷) → (𝐴+𝑟𝐵) = (𝐵+𝑟𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052   Fn wfn 6531  cfv 6536  (class class class)co 7410  cr 11133   + caddc 11137  +𝑟cplusr 44456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-ltxr 11279  df-addr 44462
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator