Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elq Structured version   Visualization version   GIF version

Theorem elq 12097
 Description: Membership in the set of rationals. (Contributed by NM, 8-Jan-2002.) (Revised by Mario Carneiro, 28-Jan-2014.)
Assertion
Ref Expression
elq (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem elq
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-q 12096 . . 3 ℚ = ( / “ (ℤ × ℕ))
21eleq2i 2851 . 2 (𝐴 ∈ ℚ ↔ 𝐴 ∈ ( / “ (ℤ × ℕ)))
3 df-div 11033 . . . 4 / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
4 riotaex 6887 . . . 4 (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) ∈ V
53, 4fnmpt2i 7519 . . 3 / Fn (ℂ × (ℂ ∖ {0}))
6 zsscn 11736 . . . 4 ℤ ⊆ ℂ
7 nncn 11383 . . . . . 6 (𝑥 ∈ ℕ → 𝑥 ∈ ℂ)
8 nnne0 11410 . . . . . 6 (𝑥 ∈ ℕ → 𝑥 ≠ 0)
9 eldifsn 4550 . . . . . 6 (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
107, 8, 9sylanbrc 578 . . . . 5 (𝑥 ∈ ℕ → 𝑥 ∈ (ℂ ∖ {0}))
1110ssriv 3825 . . . 4 ℕ ⊆ (ℂ ∖ {0})
12 xpss12 5370 . . . 4 ((ℤ ⊆ ℂ ∧ ℕ ⊆ (ℂ ∖ {0})) → (ℤ × ℕ) ⊆ (ℂ × (ℂ ∖ {0})))
136, 11, 12mp2an 682 . . 3 (ℤ × ℕ) ⊆ (ℂ × (ℂ ∖ {0}))
14 ovelimab 7089 . . 3 (( / Fn (ℂ × (ℂ ∖ {0})) ∧ (ℤ × ℕ) ⊆ (ℂ × (ℂ ∖ {0}))) → (𝐴 ∈ ( / “ (ℤ × ℕ)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)))
155, 13, 14mp2an 682 . 2 (𝐴 ∈ ( / “ (ℤ × ℕ)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
162, 15bitri 267 1 (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 198   = wceq 1601   ∈ wcel 2107   ≠ wne 2969  ∃wrex 3091   ∖ cdif 3789   ⊆ wss 3792  {csn 4398   × cxp 5353   “ cima 5358   Fn wfn 6130  ℩crio 6882  (class class class)co 6922  ℂcc 10270  0cc0 10272   · cmul 10277   / cdiv 11032  ℕcn 11374  ℤcz 11728  ℚcq 12095 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-neg 10609  df-div 11033  df-nn 11375  df-z 11729  df-q 12096 This theorem is referenced by:  qmulz  12098  znq  12099  qre  12100  zqOLD  12102  qexALT  12111  qaddcl  12112  qnegcl  12113  qmulcl  12114  qreccl  12116  elpq  12122  eirr  15337  qnnen  15346  sqrt2irr  15382  qredeu  15777  pceu  15955  pcqmul  15962  pcqcl  15965  pcneg  15982  pcz  15989  pcadd  15997  qsssubdrg  20201  ostthlem1  25768  ipasslem5  28262
 Copyright terms: Public domain W3C validator