Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  addrcom Structured version   Visualization version   GIF version

Theorem addrcom 44471
Description: Vector addition is commutative. (Contributed by Andrew Salmon, 28-Jan-2012.)
Assertion
Ref Expression
addrcom ((𝐴𝐶𝐵𝐷) → (𝐴+𝑟𝐵) = (𝐵+𝑟𝐴))

Proof of Theorem addrcom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 addrfn 44468 . 2 ((𝐴𝐶𝐵𝐷) → (𝐴+𝑟𝐵) Fn ℝ)
2 addrfn 44468 . . 3 ((𝐵𝐷𝐴𝐶) → (𝐵+𝑟𝐴) Fn ℝ)
32ancoms 458 . 2 ((𝐴𝐶𝐵𝐷) → (𝐵+𝑟𝐴) Fn ℝ)
4 addcomgi 44452 . . . . . 6 ((𝐴𝑥) + (𝐵𝑥)) = ((𝐵𝑥) + (𝐴𝑥))
5 addrfv 44465 . . . . . 6 ((𝐴𝐶𝐵𝐷𝑥 ∈ ℝ) → ((𝐴+𝑟𝐵)‘𝑥) = ((𝐴𝑥) + (𝐵𝑥)))
6 addrfv 44465 . . . . . . 7 ((𝐵𝐷𝐴𝐶𝑥 ∈ ℝ) → ((𝐵+𝑟𝐴)‘𝑥) = ((𝐵𝑥) + (𝐴𝑥)))
763com12 1122 . . . . . 6 ((𝐴𝐶𝐵𝐷𝑥 ∈ ℝ) → ((𝐵+𝑟𝐴)‘𝑥) = ((𝐵𝑥) + (𝐴𝑥)))
84, 5, 73eqtr4a 2801 . . . . 5 ((𝐴𝐶𝐵𝐷𝑥 ∈ ℝ) → ((𝐴+𝑟𝐵)‘𝑥) = ((𝐵+𝑟𝐴)‘𝑥))
983expia 1120 . . . 4 ((𝐴𝐶𝐵𝐷) → (𝑥 ∈ ℝ → ((𝐴+𝑟𝐵)‘𝑥) = ((𝐵+𝑟𝐴)‘𝑥)))
109ralrimiv 3143 . . 3 ((𝐴𝐶𝐵𝐷) → ∀𝑥 ∈ ℝ ((𝐴+𝑟𝐵)‘𝑥) = ((𝐵+𝑟𝐴)‘𝑥))
11 eqfnfv 7051 . . 3 (((𝐴+𝑟𝐵) Fn ℝ ∧ (𝐵+𝑟𝐴) Fn ℝ) → ((𝐴+𝑟𝐵) = (𝐵+𝑟𝐴) ↔ ∀𝑥 ∈ ℝ ((𝐴+𝑟𝐵)‘𝑥) = ((𝐵+𝑟𝐴)‘𝑥)))
1210, 11syl5ibrcom 247 . 2 ((𝐴𝐶𝐵𝐷) → (((𝐴+𝑟𝐵) Fn ℝ ∧ (𝐵+𝑟𝐴) Fn ℝ) → (𝐴+𝑟𝐵) = (𝐵+𝑟𝐴)))
131, 3, 12mp2and 699 1 ((𝐴𝐶𝐵𝐷) → (𝐴+𝑟𝐵) = (𝐵+𝑟𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059   Fn wfn 6558  cfv 6563  (class class class)co 7431  cr 11152   + caddc 11156  +𝑟cplusr 44453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-ltxr 11298  df-addr 44459
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator