Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  addrcom Structured version   Visualization version   GIF version

Theorem addrcom 42306
Description: Vector addition is commutative. (Contributed by Andrew Salmon, 28-Jan-2012.)
Assertion
Ref Expression
addrcom ((𝐴𝐶𝐵𝐷) → (𝐴+𝑟𝐵) = (𝐵+𝑟𝐴))

Proof of Theorem addrcom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 addrfn 42303 . 2 ((𝐴𝐶𝐵𝐷) → (𝐴+𝑟𝐵) Fn ℝ)
2 addrfn 42303 . . 3 ((𝐵𝐷𝐴𝐶) → (𝐵+𝑟𝐴) Fn ℝ)
32ancoms 460 . 2 ((𝐴𝐶𝐵𝐷) → (𝐵+𝑟𝐴) Fn ℝ)
4 addcomgi 42287 . . . . . 6 ((𝐴𝑥) + (𝐵𝑥)) = ((𝐵𝑥) + (𝐴𝑥))
5 addrfv 42300 . . . . . 6 ((𝐴𝐶𝐵𝐷𝑥 ∈ ℝ) → ((𝐴+𝑟𝐵)‘𝑥) = ((𝐴𝑥) + (𝐵𝑥)))
6 addrfv 42300 . . . . . . 7 ((𝐵𝐷𝐴𝐶𝑥 ∈ ℝ) → ((𝐵+𝑟𝐴)‘𝑥) = ((𝐵𝑥) + (𝐴𝑥)))
763com12 1123 . . . . . 6 ((𝐴𝐶𝐵𝐷𝑥 ∈ ℝ) → ((𝐵+𝑟𝐴)‘𝑥) = ((𝐵𝑥) + (𝐴𝑥)))
84, 5, 73eqtr4a 2802 . . . . 5 ((𝐴𝐶𝐵𝐷𝑥 ∈ ℝ) → ((𝐴+𝑟𝐵)‘𝑥) = ((𝐵+𝑟𝐴)‘𝑥))
983expia 1121 . . . 4 ((𝐴𝐶𝐵𝐷) → (𝑥 ∈ ℝ → ((𝐴+𝑟𝐵)‘𝑥) = ((𝐵+𝑟𝐴)‘𝑥)))
109ralrimiv 3139 . . 3 ((𝐴𝐶𝐵𝐷) → ∀𝑥 ∈ ℝ ((𝐴+𝑟𝐵)‘𝑥) = ((𝐵+𝑟𝐴)‘𝑥))
11 eqfnfv 6941 . . 3 (((𝐴+𝑟𝐵) Fn ℝ ∧ (𝐵+𝑟𝐴) Fn ℝ) → ((𝐴+𝑟𝐵) = (𝐵+𝑟𝐴) ↔ ∀𝑥 ∈ ℝ ((𝐴+𝑟𝐵)‘𝑥) = ((𝐵+𝑟𝐴)‘𝑥)))
1210, 11syl5ibrcom 247 . 2 ((𝐴𝐶𝐵𝐷) → (((𝐴+𝑟𝐵) Fn ℝ ∧ (𝐵+𝑟𝐴) Fn ℝ) → (𝐴+𝑟𝐵) = (𝐵+𝑟𝐴)))
131, 3, 12mp2and 697 1 ((𝐴𝐶𝐵𝐷) → (𝐴+𝑟𝐵) = (𝐵+𝑟𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1539  wcel 2104  wral 3062   Fn wfn 6453  cfv 6458  (class class class)co 7307  cr 10920   + caddc 10924  +𝑟cplusr 42288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10977  ax-resscn 10978  ax-1cn 10979  ax-icn 10980  ax-addcl 10981  ax-addrcl 10982  ax-mulcl 10983  ax-mulrcl 10984  ax-mulcom 10985  ax-addass 10986  ax-mulass 10987  ax-distr 10988  ax-i2m1 10989  ax-1ne0 10990  ax-1rid 10991  ax-rnegex 10992  ax-rrecex 10993  ax-cnre 10994  ax-pre-lttri 10995  ax-pre-lttrn 10996  ax-pre-ltadd 10997  ax-addf 11000
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-po 5514  df-so 5515  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11061  df-mnf 11062  df-ltxr 11064  df-addr 42294
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator