| Metamath
Proof Explorer Theorem List (p. 130 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | eluzge2nn0 12901 | If an integer is greater than or equal to 2, then it is a nonnegative integer. (Contributed by AV, 27-Aug-2018.) (Proof shortened by AV, 3-Nov-2018.) |
| ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ0) | ||
| Theorem | eluz2n0 12902 | An integer greater than or equal to 2 is not 0. (Contributed by AV, 25-May-2020.) |
| ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ≠ 0) | ||
| Theorem | uzuzle23 12903 | An integer in the upper set of integers starting at 3 is element of the upper set of integers starting at 2. (Contributed by Alexander van der Vekens, 17-Sep-2018.) |
| ⊢ (𝐴 ∈ (ℤ≥‘3) → 𝐴 ∈ (ℤ≥‘2)) | ||
| Theorem | eluzge3nn 12904 | If an integer is greater than 3, then it is a positive integer. (Contributed by Alexander van der Vekens, 17-Sep-2018.) |
| ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℕ) | ||
| Theorem | uz3m2nn 12905 | An integer greater than or equal to 3 decreased by 2 is a positive integer, analogous to uz2m1nn 12937. (Contributed by Alexander van der Vekens, 17-Sep-2018.) |
| ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑁 − 2) ∈ ℕ) | ||
| Theorem | 1eluzge0 12906 | 1 is an integer greater than or equal to 0. (Contributed by Alexander van der Vekens, 8-Jun-2018.) |
| ⊢ 1 ∈ (ℤ≥‘0) | ||
| Theorem | 2eluzge0 12907 | 2 is an integer greater than or equal to 0. (Contributed by Alexander van der Vekens, 8-Jun-2018.) (Proof shortened by OpenAI, 25-Mar-2020.) |
| ⊢ 2 ∈ (ℤ≥‘0) | ||
| Theorem | 2eluzge1 12908 | 2 is an integer greater than or equal to 1. (Contributed by Alexander van der Vekens, 8-Jun-2018.) |
| ⊢ 2 ∈ (ℤ≥‘1) | ||
| Theorem | uznnssnn 12909 | The upper integers starting from a natural are a subset of the naturals. (Contributed by Scott Fenton, 29-Jun-2013.) |
| ⊢ (𝑁 ∈ ℕ → (ℤ≥‘𝑁) ⊆ ℕ) | ||
| Theorem | raluz 12910* | Restricted universal quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.) |
| ⊢ (𝑀 ∈ ℤ → (∀𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ ∀𝑛 ∈ ℤ (𝑀 ≤ 𝑛 → 𝜑))) | ||
| Theorem | raluz2 12911* | Restricted universal quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.) |
| ⊢ (∀𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ (𝑀 ∈ ℤ → ∀𝑛 ∈ ℤ (𝑀 ≤ 𝑛 → 𝜑))) | ||
| Theorem | rexuz 12912* | Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.) |
| ⊢ (𝑀 ∈ ℤ → (∃𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ ∃𝑛 ∈ ℤ (𝑀 ≤ 𝑛 ∧ 𝜑))) | ||
| Theorem | rexuz2 12913* | Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.) |
| ⊢ (∃𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ (𝑀 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑀 ≤ 𝑛 ∧ 𝜑))) | ||
| Theorem | 2rexuz 12914* | Double existential quantification in an upper set of integers. (Contributed by NM, 3-Nov-2005.) |
| ⊢ (∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)𝜑 ↔ ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝑚 ≤ 𝑛 ∧ 𝜑)) | ||
| Theorem | peano2uz 12915 | Second Peano postulate for an upper set of integers. (Contributed by NM, 7-Sep-2005.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) | ||
| Theorem | peano2uzs 12916 | Second Peano postulate for an upper set of integers. (Contributed by Mario Carneiro, 26-Dec-2013.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑁 ∈ 𝑍 → (𝑁 + 1) ∈ 𝑍) | ||
| Theorem | peano2uzr 12917 | Reversed second Peano axiom for upper integers. (Contributed by NM, 2-Jan-2006.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑁 ∈ (ℤ≥‘𝑀)) | ||
| Theorem | uzaddcl 12918 | Addition closure law for an upper set of integers. (Contributed by NM, 4-Jun-2006.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℕ0) → (𝑁 + 𝐾) ∈ (ℤ≥‘𝑀)) | ||
| Theorem | nn0pzuz 12919 | The sum of a nonnegative integer and an integer is an integer greater than or equal to that integer. (Contributed by Alexander van der Vekens, 3-Oct-2018.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑍 ∈ ℤ) → (𝑁 + 𝑍) ∈ (ℤ≥‘𝑍)) | ||
| Theorem | uzind4 12920* | Induction on the upper set of integers that starts at an integer 𝑀. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 7-Sep-2005.) |
| ⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) & ⊢ (𝑀 ∈ ℤ → 𝜓) & ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝜒 → 𝜃)) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜏) | ||
| Theorem | uzind4ALT 12921* | Induction on the upper set of integers that starts at an integer 𝑀. The last four hypotheses give us the substitution instances we need; the first two are the basis and the induction step. Either uzind4 12920 or uzind4ALT 12921 may be used; see comment for nnind 12256. (Contributed by NM, 7-Sep-2005.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ (𝑀 ∈ ℤ → 𝜓) & ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝜒 → 𝜃)) & ⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜏) | ||
| Theorem | uzind4s 12922* | Induction on the upper set of integers that starts at an integer 𝑀, using explicit substitution. The hypotheses are the basis and the induction step. (Contributed by NM, 4-Nov-2005.) |
| ⊢ (𝑀 ∈ ℤ → [𝑀 / 𝑘]𝜑) & ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝜑 → [(𝑘 + 1) / 𝑘]𝜑)) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → [𝑁 / 𝑘]𝜑) | ||
| Theorem | uzind4s2 12923* | Induction on the upper set of integers that starts at an integer 𝑀, using explicit substitution. The hypotheses are the basis and the induction step. Use this instead of uzind4s 12922 when 𝑗 and 𝑘 must be distinct in [(𝑘 + 1) / 𝑗]𝜑. (Contributed by NM, 16-Nov-2005.) |
| ⊢ (𝑀 ∈ ℤ → [𝑀 / 𝑗]𝜑) & ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → ([𝑘 / 𝑗]𝜑 → [(𝑘 + 1) / 𝑗]𝜑)) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → [𝑁 / 𝑗]𝜑) | ||
| Theorem | uzind4i 12924* | Induction on the upper integers that start at 𝑀. The first four give us the substitution instances we need, and the last two are the basis and the induction step. This is a stronger version of uzind4 12920 assuming that 𝜓 holds unconditionally. Notice that 𝑁 ∈ (ℤ≥‘𝑀) implies that the lower bound 𝑀 is an integer (𝑀 ∈ ℤ, see eluzel2 12855). (Contributed by NM, 4-Sep-2005.) (Revised by AV, 13-Jul-2022.) |
| ⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝜒 → 𝜃)) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜏) | ||
| Theorem | uzwo 12925* | Well-ordering principle: any nonempty subset of an upper set of integers has a least element. (Contributed by NM, 8-Oct-2005.) |
| ⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ 𝑆 ≠ ∅) → ∃𝑗 ∈ 𝑆 ∀𝑘 ∈ 𝑆 𝑗 ≤ 𝑘) | ||
| Theorem | uzwo2 12926* | Well-ordering principle: any nonempty subset of an upper set of integers has a unique least element. (Contributed by NM, 8-Oct-2005.) |
| ⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ 𝑆 ≠ ∅) → ∃!𝑗 ∈ 𝑆 ∀𝑘 ∈ 𝑆 𝑗 ≤ 𝑘) | ||
| Theorem | nnwo 12927* | Well-ordering principle: any nonempty set of positive integers has a least element. Theorem I.37 (well-ordering principle) of [Apostol] p. 34. (Contributed by NM, 17-Aug-2001.) |
| ⊢ ((𝐴 ⊆ ℕ ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) | ||
| Theorem | nnwof 12928* | Well-ordering principle: any nonempty set of positive integers has a least element. This version allows 𝑥 and 𝑦 to be present in 𝐴 as long as they are effectively not free. (Contributed by NM, 17-Aug-2001.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 ⇒ ⊢ ((𝐴 ⊆ ℕ ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) | ||
| Theorem | nnwos 12929* | Well-ordering principle: any nonempty set of positive integers has a least element (schema form). (Contributed by NM, 17-Aug-2001.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ ℕ 𝜑 → ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦))) | ||
| Theorem | indstr 12930* | Strong Mathematical Induction for positive integers (inference schema). (Contributed by NM, 17-Aug-2001.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑)) ⇒ ⊢ (𝑥 ∈ ℕ → 𝜑) | ||
| Theorem | eluznn0 12931 | Membership in a nonnegative upper set of integers implies membership in ℕ0. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℕ0) | ||
| Theorem | eluznn 12932 | Membership in a positive upper set of integers implies membership in ℕ. (Contributed by JJ, 1-Oct-2018.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℕ) | ||
| Theorem | eluz2b1 12933 | Two ways to say "an integer greater than or equal to 2". (Contributed by Paul Chapman, 23-Nov-2012.) |
| ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℤ ∧ 1 < 𝑁)) | ||
| Theorem | eluz2gt1 12934 | An integer greater than or equal to 2 is greater than 1. (Contributed by AV, 24-May-2020.) |
| ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 < 𝑁) | ||
| Theorem | eluz2b2 12935 | Two ways to say "an integer greater than or equal to 2". (Contributed by Paul Chapman, 23-Nov-2012.) |
| ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁)) | ||
| Theorem | eluz2b3 12936 | Two ways to say "an integer greater than or equal to 2". (Contributed by Paul Chapman, 23-Nov-2012.) |
| ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1)) | ||
| Theorem | uz2m1nn 12937 | One less than an integer greater than or equal to 2 is a positive integer. (Contributed by Paul Chapman, 17-Nov-2012.) |
| ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 1) ∈ ℕ) | ||
| Theorem | 1nuz2 12938 | 1 is not in (ℤ≥‘2). (Contributed by Paul Chapman, 21-Nov-2012.) |
| ⊢ ¬ 1 ∈ (ℤ≥‘2) | ||
| Theorem | elnn1uz2 12939 | A positive integer is either 1 or greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012.) |
| ⊢ (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2))) | ||
| Theorem | uz2mulcl 12940 | Closure of multiplication of integers greater than or equal to 2. (Contributed by Paul Chapman, 26-Oct-2012.) |
| ⊢ ((𝑀 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑀 · 𝑁) ∈ (ℤ≥‘2)) | ||
| Theorem | indstr2 12941* | Strong Mathematical Induction for positive integers (inference schema). The first two hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 21-Nov-2012.) |
| ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ 𝜒 & ⊢ (𝑥 ∈ (ℤ≥‘2) → (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑)) ⇒ ⊢ (𝑥 ∈ ℕ → 𝜑) | ||
| Theorem | uzinfi 12942 | Extract the lower bound of an upper set of integers as its infimum. (Contributed by NM, 7-Oct-2005.) (Revised by AV, 4-Sep-2020.) |
| ⊢ 𝑀 ∈ ℤ ⇒ ⊢ inf((ℤ≥‘𝑀), ℝ, < ) = 𝑀 | ||
| Theorem | nninf 12943 | The infimum of the set of positive integers is one. (Contributed by NM, 16-Jun-2005.) (Revised by AV, 5-Sep-2020.) |
| ⊢ inf(ℕ, ℝ, < ) = 1 | ||
| Theorem | nn0inf 12944 | The infimum of the set of nonnegative integers is zero. (Contributed by NM, 16-Jun-2005.) (Revised by AV, 5-Sep-2020.) |
| ⊢ inf(ℕ0, ℝ, < ) = 0 | ||
| Theorem | infssuzle 12945 | The infimum of a subset of an upper set of integers is less than or equal to all members of the subset. (Contributed by NM, 11-Oct-2005.) (Revised by AV, 5-Sep-2020.) |
| ⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ 𝐴 ∈ 𝑆) → inf(𝑆, ℝ, < ) ≤ 𝐴) | ||
| Theorem | infssuzcl 12946 | The infimum of a subset of an upper set of integers belongs to the subset. (Contributed by NM, 11-Oct-2005.) (Revised by AV, 5-Sep-2020.) |
| ⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ 𝑆 ≠ ∅) → inf(𝑆, ℝ, < ) ∈ 𝑆) | ||
| Theorem | ublbneg 12947* | The image under negation of a bounded-above set of reals is bounded below. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}𝑥 ≤ 𝑦) | ||
| Theorem | eqreznegel 12948* | Two ways to express the image under negation of a set of integers. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ (𝐴 ⊆ ℤ → {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} = {𝑧 ∈ ℤ ∣ -𝑧 ∈ 𝐴}) | ||
| Theorem | supminf 12949* | The supremum of a bounded-above set of reals is the negation of the infimum of that set's image under negation. (Contributed by Paul Chapman, 21-Mar-2011.) ( Revised by AV, 13-Sep-2020.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ, < ) = -inf({𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}, ℝ, < )) | ||
| Theorem | lbzbi 12950* | If a set of reals is bounded below, it is bounded below by an integer. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ (𝐴 ⊆ ℝ → (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦)) | ||
| Theorem | zsupss 12951* | Any nonempty bounded subset of integers has a supremum in the set. (The proof does not use ax-pre-sup 11205.) (Contributed by Mario Carneiro, 21-Apr-2015.) |
| ⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | ||
| Theorem | suprzcl2 12952* | The supremum of a bounded-above set of integers is a member of the set. (This version of suprzcl 12671 avoids ax-pre-sup 11205.) (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Mario Carneiro, 24-Dec-2016.) |
| ⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ, < ) ∈ 𝐴) | ||
| Theorem | suprzub 12953* | The supremum of a bounded-above set of integers is greater than any member of the set. (Contributed by Mario Carneiro, 21-Apr-2015.) |
| ⊢ ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ 𝐵 ∈ 𝐴) → 𝐵 ≤ sup(𝐴, ℝ, < )) | ||
| Theorem | uzsupss 12954* | Any bounded subset of an upper set of integers has a supremum. (Contributed by Mario Carneiro, 22-Jul-2014.) (Revised by Mario Carneiro, 21-Apr-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → ∃𝑥 ∈ 𝑍 (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ 𝑍 (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | ||
| Theorem | nn01to3 12955 | A (nonnegative) integer between 1 and 3 must be 1, 2 or 3. (Contributed by Alexander van der Vekens, 13-Sep-2018.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3) → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3)) | ||
| Theorem | nn0ge2m1nnALT 12956 | Alternate proof of nn0ge2m1nn 12569: If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. This version is proved using eluz2 12856, a theorem for upper sets of integers, which are defined later than the positive and nonnegative integers. This proof is, however, much shorter than the proof of nn0ge2m1nn 12569. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ) | ||
| Theorem | uzwo3 12957* | Well-ordering principle: any nonempty subset of an upper set of integers has a unique least element. This generalization of uzwo2 12926 allows the lower bound 𝐵 to be any real number. See also nnwo 12927 and nnwos 12929. (Contributed by NM, 12-Nov-2004.) (Proof shortened by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 27-Sep-2020.) |
| ⊢ ((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧} ∧ 𝐴 ≠ ∅)) → ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) | ||
| Theorem | zmin 12958* | There is a unique smallest integer greater than or equal to a given real number. (Contributed by NM, 12-Nov-2004.) (Revised by Mario Carneiro, 13-Jun-2014.) |
| ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝐴 ≤ 𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦))) | ||
| Theorem | zmax 12959* | There is a unique largest integer less than or equal to a given real number. (Contributed by NM, 15-Nov-2004.) |
| ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥))) | ||
| Theorem | zbtwnre 12960* | There is a unique integer between a real number and the number plus one. Exercise 5 of [Apostol] p. 28. (Contributed by NM, 13-Nov-2004.) |
| ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝐴 ≤ 𝑥 ∧ 𝑥 < (𝐴 + 1))) | ||
| Theorem | rebtwnz 12961* | There is a unique greatest integer less than or equal to a real number. Exercise 4 of [Apostol] p. 28. (Contributed by NM, 15-Nov-2004.) |
| ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) | ||
| Syntax | cq 12962 | Extend class notation to include the class of rationals. |
| class ℚ | ||
| Definition | df-q 12963 | Define the set of rational numbers. Based on definition of rationals in [Apostol] p. 22. See elq 12964 for the relation "is rational". (Contributed by NM, 8-Jan-2002.) |
| ⊢ ℚ = ( / “ (ℤ × ℕ)) | ||
| Theorem | elq 12964* | Membership in the set of rationals. (Contributed by NM, 8-Jan-2002.) (Revised by Mario Carneiro, 28-Jan-2014.) |
| ⊢ (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) | ||
| Theorem | qmulz 12965* | If 𝐴 is rational, then some integer multiple of it is an integer. (Contributed by NM, 7-Nov-2008.) (Revised by Mario Carneiro, 22-Jul-2014.) |
| ⊢ (𝐴 ∈ ℚ → ∃𝑥 ∈ ℕ (𝐴 · 𝑥) ∈ ℤ) | ||
| Theorem | znq 12966 | The ratio of an integer and a positive integer is a rational number. (Contributed by NM, 12-Jan-2002.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ) | ||
| Theorem | qre 12967 | A rational number is a real number. (Contributed by NM, 14-Nov-2002.) |
| ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℝ) | ||
| Theorem | zq 12968 | An integer is a rational number. (Contributed by NM, 9-Jan-2002.) (Proof shortened by Steven Nguyen, 23-Mar-2023.) |
| ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) | ||
| Theorem | qred 12969 | A rational number is a real number. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℚ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
| Theorem | zssq 12970 | The integers are a subset of the rationals. (Contributed by NM, 9-Jan-2002.) |
| ⊢ ℤ ⊆ ℚ | ||
| Theorem | nn0ssq 12971 | The nonnegative integers are a subset of the rationals. (Contributed by NM, 31-Jul-2004.) |
| ⊢ ℕ0 ⊆ ℚ | ||
| Theorem | nnssq 12972 | The positive integers are a subset of the rationals. (Contributed by NM, 31-Jul-2004.) |
| ⊢ ℕ ⊆ ℚ | ||
| Theorem | qssre 12973 | The rationals are a subset of the reals. (Contributed by NM, 9-Jan-2002.) |
| ⊢ ℚ ⊆ ℝ | ||
| Theorem | qsscn 12974 | The rationals are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.) |
| ⊢ ℚ ⊆ ℂ | ||
| Theorem | qex 12975 | The set of rational numbers exists. See also qexALT 12978. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ ℚ ∈ V | ||
| Theorem | nnq 12976 | A positive integer is rational. (Contributed by NM, 17-Nov-2004.) |
| ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℚ) | ||
| Theorem | qcn 12977 | A rational number is a complex number. (Contributed by NM, 2-Aug-2004.) |
| ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℂ) | ||
| Theorem | qexALT 12978 | Alternate proof of qex 12975. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 16-Jun-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ℚ ∈ V | ||
| Theorem | qaddcl 12979 | Closure of addition of rationals. (Contributed by NM, 1-Aug-2004.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 + 𝐵) ∈ ℚ) | ||
| Theorem | qnegcl 12980 | Closure law for the negative of a rational. (Contributed by NM, 2-Aug-2004.) (Revised by Mario Carneiro, 15-Sep-2014.) |
| ⊢ (𝐴 ∈ ℚ → -𝐴 ∈ ℚ) | ||
| Theorem | qmulcl 12981 | Closure of multiplication of rationals. (Contributed by NM, 1-Aug-2004.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 · 𝐵) ∈ ℚ) | ||
| Theorem | qsubcl 12982 | Closure of subtraction of rationals. (Contributed by NM, 2-Aug-2004.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 − 𝐵) ∈ ℚ) | ||
| Theorem | qreccl 12983 | Closure of reciprocal of rationals. (Contributed by NM, 3-Aug-2004.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℚ) | ||
| Theorem | qdivcl 12984 | Closure of division of rationals. (Contributed by NM, 3-Aug-2004.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℚ) | ||
| Theorem | qrevaddcl 12985 | Reverse closure law for addition of rationals. (Contributed by NM, 2-Aug-2004.) |
| ⊢ (𝐵 ∈ ℚ → ((𝐴 ∈ ℂ ∧ (𝐴 + 𝐵) ∈ ℚ) ↔ 𝐴 ∈ ℚ)) | ||
| Theorem | nnrecq 12986 | The reciprocal of a positive integer is rational. (Contributed by NM, 17-Nov-2004.) |
| ⊢ (𝐴 ∈ ℕ → (1 / 𝐴) ∈ ℚ) | ||
| Theorem | irradd 12987 | The sum of an irrational number and a rational number is irrational. (Contributed by NM, 7-Nov-2008.) |
| ⊢ ((𝐴 ∈ (ℝ ∖ ℚ) ∧ 𝐵 ∈ ℚ) → (𝐴 + 𝐵) ∈ (ℝ ∖ ℚ)) | ||
| Theorem | irrmul 12988 | The product of an irrational with a nonzero rational is irrational. (Contributed by NM, 7-Nov-2008.) |
| ⊢ ((𝐴 ∈ (ℝ ∖ ℚ) ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 · 𝐵) ∈ (ℝ ∖ ℚ)) | ||
| Theorem | elpq 12989* | A positive rational is the quotient of two positive integers. (Contributed by AV, 29-Dec-2022.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) | ||
| Theorem | elpqb 12990* | A class is a positive rational iff it is the quotient of two positive integers. (Contributed by AV, 30-Dec-2022.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 0 < 𝐴) ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) | ||
| Theorem | rpnnen1lem2 12991* | Lemma for rpnnen1 12997. (Contributed by Mario Carneiro, 12-May-2013.) |
| ⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) ⇒ ⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → sup(𝑇, ℝ, < ) ∈ ℤ) | ||
| Theorem | rpnnen1lem1 12992* | Lemma for rpnnen1 12997. (Contributed by Mario Carneiro, 12-May-2013.) (Revised by NM, 13-Aug-2021.) (Proof modification is discouraged.) |
| ⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) & ⊢ ℕ ∈ V & ⊢ ℚ ∈ V ⇒ ⊢ (𝑥 ∈ ℝ → (𝐹‘𝑥) ∈ (ℚ ↑m ℕ)) | ||
| Theorem | rpnnen1lem3 12993* | Lemma for rpnnen1 12997. (Contributed by Mario Carneiro, 12-May-2013.) (Revised by NM, 13-Aug-2021.) (Proof modification is discouraged.) |
| ⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) & ⊢ ℕ ∈ V & ⊢ ℚ ∈ V ⇒ ⊢ (𝑥 ∈ ℝ → ∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑥) | ||
| Theorem | rpnnen1lem4 12994* | Lemma for rpnnen1 12997. (Contributed by Mario Carneiro, 12-May-2013.) (Revised by NM, 13-Aug-2021.) (Proof modification is discouraged.) |
| ⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) & ⊢ ℕ ∈ V & ⊢ ℚ ∈ V ⇒ ⊢ (𝑥 ∈ ℝ → sup(ran (𝐹‘𝑥), ℝ, < ) ∈ ℝ) | ||
| Theorem | rpnnen1lem5 12995* | Lemma for rpnnen1 12997. (Contributed by Mario Carneiro, 12-May-2013.) (Revised by NM, 13-Aug-2021.) (Proof modification is discouraged.) |
| ⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) & ⊢ ℕ ∈ V & ⊢ ℚ ∈ V ⇒ ⊢ (𝑥 ∈ ℝ → sup(ran (𝐹‘𝑥), ℝ, < ) = 𝑥) | ||
| Theorem | rpnnen1lem6 12996* | Lemma for rpnnen1 12997. (Contributed by Mario Carneiro, 12-May-2013.) (Revised by NM, 15-Aug-2021.) (Proof modification is discouraged.) |
| ⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) & ⊢ ℕ ∈ V & ⊢ ℚ ∈ V ⇒ ⊢ ℝ ≼ (ℚ ↑m ℕ) | ||
| Theorem | rpnnen1 12997 | One half of rpnnen 16243, where we show an injection from the real numbers to sequences of rational numbers. Specifically, we map a real number 𝑥 to the sequence (𝐹‘𝑥):ℕ⟶ℚ (see rpnnen1lem6 12996) such that ((𝐹‘𝑥)‘𝑘) is the largest rational number with denominator 𝑘 that is strictly less than 𝑥. In this manner, we get a monotonically increasing sequence that converges to 𝑥, and since each sequence converges to a unique real number, this mapping from reals to sequences of rational numbers is injective. Note: The ℕ and ℚ existence hypotheses provide for use with either nnex 12244 and qex 12975, or nnexALT 12240 and qexALT 12978. The proof should not be modified to use any of those 4 theorems. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 16-Jun-2013.) (Revised by NM, 15-Aug-2021.) (Proof modification is discouraged.) |
| ⊢ ℕ ∈ V & ⊢ ℚ ∈ V ⇒ ⊢ ℝ ≼ (ℚ ↑m ℕ) | ||
| Theorem | reexALT 12998 | Alternate proof of reex 11218. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 23-Aug-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ℝ ∈ V | ||
| Theorem | cnref1o 12999* | There is a natural one-to-one mapping from (ℝ × ℝ) to ℂ, where we map 〈𝑥, 𝑦〉 to (𝑥 + (i · 𝑦)). In our construction of the complex numbers, this is in fact our definition of ℂ (see df-c 11133), but in the axiomatic treatment we can only show that there is the expected mapping between these two sets. (Contributed by Mario Carneiro, 16-Jun-2013.) (Revised by Mario Carneiro, 17-Feb-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) ⇒ ⊢ 𝐹:(ℝ × ℝ)–1-1-onto→ℂ | ||
| Theorem | cnexALT 13000 | The set of complex numbers exists. This theorem shows that ax-cnex 11183 is redundant if we assume ax-rep 5249. See also ax-cnex 11183. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 16-Jun-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ℂ ∈ V | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |