Detailed syntax breakdown of Definition df-qqh
Step | Hyp | Ref
| Expression |
1 | | cqqh 31967 |
. 2
class
ℚHom |
2 | | vr |
. . 3
setvar 𝑟 |
3 | | cvv 3437 |
. . 3
class
V |
4 | | vx |
. . . . 5
setvar 𝑥 |
5 | | vy |
. . . . 5
setvar 𝑦 |
6 | | cz 12365 |
. . . . 5
class
ℤ |
7 | 2 | cv 1538 |
. . . . . . . 8
class 𝑟 |
8 | | czrh 20746 |
. . . . . . . 8
class
ℤRHom |
9 | 7, 8 | cfv 6458 |
. . . . . . 7
class
(ℤRHom‘𝑟) |
10 | 9 | ccnv 5599 |
. . . . . 6
class ◡(ℤRHom‘𝑟) |
11 | | cui 19926 |
. . . . . . 7
class
Unit |
12 | 7, 11 | cfv 6458 |
. . . . . 6
class
(Unit‘𝑟) |
13 | 10, 12 | cima 5603 |
. . . . 5
class (◡(ℤRHom‘𝑟) “ (Unit‘𝑟)) |
14 | 4 | cv 1538 |
. . . . . . 7
class 𝑥 |
15 | 5 | cv 1538 |
. . . . . . 7
class 𝑦 |
16 | | cdiv 11678 |
. . . . . . 7
class
/ |
17 | 14, 15, 16 | co 7307 |
. . . . . 6
class (𝑥 / 𝑦) |
18 | 14, 9 | cfv 6458 |
. . . . . . 7
class
((ℤRHom‘𝑟)‘𝑥) |
19 | 15, 9 | cfv 6458 |
. . . . . . 7
class
((ℤRHom‘𝑟)‘𝑦) |
20 | | cdvr 19969 |
. . . . . . . 8
class
/r |
21 | 7, 20 | cfv 6458 |
. . . . . . 7
class
(/r‘𝑟) |
22 | 18, 19, 21 | co 7307 |
. . . . . 6
class
(((ℤRHom‘𝑟)‘𝑥)(/r‘𝑟)((ℤRHom‘𝑟)‘𝑦)) |
23 | 17, 22 | cop 4571 |
. . . . 5
class
〈(𝑥 / 𝑦), (((ℤRHom‘𝑟)‘𝑥)(/r‘𝑟)((ℤRHom‘𝑟)‘𝑦))〉 |
24 | 4, 5, 6, 13, 23 | cmpo 7309 |
. . . 4
class (𝑥 ∈ ℤ, 𝑦 ∈ (◡(ℤRHom‘𝑟) “ (Unit‘𝑟)) ↦ 〈(𝑥 / 𝑦), (((ℤRHom‘𝑟)‘𝑥)(/r‘𝑟)((ℤRHom‘𝑟)‘𝑦))〉) |
25 | 24 | crn 5601 |
. . 3
class ran
(𝑥 ∈ ℤ, 𝑦 ∈ (◡(ℤRHom‘𝑟) “ (Unit‘𝑟)) ↦ 〈(𝑥 / 𝑦), (((ℤRHom‘𝑟)‘𝑥)(/r‘𝑟)((ℤRHom‘𝑟)‘𝑦))〉) |
26 | 2, 3, 25 | cmpt 5164 |
. 2
class (𝑟 ∈ V ↦ ran (𝑥 ∈ ℤ, 𝑦 ∈ (◡(ℤRHom‘𝑟) “ (Unit‘𝑟)) ↦ 〈(𝑥 / 𝑦), (((ℤRHom‘𝑟)‘𝑥)(/r‘𝑟)((ℤRHom‘𝑟)‘𝑦))〉)) |
27 | 1, 26 | wceq 1539 |
1
wff ℚHom
= (𝑟 ∈ V ↦ ran
(𝑥 ∈ ℤ, 𝑦 ∈ (◡(ℤRHom‘𝑟) “ (Unit‘𝑟)) ↦ 〈(𝑥 / 𝑦), (((ℤRHom‘𝑟)‘𝑥)(/r‘𝑟)((ℤRHom‘𝑟)‘𝑦))〉)) |