Detailed syntax breakdown of Definition df-qpa
Step | Hyp | Ref
| Expression |
1 | | cqpa 33512 |
. 2
class
_Qp |
2 | | vp |
. . 3
setvar 𝑝 |
3 | | cprime 16304 |
. . 3
class
ℙ |
4 | | vr |
. . . 4
setvar 𝑟 |
5 | 2 | cv 1538 |
. . . . 5
class 𝑝 |
6 | | cqp 33510 |
. . . . 5
class
Qp |
7 | 5, 6 | cfv 6418 |
. . . 4
class
(Qp‘𝑝) |
8 | 4 | cv 1538 |
. . . . 5
class 𝑟 |
9 | | vn |
. . . . . 6
setvar 𝑛 |
10 | | cn 11903 |
. . . . . 6
class
ℕ |
11 | | vf |
. . . . . . . . . . 11
setvar 𝑓 |
12 | 11 | cv 1538 |
. . . . . . . . . 10
class 𝑓 |
13 | | cdg1 25121 |
. . . . . . . . . 10
class
deg1 |
14 | 8, 12, 13 | co 7255 |
. . . . . . . . 9
class (𝑟 deg1 𝑓) |
15 | 9 | cv 1538 |
. . . . . . . . 9
class 𝑛 |
16 | | cle 10941 |
. . . . . . . . 9
class
≤ |
17 | 14, 15, 16 | wbr 5070 |
. . . . . . . 8
wff (𝑟 deg1 𝑓) ≤ 𝑛 |
18 | | vd |
. . . . . . . . . . . . 13
setvar 𝑑 |
19 | 18 | cv 1538 |
. . . . . . . . . . . 12
class 𝑑 |
20 | 19 | ccnv 5579 |
. . . . . . . . . . 11
class ◡𝑑 |
21 | | cz 12249 |
. . . . . . . . . . . 12
class
ℤ |
22 | | cc0 10802 |
. . . . . . . . . . . . 13
class
0 |
23 | 22 | csn 4558 |
. . . . . . . . . . . 12
class
{0} |
24 | 21, 23 | cdif 3880 |
. . . . . . . . . . 11
class (ℤ
∖ {0}) |
25 | 20, 24 | cima 5583 |
. . . . . . . . . 10
class (◡𝑑 “ (ℤ ∖
{0})) |
26 | | cfz 13168 |
. . . . . . . . . . 11
class
... |
27 | 22, 15, 26 | co 7255 |
. . . . . . . . . 10
class
(0...𝑛) |
28 | 25, 27 | wss 3883 |
. . . . . . . . 9
wff (◡𝑑 “ (ℤ ∖ {0})) ⊆
(0...𝑛) |
29 | | cco1 21259 |
. . . . . . . . . . 11
class
coe1 |
30 | 12, 29 | cfv 6418 |
. . . . . . . . . 10
class
(coe1‘𝑓) |
31 | 30 | crn 5581 |
. . . . . . . . 9
class ran
(coe1‘𝑓) |
32 | 28, 18, 31 | wral 3063 |
. . . . . . . 8
wff
∀𝑑 ∈ ran
(coe1‘𝑓)(◡𝑑 “ (ℤ ∖ {0})) ⊆
(0...𝑛) |
33 | 17, 32 | wa 395 |
. . . . . . 7
wff ((𝑟 deg1 𝑓) ≤ 𝑛 ∧ ∀𝑑 ∈ ran (coe1‘𝑓)(◡𝑑 “ (ℤ ∖ {0})) ⊆
(0...𝑛)) |
34 | | cpl1 21258 |
. . . . . . . 8
class
Poly1 |
35 | 8, 34 | cfv 6418 |
. . . . . . 7
class
(Poly1‘𝑟) |
36 | 33, 11, 35 | crab 3067 |
. . . . . 6
class {𝑓 ∈
(Poly1‘𝑟)
∣ ((𝑟 deg1
𝑓) ≤ 𝑛 ∧ ∀𝑑 ∈ ran (coe1‘𝑓)(◡𝑑 “ (ℤ ∖ {0})) ⊆
(0...𝑛))} |
37 | 9, 10, 36 | cmpt 5153 |
. . . . 5
class (𝑛 ∈ ℕ ↦ {𝑓 ∈
(Poly1‘𝑟)
∣ ((𝑟 deg1
𝑓) ≤ 𝑛 ∧ ∀𝑑 ∈ ran (coe1‘𝑓)(◡𝑑 “ (ℤ ∖ {0})) ⊆
(0...𝑛))}) |
38 | | cpsl 33496 |
. . . . 5
class
polySplitLim |
39 | 8, 37, 38 | co 7255 |
. . . 4
class (𝑟 polySplitLim (𝑛 ∈ ℕ ↦ {𝑓 ∈
(Poly1‘𝑟)
∣ ((𝑟 deg1
𝑓) ≤ 𝑛 ∧ ∀𝑑 ∈ ran (coe1‘𝑓)(◡𝑑 “ (ℤ ∖ {0})) ⊆
(0...𝑛))})) |
40 | 4, 7, 39 | csb 3828 |
. . 3
class
⦋(Qp‘𝑝) / 𝑟⦌(𝑟 polySplitLim (𝑛 ∈ ℕ ↦ {𝑓 ∈ (Poly1‘𝑟) ∣ ((𝑟 deg1 𝑓) ≤ 𝑛 ∧ ∀𝑑 ∈ ran (coe1‘𝑓)(◡𝑑 “ (ℤ ∖ {0})) ⊆
(0...𝑛))})) |
41 | 2, 3, 40 | cmpt 5153 |
. 2
class (𝑝 ∈ ℙ ↦
⦋(Qp‘𝑝)
/ 𝑟⦌(𝑟 polySplitLim (𝑛 ∈ ℕ ↦ {𝑓 ∈
(Poly1‘𝑟)
∣ ((𝑟 deg1
𝑓) ≤ 𝑛 ∧ ∀𝑑 ∈ ran (coe1‘𝑓)(◡𝑑 “ (ℤ ∖ {0})) ⊆
(0...𝑛))}))) |
42 | 1, 41 | wceq 1539 |
1
wff _Qp =
(𝑝 ∈ ℙ ↦
⦋(Qp‘𝑝)
/ 𝑟⦌(𝑟 polySplitLim (𝑛 ∈ ℕ ↦ {𝑓 ∈
(Poly1‘𝑟)
∣ ((𝑟 deg1
𝑓) ≤ 𝑛 ∧ ∀𝑑 ∈ ran (coe1‘𝑓)(◡𝑑 “ (ℤ ∖ {0})) ⊆
(0...𝑛))}))) |