![]() |
Metamath
Proof Explorer Theorem List (p. 130 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | halfthird 12901 | Half minus a third. (Contributed by Scott Fenton, 8-Jul-2015.) |
⊢ ((1 / 2) − (1 / 3)) = (1 / 6) | ||
Theorem | 5recm6rec 12902 | One fifth minus one sixth. (Contributed by Scott Fenton, 9-Jan-2017.) |
⊢ ((1 / 5) − (1 / 6)) = (1 / ;30) | ||
Syntax | cuz 12903 | Extend class notation with the upper integer function. Read "ℤ≥‘𝑀 " as "the set of integers greater than or equal to 𝑀". |
class ℤ≥ | ||
Definition | df-uz 12904* | Define a function whose value at 𝑗 is the semi-infinite set of contiguous integers starting at 𝑗, which we will also call the upper integers starting at 𝑗. Read "ℤ≥‘𝑀 " as "the set of integers greater than or equal to 𝑀". See uzval 12905 for its value, uzssz 12924 for its relationship to ℤ, nnuz 12946 and nn0uz 12945 for its relationships to ℕ and ℕ0, and eluz1 12907 and eluz2 12909 for its membership relations. (Contributed by NM, 5-Sep-2005.) |
⊢ ℤ≥ = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘}) | ||
Theorem | uzval 12905* | The value of the upper integers function. (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ (𝑁 ∈ ℤ → (ℤ≥‘𝑁) = {𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘}) | ||
Theorem | uzf 12906 | The domain and codomain of the upper integers function. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ ℤ≥:ℤ⟶𝒫 ℤ | ||
Theorem | eluz1 12907 | Membership in the upper set of integers starting at 𝑀. (Contributed by NM, 5-Sep-2005.) |
⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) | ||
Theorem | eluzel2 12908 | Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | ||
Theorem | eluz2 12909 | Membership in an upper set of integers. We use the fact that a function's value (under our function value definition) is empty outside of its domain to show 𝑀 ∈ ℤ. (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | ||
Theorem | eluzmn 12910 | Membership in an earlier upper set of integers. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑀 ∈ (ℤ≥‘(𝑀 − 𝑁))) | ||
Theorem | eluz1i 12911 | Membership in an upper set of integers. (Contributed by NM, 5-Sep-2005.) |
⊢ 𝑀 ∈ ℤ ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | ||
Theorem | eluzuzle 12912 | An integer in an upper set of integers is an element of an upper set of integers with a smaller bound. (Contributed by Alexander van der Vekens, 17-Jun-2018.) |
⊢ ((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) → (𝐶 ∈ (ℤ≥‘𝐴) → 𝐶 ∈ (ℤ≥‘𝐵))) | ||
Theorem | eluzelz 12913 | A member of an upper set of integers is an integer. (Contributed by NM, 6-Sep-2005.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | ||
Theorem | eluzelre 12914 | A member of an upper set of integers is a real. (Contributed by Mario Carneiro, 31-Aug-2013.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) | ||
Theorem | eluzelcn 12915 | A member of an upper set of integers is a complex number. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℂ) | ||
Theorem | eluzle 12916 | Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) | ||
Theorem | eluz 12917 | Membership in an upper set of integers. (Contributed by NM, 2-Oct-2005.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) | ||
Theorem | uzid 12918 | Membership of the least member in an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | ||
Theorem | uzidd 12919 | Membership of the least member in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) ⇒ ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) | ||
