MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elq Structured version   Visualization version   GIF version

Theorem elq 12338
Description: Membership in the set of rationals. (Contributed by NM, 8-Jan-2002.) (Revised by Mario Carneiro, 28-Jan-2014.)
Assertion
Ref Expression
elq (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem elq
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-q 12337 . . 3 ℚ = ( / “ (ℤ × ℕ))
21eleq2i 2905 . 2 (𝐴 ∈ ℚ ↔ 𝐴 ∈ ( / “ (ℤ × ℕ)))
3 df-div 11287 . . . 4 / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
4 riotaex 7102 . . . 4 (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) ∈ V
53, 4fnmpoi 7754 . . 3 / Fn (ℂ × (ℂ ∖ {0}))
6 zsscn 11977 . . . 4 ℤ ⊆ ℂ
7 nncn 11633 . . . . . 6 (𝑥 ∈ ℕ → 𝑥 ∈ ℂ)
8 nnne0 11659 . . . . . 6 (𝑥 ∈ ℕ → 𝑥 ≠ 0)
9 eldifsn 4693 . . . . . 6 (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
107, 8, 9sylanbrc 586 . . . . 5 (𝑥 ∈ ℕ → 𝑥 ∈ (ℂ ∖ {0}))
1110ssriv 3946 . . . 4 ℕ ⊆ (ℂ ∖ {0})
12 xpss12 5547 . . . 4 ((ℤ ⊆ ℂ ∧ ℕ ⊆ (ℂ ∖ {0})) → (ℤ × ℕ) ⊆ (ℂ × (ℂ ∖ {0})))
136, 11, 12mp2an 691 . . 3 (ℤ × ℕ) ⊆ (ℂ × (ℂ ∖ {0}))
14 ovelimab 7311 . . 3 (( / Fn (ℂ × (ℂ ∖ {0})) ∧ (ℤ × ℕ) ⊆ (ℂ × (ℂ ∖ {0}))) → (𝐴 ∈ ( / “ (ℤ × ℕ)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)))
155, 13, 14mp2an 691 . 2 (𝐴 ∈ ( / “ (ℤ × ℕ)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
162, 15bitri 278 1 (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wb 209   = wceq 1538  wcel 2114  wne 3011  wrex 3131  cdif 3905  wss 3908  {csn 4539   × cxp 5530  cima 5535   Fn wfn 6329  crio 7097  (class class class)co 7140  cc 10524  0cc0 10526   · cmul 10531   / cdiv 11286  cn 11625  cz 11969  cq 12336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-neg 10862  df-div 11287  df-nn 11626  df-z 11970  df-q 12337
This theorem is referenced by:  qmulz  12339  znq  12340  qre  12341  qexALT  12351  qaddcl  12352  qnegcl  12353  qmulcl  12354  qreccl  12356  elpq  12362  eirr  15549  qnnen  15557  sqrt2irr  15593  qredeu  15991  pceu  16172  pcqmul  16179  pcqcl  16182  pcneg  16199  pcz  16206  pcadd  16214  qsssubdrg  20148  ostthlem1  26209  ipasslem5  28616
  Copyright terms: Public domain W3C validator