Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > addrcom | Structured version Visualization version GIF version |
Description: Vector addition is commutative. (Contributed by Andrew Salmon, 28-Jan-2012.) |
Ref | Expression |
---|---|
addrcom | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴+𝑟𝐵) = (𝐵+𝑟𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addrfn 42060 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴+𝑟𝐵) Fn ℝ) | |
2 | addrfn 42060 | . . 3 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐴 ∈ 𝐶) → (𝐵+𝑟𝐴) Fn ℝ) | |
3 | 2 | ancoms 459 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐵+𝑟𝐴) Fn ℝ) |
4 | addcomgi 42044 | . . . . . 6 ⊢ ((𝐴‘𝑥) + (𝐵‘𝑥)) = ((𝐵‘𝑥) + (𝐴‘𝑥)) | |
5 | addrfv 42057 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑥 ∈ ℝ) → ((𝐴+𝑟𝐵)‘𝑥) = ((𝐴‘𝑥) + (𝐵‘𝑥))) | |
6 | addrfv 42057 | . . . . . . 7 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐴 ∈ 𝐶 ∧ 𝑥 ∈ ℝ) → ((𝐵+𝑟𝐴)‘𝑥) = ((𝐵‘𝑥) + (𝐴‘𝑥))) | |
7 | 6 | 3com12 1122 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑥 ∈ ℝ) → ((𝐵+𝑟𝐴)‘𝑥) = ((𝐵‘𝑥) + (𝐴‘𝑥))) |
8 | 4, 5, 7 | 3eqtr4a 2806 | . . . . 5 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑥 ∈ ℝ) → ((𝐴+𝑟𝐵)‘𝑥) = ((𝐵+𝑟𝐴)‘𝑥)) |
9 | 8 | 3expia 1120 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝑥 ∈ ℝ → ((𝐴+𝑟𝐵)‘𝑥) = ((𝐵+𝑟𝐴)‘𝑥))) |
10 | 9 | ralrimiv 3109 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ∀𝑥 ∈ ℝ ((𝐴+𝑟𝐵)‘𝑥) = ((𝐵+𝑟𝐴)‘𝑥)) |
11 | eqfnfv 6906 | . . 3 ⊢ (((𝐴+𝑟𝐵) Fn ℝ ∧ (𝐵+𝑟𝐴) Fn ℝ) → ((𝐴+𝑟𝐵) = (𝐵+𝑟𝐴) ↔ ∀𝑥 ∈ ℝ ((𝐴+𝑟𝐵)‘𝑥) = ((𝐵+𝑟𝐴)‘𝑥))) | |
12 | 10, 11 | syl5ibrcom 246 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (((𝐴+𝑟𝐵) Fn ℝ ∧ (𝐵+𝑟𝐴) Fn ℝ) → (𝐴+𝑟𝐵) = (𝐵+𝑟𝐴))) |
13 | 1, 3, 12 | mp2and 696 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴+𝑟𝐵) = (𝐵+𝑟𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ∀wral 3066 Fn wfn 6427 ‘cfv 6432 (class class class)co 7271 ℝcr 10871 + caddc 10875 +𝑟cplusr 42045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-addf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7274 df-oprab 7275 df-mpo 7276 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-pnf 11012 df-mnf 11013 df-ltxr 11015 df-addr 42051 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |