MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elq Structured version   Visualization version   GIF version

Theorem elq 12966
Description: Membership in the set of rationals. (Contributed by NM, 8-Jan-2002.) (Revised by Mario Carneiro, 28-Jan-2014.)
Assertion
Ref Expression
elq (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem elq
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-q 12965 . . 3 ℚ = ( / “ (ℤ × ℕ))
21eleq2i 2826 . 2 (𝐴 ∈ ℚ ↔ 𝐴 ∈ ( / “ (ℤ × ℕ)))
3 df-div 11895 . . . 4 / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
4 riotaex 7366 . . . 4 (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) ∈ V
53, 4fnmpoi 8069 . . 3 / Fn (ℂ × (ℂ ∖ {0}))
6 zsscn 12596 . . . 4 ℤ ⊆ ℂ
7 nncn 12248 . . . . . 6 (𝑥 ∈ ℕ → 𝑥 ∈ ℂ)
8 nnne0 12274 . . . . . 6 (𝑥 ∈ ℕ → 𝑥 ≠ 0)
9 eldifsn 4762 . . . . . 6 (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
107, 8, 9sylanbrc 583 . . . . 5 (𝑥 ∈ ℕ → 𝑥 ∈ (ℂ ∖ {0}))
1110ssriv 3962 . . . 4 ℕ ⊆ (ℂ ∖ {0})
12 xpss12 5669 . . . 4 ((ℤ ⊆ ℂ ∧ ℕ ⊆ (ℂ ∖ {0})) → (ℤ × ℕ) ⊆ (ℂ × (ℂ ∖ {0})))
136, 11, 12mp2an 692 . . 3 (ℤ × ℕ) ⊆ (ℂ × (ℂ ∖ {0}))
14 ovelimab 7585 . . 3 (( / Fn (ℂ × (ℂ ∖ {0})) ∧ (ℤ × ℕ) ⊆ (ℂ × (ℂ ∖ {0}))) → (𝐴 ∈ ( / “ (ℤ × ℕ)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)))
155, 13, 14mp2an 692 . 2 (𝐴 ∈ ( / “ (ℤ × ℕ)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
162, 15bitri 275 1 (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2108  wne 2932  wrex 3060  cdif 3923  wss 3926  {csn 4601   × cxp 5652  cima 5657   Fn wfn 6526  crio 7361  (class class class)co 7405  cc 11127  0cc0 11129   · cmul 11134   / cdiv 11894  cn 12240  cz 12588  cq 12964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-neg 11469  df-div 11895  df-nn 12241  df-z 12589  df-q 12965
This theorem is referenced by:  qmulz  12967  znq  12968  qre  12969  qexALT  12980  qaddcl  12981  qnegcl  12982  qmulcl  12983  qreccl  12985  elpq  12991  eirr  16223  qnnen  16231  sqrt2irr  16267  qredeu  16677  pceu  16866  pcqmul  16873  pcqcl  16876  pcneg  16894  pcz  16901  pcadd  16909  qsssubdrg  21394  ostthlem1  27590  ipasslem5  30816  elq2  32790  1fldgenq  33316
  Copyright terms: Public domain W3C validator