Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elq | Structured version Visualization version GIF version |
Description: Membership in the set of rationals. (Contributed by NM, 8-Jan-2002.) (Revised by Mario Carneiro, 28-Jan-2014.) |
Ref | Expression |
---|---|
elq | ⊢ (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-q 12618 | . . 3 ⊢ ℚ = ( / “ (ℤ × ℕ)) | |
2 | 1 | eleq2i 2830 | . 2 ⊢ (𝐴 ∈ ℚ ↔ 𝐴 ∈ ( / “ (ℤ × ℕ))) |
3 | df-div 11563 | . . . 4 ⊢ / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) | |
4 | riotaex 7216 | . . . 4 ⊢ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) ∈ V | |
5 | 3, 4 | fnmpoi 7883 | . . 3 ⊢ / Fn (ℂ × (ℂ ∖ {0})) |
6 | zsscn 12257 | . . . 4 ⊢ ℤ ⊆ ℂ | |
7 | nncn 11911 | . . . . . 6 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℂ) | |
8 | nnne0 11937 | . . . . . 6 ⊢ (𝑥 ∈ ℕ → 𝑥 ≠ 0) | |
9 | eldifsn 4717 | . . . . . 6 ⊢ (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) | |
10 | 7, 8, 9 | sylanbrc 582 | . . . . 5 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ (ℂ ∖ {0})) |
11 | 10 | ssriv 3921 | . . . 4 ⊢ ℕ ⊆ (ℂ ∖ {0}) |
12 | xpss12 5595 | . . . 4 ⊢ ((ℤ ⊆ ℂ ∧ ℕ ⊆ (ℂ ∖ {0})) → (ℤ × ℕ) ⊆ (ℂ × (ℂ ∖ {0}))) | |
13 | 6, 11, 12 | mp2an 688 | . . 3 ⊢ (ℤ × ℕ) ⊆ (ℂ × (ℂ ∖ {0})) |
14 | ovelimab 7428 | . . 3 ⊢ (( / Fn (ℂ × (ℂ ∖ {0})) ∧ (ℤ × ℕ) ⊆ (ℂ × (ℂ ∖ {0}))) → (𝐴 ∈ ( / “ (ℤ × ℕ)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))) | |
15 | 5, 13, 14 | mp2an 688 | . 2 ⊢ (𝐴 ∈ ( / “ (ℤ × ℕ)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) |
16 | 2, 15 | bitri 274 | 1 ⊢ (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 ∖ cdif 3880 ⊆ wss 3883 {csn 4558 × cxp 5578 “ cima 5583 Fn wfn 6413 ℩crio 7211 (class class class)co 7255 ℂcc 10800 0cc0 10802 · cmul 10807 / cdiv 11562 ℕcn 11903 ℤcz 12249 ℚcq 12617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-neg 11138 df-div 11563 df-nn 11904 df-z 12250 df-q 12618 |
This theorem is referenced by: qmulz 12620 znq 12621 qre 12622 qexALT 12633 qaddcl 12634 qnegcl 12635 qmulcl 12636 qreccl 12638 elpq 12644 eirr 15842 qnnen 15850 sqrt2irr 15886 qredeu 16291 pceu 16475 pcqmul 16482 pcqcl 16485 pcneg 16503 pcz 16510 pcadd 16518 qsssubdrg 20569 ostthlem1 26680 ipasslem5 29098 |
Copyright terms: Public domain | W3C validator |