MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-q Structured version   Visualization version   GIF version

Definition df-q 12932
Description: Define the set of rational numbers. Based on definition of rationals in [Apostol] p. 22. See elq 12933 for the relation "is rational". (Contributed by NM, 8-Jan-2002.)
Assertion
Ref Expression
df-q ℚ = ( / “ (ℤ × ℕ))

Detailed syntax breakdown of Definition df-q
StepHypRef Expression
1 cq 12931 . 2 class
2 cdiv 11870 . . 3 class /
3 cz 12557 . . . 4 class
4 cn 12211 . . . 4 class
53, 4cxp 5665 . . 3 class (ℤ × ℕ)
62, 5cima 5670 . 2 class ( / “ (ℤ × ℕ))
71, 6wceq 1533 1 wff ℚ = ( / “ (ℤ × ℕ))
Colors of variables: wff setvar class
This definition is referenced by:  elq  12933
  Copyright terms: Public domain W3C validator