Theorem | uzn0 12920 | The upper integers are all nonempty. (Contributed by Mario Carneiro, 16-Jan-2014.) |
⊢ (𝑀 ∈ ran ℤ≥ → 𝑀 ≠ ∅) | ||
Theorem | uztrn 12921 | Transitive law for sets of upper integers. (Contributed by NM, 20-Sep-2005.) |
⊢ ((𝑀 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝑁)) | ||
Theorem | uztrn2 12922 | Transitive law for sets of upper integers. (Contributed by Mario Carneiro, 26-Dec-2013.) |
⊢ 𝑍 = (ℤ≥‘𝐾) ⇒ ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ 𝑍) | ||
Theorem | uzneg 12923 | Contraposition law for upper integers. (Contributed by NM, 28-Nov-2005.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → -𝑀 ∈ (ℤ≥‘-𝑁)) | ||
Theorem | uzssz 12924 | An upper set of integers is a subset of all integers. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ (ℤ≥‘𝑀) ⊆ ℤ | ||
Theorem | uzssre 12925 | An upper set of integers is a subset of the reals. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (ℤ≥‘𝑀) ⊆ ℝ | ||
Theorem | uzss 12926 | Subset relationship for two sets of upper integers. (Contributed by NM, 5-Sep-2005.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) | ||
Theorem | uztric 12927 | Totality of the ordering relation on integers, stated in terms of upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 25-Jun-2013.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ∨ 𝑀 ∈ (ℤ≥‘𝑁))) | ||
Theorem | uz11 12928 | The upper integers function is one-to-one. (Contributed by NM, 12-Dec-2005.) |
⊢ (𝑀 ∈ ℤ → ((ℤ≥‘𝑀) = (ℤ≥‘𝑁) ↔ 𝑀 = 𝑁)) | ||
Theorem | eluzp1m1 12929 | Membership in the next upper set of integers. (Contributed by NM, 12-Sep-2005.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ≥‘𝑀)) | ||
Theorem | eluzp1l 12930 | Strict ordering implied by membership in the next upper set of integers. (Contributed by NM, 12-Sep-2005.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑀 < 𝑁) | ||
Theorem | eluzp1p1 12931 | Membership in the next upper set of integers. (Contributed by NM, 5-Oct-2005.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘(𝑀 + 1))) | ||
Theorem | eluzadd 12932 | Membership in a later upper set of integers. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by SN, 7-Feb-2025.) |
⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ (ℤ≥‘(𝑀 + 𝐾))) | ||
Theorem | eluzsub 12933 | Membership in an earlier upper set of integers. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by SN, 7-Feb-2025.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → (𝑁 − 𝐾) ∈ (ℤ≥‘𝑀)) | ||
Theorem | eluzaddi 12934 | Membership in a later upper set of integers. (Contributed by Paul Chapman, 22-Nov-2007.) Shorten and remove 𝑀 ∈ ℤ hypothesis. (Revised by SN, 7-Feb-2025.) |
⊢ 𝐾 ∈ ℤ ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝐾) ∈ (ℤ≥‘(𝑀 + 𝐾))) | ||
Theorem | eluzaddiOLD 12935 | Obsolete version of eluzaddi 12934 as of 7-Feb-2025. (Contributed by Paul Chapman, 22-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝑀 ∈ ℤ & ⊢ 𝐾 ∈ ℤ ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝐾) ∈ (ℤ≥‘(𝑀 + 𝐾))) | ||
Theorem | eluzsubi 12936 | Membership in an earlier upper set of integers. (Contributed by Paul Chapman, 22-Nov-2007.) (Proof shortened by SN, 7-Feb-2025.) |
⊢ 𝑀 ∈ ℤ & ⊢ 𝐾 ∈ ℤ ⇒ ⊢ (𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾)) → (𝑁 − 𝐾) ∈ (ℤ≥‘𝑀)) | ||
Theorem | eluzsubiOLD 12937 | Obsolete version of eluzsubi 12936 as of 7-Feb-2025. (Contributed by Paul Chapman, 22-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝑀 ∈ ℤ & ⊢ 𝐾 ∈ ℤ ⇒ ⊢ (𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾)) → (𝑁 − 𝐾) ∈ (ℤ≥‘𝑀)) | ||
Theorem | eluzaddOLD 12938 | Obsolete version of eluzadd 12932 as of 7-Feb-2025. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ (ℤ≥‘(𝑀 + 𝐾))) | ||
Theorem | eluzsubOLD 12939 | Obsolete version of eluzsub 12933 as of 7-Feb-2025. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → (𝑁 − 𝐾) ∈ (ℤ≥‘𝑀)) | ||
Theorem | subeluzsub 12940 | Membership of a difference in an earlier upper set of integers. (Contributed by AV, 10-May-2022.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → (𝑀 − 𝐾) ∈ (ℤ≥‘(𝑀 − 𝑁))) | ||
Theorem | uzm1 12941 | Choices for an element of an upper interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ≥‘𝑀))) | ||
Theorem | uznn0sub 12942 | The nonnegative difference of integers is a nonnegative integer. (Contributed by NM, 4-Sep-2005.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 − 𝑀) ∈ ℕ0) | ||
Theorem | uzin 12943 | Intersection of two upper intervals of integers. (Contributed by Mario Carneiro, 24-Dec-2013.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((ℤ≥‘𝑀) ∩ (ℤ≥‘𝑁)) = (ℤ≥‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) | ||
Theorem | uzp1 12944 | Choices for an element of an upper interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ 𝑁 ∈ (ℤ≥‘(𝑀 + 1)))) | ||
Theorem | nn0uz 12945 | Nonnegative integers expressed as an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
⊢ ℕ0 = (ℤ≥‘0) | ||
Theorem | nnuz 12946 | Positive integers expressed as an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
⊢ ℕ = (ℤ≥‘1) | ||
Theorem | elnnuz 12947 | A positive integer expressed as a member of an upper set of integers. (Contributed by NM, 6-Jun-2006.) |
⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) | ||
Theorem | elnn0uz 12948 | A nonnegative integer expressed as a member an upper set of integers. (Contributed by NM, 6-Jun-2006.) |
⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (ℤ≥‘0)) | ||
Theorem | eluz2nn 12949 | An integer greater than or equal to 2 is a positive integer. (Contributed by AV, 3-Nov-2018.) |
⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℕ) | ||
Theorem | eluz4eluz2 12950 | An integer greater than or equal to 4 is an integer greater than or equal to 2. (Contributed by AV, 30-May-2023.) |
⊢ (𝑋 ∈ (ℤ≥‘4) → 𝑋 ∈ (ℤ≥‘2)) | ||
Theorem | eluz4nn 12951 | An integer greater than or equal to 4 is a positive integer. (Contributed by AV, 30-May-2023.) |
⊢ (𝑋 ∈ (ℤ≥‘4) → 𝑋 ∈ ℕ) | ||
Theorem | eluzge2nn0 12952 | If an integer is greater than or equal to 2, then it is a nonnegative integer. (Contributed by AV, 27-Aug-2018.) (Proof shortened by AV, 3-Nov-2018.) |
⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ0) | ||
Theorem | eluz2n0 12953 | An integer greater than or equal to 2 is not 0. (Contributed by AV, 25-May-2020.) |
⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ≠ 0) | ||
Theorem | uzuzle23 12954 | An integer in the upper set of integers starting at 3 is element of the upper set of integers starting at 2. (Contributed by Alexander van der Vekens, 17-Sep-2018.) |
⊢ (𝐴 ∈ (ℤ≥‘3) → 𝐴 ∈ (ℤ≥‘2)) | ||
Theorem | eluzge3nn 12955 | If an integer is greater than 3, then it is a positive integer. (Contributed by Alexander van der Vekens, 17-Sep-2018.) |
⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℕ) | ||
Theorem | uz3m2nn 12956 | An integer greater than or equal to 3 decreased by 2 is a positive integer, analogous to uz2m1nn 12988. (Contributed by Alexander van der Vekens, 17-Sep-2018.) |
⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑁 − 2) ∈ ℕ) | ||
Theorem | 1eluzge0 12957 | 1 is an integer greater than or equal to 0. (Contributed by Alexander van der Vekens, 8-Jun-2018.) |
⊢ 1 ∈ (ℤ≥‘0) | ||
Theorem | 2eluzge0 12958 | 2 is an integer greater than or equal to 0. (Contributed by Alexander van der Vekens, 8-Jun-2018.) (Proof shortened by OpenAI, 25-Mar-2020.) |
⊢ 2 ∈ (ℤ≥‘0) | ||
Theorem | 2eluzge1 12959 | 2 is an integer greater than or equal to 1. (Contributed by Alexander van der Vekens, 8-Jun-2018.) |
⊢ 2 ∈ (ℤ≥‘1) | ||
Theorem | uznnssnn 12960 | The upper integers starting from a natural are a subset of the naturals. (Contributed by Scott Fenton, 29-Jun-2013.) |
⊢ (𝑁 ∈ ℕ → (ℤ≥‘𝑁) ⊆ ℕ) | ||
Theorem | raluz 12961* | Restricted universal quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.) |
⊢ (𝑀 ∈ ℤ → (∀𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ ∀𝑛 ∈ ℤ (𝑀 ≤ 𝑛 → 𝜑))) | ||
Theorem | raluz2 12962* | Restricted universal quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.) |
⊢ (∀𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ (𝑀 ∈ ℤ → ∀𝑛 ∈ ℤ (𝑀 ≤ 𝑛 → 𝜑))) | ||
Theorem | rexuz 12963* | Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.) |
⊢ (𝑀 ∈ ℤ → (∃𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ ∃𝑛 ∈ ℤ (𝑀 ≤ 𝑛 ∧ 𝜑))) | ||
Theorem | rexuz2 12964* | Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.) |
⊢ (∃𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ (𝑀 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑀 ≤ 𝑛 ∧ 𝜑))) | ||
Theorem | 2rexuz 12965* | Double existential quantification in an upper set of integers. (Contributed by NM, 3-Nov-2005.) |
⊢ (∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)𝜑 ↔ ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝑚 ≤ 𝑛 ∧ 𝜑)) | ||
Theorem | peano2uz 12966 | Second Peano postulate for an upper set of integers. (Contributed by NM, 7-Sep-2005.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) | ||
Theorem | peano2uzs 12967 | Second Peano postulate for an upper set of integers. (Contributed by Mario Carneiro, 26-Dec-2013.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑁 ∈ 𝑍 → (𝑁 + 1) ∈ 𝑍) | ||
Theorem | peano2uzr 12968 | Reversed second Peano axiom for upper integers. (Contributed by NM, 2-Jan-2006.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑁 ∈ (ℤ≥‘𝑀)) | ||
Theorem | uzaddcl 12969 | Addition closure law for an upper set of integers. (Contributed by NM, 4-Jun-2006.) |
⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℕ0) → (𝑁 + 𝐾) ∈ (ℤ≥‘𝑀)) | ||
Theorem | nn0pzuz 12970 | The sum of a nonnegative integer and an integer is an integer greater than or equal to that integer. (Contributed by Alexander van der Vekens, 3-Oct-2018.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑍 ∈ ℤ) → (𝑁 + 𝑍) ∈ (ℤ≥‘𝑍)) | ||
Theorem | uzind4 12971* | Induction on the upper set of integers that starts at an integer 𝑀. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 7-Sep-2005.) |
⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) & ⊢ (𝑀 ∈ ℤ → 𝜓) & ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝜒 → 𝜃)) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜏) | ||
Theorem | uzind4ALT 12972* | Induction on the upper set of integers that starts at an integer 𝑀. The last four hypotheses give us the substitution instances we need; the first two are the basis and the induction step. Either uzind4 12971 or uzind4ALT 12972 may be used; see comment for nnind 12311. (Contributed by NM, 7-Sep-2005.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝑀 ∈ ℤ → 𝜓) & ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝜒 → 𝜃)) & ⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜏) | ||
Theorem | uzind4s 12973* | Induction on the upper set of integers that starts at an integer 𝑀, using explicit substitution. The hypotheses are the basis and the induction step. (Contributed by NM, 4-Nov-2005.) |
⊢ (𝑀 ∈ ℤ → [𝑀 / 𝑘]𝜑) & ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝜑 → [(𝑘 + 1) / 𝑘]𝜑)) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → [𝑁 / 𝑘]𝜑) | ||
Theorem | uzind4s2 12974* | Induction on the upper set of integers that starts at an integer 𝑀, using explicit substitution. The hypotheses are the basis and the induction step. Use this instead of uzind4s 12973 when 𝑗 and 𝑘 must be distinct in [(𝑘 + 1) / 𝑗]𝜑. (Contributed by NM, 16-Nov-2005.) |
⊢ (𝑀 ∈ ℤ → [𝑀 / 𝑗]𝜑) & ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → ([𝑘 / 𝑗]𝜑 → [(𝑘 + 1) / 𝑗]𝜑)) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → [𝑁 / 𝑗]𝜑) | ||
Theorem | uzind4i 12975* | Induction on the upper integers that start at 𝑀. The first four give us the substitution instances we need, and the last two are the basis and the induction step. This is a stronger version of uzind4 12971 assuming that 𝜓 holds unconditionally. Notice that 𝑁 ∈ (ℤ≥‘𝑀) implies that the lower bound 𝑀 is an integer (𝑀 ∈ ℤ, see eluzel2 12908). (Contributed by NM, 4-Sep-2005.) (Revised by AV, 13-Jul-2022.) |
⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝜒 → 𝜃)) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜏) | ||
Theorem | uzwo 12976* | Well-ordering principle: any nonempty subset of an upper set of integers has a least element. (Contributed by NM, 8-Oct-2005.) |
⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ 𝑆 ≠ ∅) → ∃𝑗 ∈ 𝑆 ∀𝑘 ∈ 𝑆 𝑗 ≤ 𝑘) | ||
Theorem | uzwo2 12977* | Well-ordering principle: any nonempty subset of an upper set of integers has a unique least element. (Contributed by NM, 8-Oct-2005.) |
⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ 𝑆 ≠ ∅) → ∃!𝑗 ∈ 𝑆 ∀𝑘 ∈ 𝑆 𝑗 ≤ 𝑘) | ||
Theorem | nnwo 12978* | Well-ordering principle: any nonempty set of positive integers has a least element. Theorem I.37 (well-ordering principle) of [Apostol] p. 34. (Contributed by NM, 17-Aug-2001.) |
⊢ ((𝐴 ⊆ ℕ ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) | ||
Theorem | nnwof 12979* | Well-ordering principle: any nonempty set of positive integers has a least element. This version allows 𝑥 and 𝑦 to be present in 𝐴 as long as they are effectively not free. (Contributed by NM, 17-Aug-2001.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 ⇒ ⊢ ((𝐴 ⊆ ℕ ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) | ||
Theorem | nnwos 12980* | Well-ordering principle: any nonempty set of positive integers has a least element (schema form). (Contributed by NM, 17-Aug-2001.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ ℕ 𝜑 → ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦))) | ||
Theorem | indstr 12981* | Strong Mathematical Induction for positive integers (inference schema). (Contributed by NM, 17-Aug-2001.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑)) ⇒ ⊢ (𝑥 ∈ ℕ → 𝜑) | ||
Theorem | eluznn0 12982 | Membership in a nonnegative upper set of integers implies membership in ℕ0. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℕ0) | ||
Theorem | eluznn 12983 | Membership in a positive upper set of integers implies membership in ℕ. (Contributed by JJ, 1-Oct-2018.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℕ) | ||
Theorem | eluz2b1 12984 | Two ways to say "an integer greater than or equal to 2". (Contributed by Paul Chapman, 23-Nov-2012.) |
⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℤ ∧ 1 < 𝑁)) | ||
Theorem | eluz2gt1 12985 | An integer greater than or equal to 2 is greater than 1. (Contributed by AV, 24-May-2020.) |
⊢ (𝑁 ∈ (ℤ≥‘2) → 1 < 𝑁) | ||
Theorem | eluz2b2 12986 | Two ways to say "an integer greater than or equal to 2". (Contributed by Paul Chapman, 23-Nov-2012.) |
⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁)) | ||
Theorem | eluz2b3 12987 | Two ways to say "an integer greater than or equal to 2". (Contributed by Paul Chapman, 23-Nov-2012.) |
⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1)) | ||
Theorem | uz2m1nn 12988 | One less than an integer greater than or equal to 2 is a positive integer. (Contributed by Paul Chapman, 17-Nov-2012.) |
⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 1) ∈ ℕ) | ||
Theorem | 1nuz2 12989 | 1 is not in (ℤ≥‘2). (Contributed by Paul Chapman, 21-Nov-2012.) |
⊢ ¬ 1 ∈ (ℤ≥‘2) | ||
Theorem | elnn1uz2 12990 | A positive integer is either 1 or greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012.) |
⊢ (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2))) | ||
Theorem | uz2mulcl 12991 | Closure of multiplication of integers greater than or equal to 2. (Contributed by Paul Chapman, 26-Oct-2012.) |
⊢ ((𝑀 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑀 · 𝑁) ∈ (ℤ≥‘2)) | ||
Theorem | indstr2 12992* | Strong Mathematical Induction for positive integers (inference schema). The first two hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 21-Nov-2012.) |
⊢ (𝑥 = 1 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ 𝜒 & ⊢ (𝑥 ∈ (ℤ≥‘2) → (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑)) ⇒ ⊢ (𝑥 ∈ ℕ → 𝜑) | ||
Theorem | uzinfi 12993 | Extract the lower bound of an upper set of integers as its infimum. (Contributed by NM, 7-Oct-2005.) (Revised by AV, 4-Sep-2020.) |
⊢ 𝑀 ∈ ℤ ⇒ ⊢ inf((ℤ≥‘𝑀), ℝ, < ) = 𝑀 | ||
Theorem | nninf 12994 | The infimum of the set of positive integers is one. (Contributed by NM, 16-Jun-2005.) (Revised by AV, 5-Sep-2020.) |
⊢ inf(ℕ, ℝ, < ) = 1 | ||
Theorem | nn0inf 12995 | The infimum of the set of nonnegative integers is zero. (Contributed by NM, 16-Jun-2005.) (Revised by AV, 5-Sep-2020.) |
⊢ inf(ℕ0, ℝ, < ) = 0 | ||
Theorem | infssuzle 12996 | The infimum of a subset of an upper set of integers is less than or equal to all members of the subset. (Contributed by NM, 11-Oct-2005.) (Revised by AV, 5-Sep-2020.) |
⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ 𝐴 ∈ 𝑆) → inf(𝑆, ℝ, < ) ≤ 𝐴) | ||
Theorem | infssuzcl 12997 | The infimum of a subset of an upper set of integers belongs to the subset. (Contributed by NM, 11-Oct-2005.) (Revised by AV, 5-Sep-2020.) |
⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ 𝑆 ≠ ∅) → inf(𝑆, ℝ, < ) ∈ 𝑆) | ||
Theorem | ublbneg 12998* | The image under negation of a bounded-above set of reals is bounded below. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}𝑥 ≤ 𝑦) | ||
Theorem | eqreznegel 12999* | Two ways to express the image under negation of a set of integers. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ (𝐴 ⊆ ℤ → {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} = {𝑧 ∈ ℤ ∣ -𝑧 ∈ 𝐴}) | ||
Theorem | supminf 13000* | The supremum of a bounded-above set of reals is the negation of the infimum of that set's image under negation. (Contributed by Paul Chapman, 21-Mar-2011.) ( Revised by AV, 13-Sep-2020.) |
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ, < ) = -inf({𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}, ℝ, < )) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |