| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > addrcom | Structured version Visualization version GIF version | ||
| Description: Vector addition is commutative. (Contributed by Andrew Salmon, 28-Jan-2012.) |
| Ref | Expression |
|---|---|
| addrcom | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴+𝑟𝐵) = (𝐵+𝑟𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addrfn 44436 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴+𝑟𝐵) Fn ℝ) | |
| 2 | addrfn 44436 | . . 3 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐴 ∈ 𝐶) → (𝐵+𝑟𝐴) Fn ℝ) | |
| 3 | 2 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐵+𝑟𝐴) Fn ℝ) |
| 4 | addcomgi 44420 | . . . . . 6 ⊢ ((𝐴‘𝑥) + (𝐵‘𝑥)) = ((𝐵‘𝑥) + (𝐴‘𝑥)) | |
| 5 | addrfv 44433 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑥 ∈ ℝ) → ((𝐴+𝑟𝐵)‘𝑥) = ((𝐴‘𝑥) + (𝐵‘𝑥))) | |
| 6 | addrfv 44433 | . . . . . . 7 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐴 ∈ 𝐶 ∧ 𝑥 ∈ ℝ) → ((𝐵+𝑟𝐴)‘𝑥) = ((𝐵‘𝑥) + (𝐴‘𝑥))) | |
| 7 | 6 | 3com12 1123 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑥 ∈ ℝ) → ((𝐵+𝑟𝐴)‘𝑥) = ((𝐵‘𝑥) + (𝐴‘𝑥))) |
| 8 | 4, 5, 7 | 3eqtr4a 2795 | . . . . 5 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑥 ∈ ℝ) → ((𝐴+𝑟𝐵)‘𝑥) = ((𝐵+𝑟𝐴)‘𝑥)) |
| 9 | 8 | 3expia 1121 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝑥 ∈ ℝ → ((𝐴+𝑟𝐵)‘𝑥) = ((𝐵+𝑟𝐴)‘𝑥))) |
| 10 | 9 | ralrimiv 3132 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ∀𝑥 ∈ ℝ ((𝐴+𝑟𝐵)‘𝑥) = ((𝐵+𝑟𝐴)‘𝑥)) |
| 11 | eqfnfv 7032 | . . 3 ⊢ (((𝐴+𝑟𝐵) Fn ℝ ∧ (𝐵+𝑟𝐴) Fn ℝ) → ((𝐴+𝑟𝐵) = (𝐵+𝑟𝐴) ↔ ∀𝑥 ∈ ℝ ((𝐴+𝑟𝐵)‘𝑥) = ((𝐵+𝑟𝐴)‘𝑥))) | |
| 12 | 10, 11 | syl5ibrcom 247 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (((𝐴+𝑟𝐵) Fn ℝ ∧ (𝐵+𝑟𝐴) Fn ℝ) → (𝐴+𝑟𝐵) = (𝐵+𝑟𝐴))) |
| 13 | 1, 3, 12 | mp2and 699 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴+𝑟𝐵) = (𝐵+𝑟𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3050 Fn wfn 6537 ‘cfv 6542 (class class class)co 7414 ℝcr 11137 + caddc 11141 +𝑟cplusr 44421 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-addf 11217 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-po 5574 df-so 5575 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11280 df-mnf 11281 df-ltxr 11283 df-addr 44427 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |