Home | Metamath
Proof Explorer Theorem List (p. 333 of 465) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29259) |
Hilbert Space Explorer
(29260-30782) |
Users' Mathboxes
(30783-46465) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | cvmtop1 33201 | Reverse closure for a covering map. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top) | ||
Theorem | cvmtop2 33202 | Reverse closure for a covering map. (Contributed by Mario Carneiro, 13-Feb-2015.) |
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐽 ∈ Top) | ||
Theorem | cvmcn 33203 | A covering map is a continuous function. (Contributed by Mario Carneiro, 13-Feb-2015.) |
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽)) | ||
Theorem | cvmcov 33204* | Property of a covering map. In order to make the covering property more manageable, we define here the set 𝑆(𝑘) of all even coverings of an open set 𝑘 in the range. Then the covering property states that every point has a neighborhood which has an even covering. (Contributed by Mario Carneiro, 13-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑃 ∈ 𝑋) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑆‘𝑥) ≠ ∅)) | ||
Theorem | cvmsrcl 33205* | Reverse closure for an even covering. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ (𝑇 ∈ (𝑆‘𝑈) → 𝑈 ∈ 𝐽) | ||
Theorem | cvmsi 33206* | One direction of cvmsval 33207. (Contributed by Mario Carneiro, 13-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ (𝑇 ∈ (𝑆‘𝑈) → (𝑈 ∈ 𝐽 ∧ (𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅) ∧ (∪ 𝑇 = (◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈)))))) | ||
Theorem | cvmsval 33207* | Elementhood in the set 𝑆 of all even coverings of an open set in 𝐽. 𝑆 is an even covering of 𝑈 if it is a nonempty collection of disjoint open sets in 𝐶 whose union is the preimage of 𝑈, such that each set 𝑢 ∈ 𝑆 is homeomorphic under 𝐹 to 𝑈. (Contributed by Mario Carneiro, 13-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ (𝐶 ∈ 𝑉 → (𝑇 ∈ (𝑆‘𝑈) ↔ (𝑈 ∈ 𝐽 ∧ (𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅) ∧ (∪ 𝑇 = (◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))))) | ||
Theorem | cvmsss 33208* | An even covering is a subset of the topology of the domain (i.e. a collection of open sets). (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ (𝑇 ∈ (𝑆‘𝑈) → 𝑇 ⊆ 𝐶) | ||
Theorem | cvmsn0 33209* | An even covering is nonempty. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ (𝑇 ∈ (𝑆‘𝑈) → 𝑇 ≠ ∅) | ||
Theorem | cvmsuni 33210* | An even covering of 𝑈 has union equal to the preimage of 𝑈 by 𝐹. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ (𝑇 ∈ (𝑆‘𝑈) → ∪ 𝑇 = (◡𝐹 “ 𝑈)) | ||
Theorem | cvmsdisj 33211* | An even covering of 𝑈 is a disjoint union. (Contributed by Mario Carneiro, 13-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ ((𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇) → (𝐴 = 𝐵 ∨ (𝐴 ∩ 𝐵) = ∅)) | ||
Theorem | cvmshmeo 33212* | Every element of an even covering of 𝑈 is homeomorphic to 𝑈 via 𝐹. (Contributed by Mario Carneiro, 13-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ ((𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (𝐹 ↾ 𝐴) ∈ ((𝐶 ↾t 𝐴)Homeo(𝐽 ↾t 𝑈))) | ||
Theorem | cvmsf1o 33213* | 𝐹, localized to an element of an even covering of 𝑈, is a bijection. (Contributed by Mario Carneiro, 14-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (𝐹 ↾ 𝐴):𝐴–1-1-onto→𝑈) | ||
Theorem | cvmscld 33214* | The sets of an even covering are clopen in the subspace topology on 𝑇. (Contributed by Mario Carneiro, 14-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝐴 ∈ (Clsd‘(𝐶 ↾t (◡𝐹 “ 𝑈)))) | ||
Theorem | cvmsss2 33215* | An open subset of an evenly covered set is evenly covered. (Contributed by Mario Carneiro, 7-Jul-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) → ((𝑆‘𝑈) ≠ ∅ → (𝑆‘𝑉) ≠ ∅)) | ||
Theorem | cvmcov2 33216* | The covering map property can be restricted to an open subset. (Contributed by Mario Carneiro, 7-Jul-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) → ∃𝑥 ∈ 𝒫 𝑈(𝑃 ∈ 𝑥 ∧ (𝑆‘𝑥) ≠ ∅)) | ||
Theorem | cvmseu 33217* | Every element in ∪ 𝑇 is a member of a unique element of 𝑇. (Contributed by Mario Carneiro, 14-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 ⇒ ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) → ∃!𝑥 ∈ 𝑇 𝐴 ∈ 𝑥) | ||
Theorem | cvmsiota 33218* | Identify the unique element of 𝑇 containing 𝐴. (Contributed by Mario Carneiro, 14-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑊 = (℩𝑥 ∈ 𝑇 𝐴 ∈ 𝑥) ⇒ ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) → (𝑊 ∈ 𝑇 ∧ 𝐴 ∈ 𝑊)) | ||
Theorem | cvmopnlem 33219* | Lemma for cvmopn 33221. (Contributed by Mario Carneiro, 7-May-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 ⇒ ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) → (𝐹 “ 𝐴) ∈ 𝐽) | ||
Theorem | cvmfolem 33220* | Lemma for cvmfo 33241. (Contributed by Mario Carneiro, 13-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹:𝐵–onto→𝑋) | ||
Theorem | cvmopn 33221 | A covering map is an open map. (Contributed by Mario Carneiro, 7-May-2015.) |
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) → (𝐹 “ 𝐴) ∈ 𝐽) | ||
Theorem | cvmliftmolem1 33222* | Lemma for cvmliftmo 33225. (Contributed by Mario Carneiro, 10-Mar-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ Conn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally Conn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝑀 ∈ (𝐾 Cn 𝐶)) & ⊢ (𝜑 → 𝑁 ∈ (𝐾 Cn 𝐶)) & ⊢ (𝜑 → (𝐹 ∘ 𝑀) = (𝐹 ∘ 𝑁)) & ⊢ (𝜑 → (𝑀‘𝑂) = (𝑁‘𝑂)) & ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ ((𝜑 ∧ 𝜓) → 𝑇 ∈ (𝑆‘𝑈)) & ⊢ ((𝜑 ∧ 𝜓) → 𝑊 ∈ 𝑇) & ⊢ ((𝜑 ∧ 𝜓) → 𝐼 ⊆ (◡𝑀 “ 𝑊)) & ⊢ ((𝜑 ∧ 𝜓) → (𝐾 ↾t 𝐼) ∈ Conn) & ⊢ ((𝜑 ∧ 𝜓) → 𝑋 ∈ 𝐼) & ⊢ ((𝜑 ∧ 𝜓) → 𝑄 ∈ 𝐼) & ⊢ ((𝜑 ∧ 𝜓) → 𝑅 ∈ 𝐼) & ⊢ ((𝜑 ∧ 𝜓) → (𝐹‘(𝑀‘𝑋)) ∈ 𝑈) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (𝑄 ∈ dom (𝑀 ∩ 𝑁) → 𝑅 ∈ dom (𝑀 ∩ 𝑁))) | ||
Theorem | cvmliftmolem2 33223* | Lemma for cvmliftmo 33225. (Contributed by Mario Carneiro, 10-Mar-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ Conn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally Conn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝑀 ∈ (𝐾 Cn 𝐶)) & ⊢ (𝜑 → 𝑁 ∈ (𝐾 Cn 𝐶)) & ⊢ (𝜑 → (𝐹 ∘ 𝑀) = (𝐹 ∘ 𝑁)) & ⊢ (𝜑 → (𝑀‘𝑂) = (𝑁‘𝑂)) & ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ (𝜑 → 𝑀 = 𝑁) | ||
Theorem | cvmliftmoi 33224 | A lift of a continuous function from a connected and locally connected space over a covering map is unique when it exists. (Contributed by Mario Carneiro, 10-Mar-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ Conn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally Conn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝑀 ∈ (𝐾 Cn 𝐶)) & ⊢ (𝜑 → 𝑁 ∈ (𝐾 Cn 𝐶)) & ⊢ (𝜑 → (𝐹 ∘ 𝑀) = (𝐹 ∘ 𝑁)) & ⊢ (𝜑 → (𝑀‘𝑂) = (𝑁‘𝑂)) ⇒ ⊢ (𝜑 → 𝑀 = 𝑁) | ||
Theorem | cvmliftmo 33225* | A lift of a continuous function from a connected and locally connected space over a covering map is unique when it exists. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by NM, 17-Jun-2017.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ Conn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally Conn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) ⇒ ⊢ (𝜑 → ∃*𝑓 ∈ (𝐾 Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃)) | ||
Theorem | cvmliftlem1 33226* | Lemma for cvmlift 33240. In cvmliftlem15 33239, we picked an 𝑁 large enough so that the sections (𝐺 “ [(𝑘 − 1) / 𝑁, 𝑘 / 𝑁]) are all contained in an even covering, and the function 𝑇 enumerates these even coverings. So 1st ‘(𝑇‘𝑀) is a neighborhood of (𝐺 “ [(𝑀 − 1) / 𝑁, 𝑀 / 𝑁]), and 2nd ‘(𝑇‘𝑀) is an even covering of 1st ‘(𝑇‘𝑀), which is to say a disjoint union of open sets in 𝐶 whose image is 1st ‘(𝑇‘𝑀). (Contributed by Mario Carneiro, 14-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (2nd ‘(𝑇‘𝑀)) ∈ (𝑆‘(1st ‘(𝑇‘𝑀)))) | ||
Theorem | cvmliftlem2 33227* | Lemma for cvmlift 33240. 𝑊 = [(𝑘 − 1) / 𝑁, 𝑘 / 𝑁] is a subset of [0, 1] for each 𝑀 ∈ (1...𝑁). (Contributed by Mario Carneiro, 16-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) & ⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝑊 ⊆ (0[,]1)) | ||
Theorem | cvmliftlem3 33228* | Lemma for cvmlift 33240. Since 1st ‘(𝑇‘𝑀) is a neighborhood of (𝐺 “ 𝑊), every element 𝐴 ∈ 𝑊 satisfies (𝐺‘𝐴) ∈ (1st ‘(𝑇‘𝑀)). (Contributed by Mario Carneiro, 16-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) & ⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝑊) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (𝐺‘𝐴) ∈ (1st ‘(𝑇‘𝑀))) | ||
Theorem | cvmliftlem4 33229* | Lemma for cvmlift 33240. The function 𝑄 will be our lifted path, defined piecewise on each section [(𝑀 − 1) / 𝑁, 𝑀 / 𝑁] for 𝑀 ∈ (1...𝑁). For 𝑀 = 0, it is a "seed" value which makes the rest of the recursion work, a singleton function mapping 0 to 𝑃. (Contributed by Mario Carneiro, 15-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) ⇒ ⊢ (𝑄‘0) = {〈0, 𝑃〉} | ||
Theorem | cvmliftlem5 33230* | Lemma for cvmlift 33240. Definition of 𝑄 at a successor. This is a function defined on 𝑊 as ◡(𝑇 ↾ 𝐼) ∘ 𝐺 where 𝐼 is the unique covering set of 2nd ‘(𝑇‘𝑀) that contains 𝑄(𝑀 − 1) evaluated at the last defined point, namely (𝑀 − 1) / 𝑁 (note that for 𝑀 = 1 this is using the seed value 𝑄(0)(0) = 𝑃). (Contributed by Mario Carneiro, 15-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) & ⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ⇒ ⊢ ((𝜑 ∧ 𝑀 ∈ ℕ) → (𝑄‘𝑀) = (𝑧 ∈ 𝑊 ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))) | ||
Theorem | cvmliftlem6 33231* | Lemma for cvmlift 33240. Induction step for cvmliftlem7 33232. Assuming that 𝑄(𝑀 − 1) is defined at (𝑀 − 1) / 𝑁 and is a preimage of 𝐺((𝑀 − 1) / 𝑁), the next segment 𝑄(𝑀) is also defined and is a function on 𝑊 which is a lift 𝐺 for this segment. This follows explicitly from the definition 𝑄(𝑀) = ◡(𝐹 ↾ 𝐼) ∘ 𝐺 since 𝐺 is in 1st ‘(𝐹‘𝑀) for the entire interval so that ◡(𝐹 ↾ 𝐼) maps this into 𝐼 and 𝐹 ∘ 𝑄 maps back to 𝐺. (Contributed by Mario Carneiro, 16-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) & ⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))})) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ((𝑄‘𝑀):𝑊⟶𝐵 ∧ (𝐹 ∘ (𝑄‘𝑀)) = (𝐺 ↾ 𝑊))) | ||
Theorem | cvmliftlem7 33232* | Lemma for cvmlift 33240. Prove by induction that every 𝑄 function is well-defined (we can immediately follow this theorem with cvmliftlem6 33231 to show functionality and lifting of 𝑄). (Contributed by Mario Carneiro, 14-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) & ⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ⇒ ⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))})) | ||
Theorem | cvmliftlem8 33233* | Lemma for cvmlift 33240. The functions 𝑄 are continuous functions because they are defined as ◡(𝐹 ↾ 𝐼) ∘ 𝐺 where 𝐺 is continuous and (𝐹 ↾ 𝐼) is a homeomorphism. (Contributed by Mario Carneiro, 16-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) & ⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ⇒ ⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝑄‘𝑀) ∈ ((𝐿 ↾t 𝑊) Cn 𝐶)) | ||
Theorem | cvmliftlem9 33234* | Lemma for cvmlift 33240. The 𝑄(𝑀) functions are defined on almost disjoint intervals, but they overlap at the edges. Here we show that at these points the 𝑄 functions agree on their common domain. (Contributed by Mario Carneiro, 14-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) ⇒ ⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝑄‘𝑀)‘((𝑀 − 1) / 𝑁)) = ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) | ||
Theorem | cvmliftlem10 33235* | Lemma for cvmlift 33240. The function 𝐾 is going to be our complete lifted path, formed by unioning together all the 𝑄 functions (each of which is defined on one segment [(𝑀 − 1) / 𝑁, 𝑀 / 𝑁] of the interval). Here we prove by induction that 𝐾 is a continuous function and a lift of 𝐺 by applying cvmliftlem6 33231, cvmliftlem7 33232 (to show it is a function and a lift), cvmliftlem8 33233 (to show it is continuous), and cvmliftlem9 33234 (to show that different 𝑄 functions agree on the intersection of their domains, so that the pasting lemma paste 22426 gives that 𝐾 is well-defined and continuous). (Contributed by Mario Carneiro, 14-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) & ⊢ 𝐾 = ∪ 𝑘 ∈ (1...𝑁)(𝑄‘𝑘) & ⊢ (𝜒 ↔ ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑁)) ∧ (∪ 𝑘 ∈ (1...𝑛)(𝑄‘𝑘) ∈ ((𝐿 ↾t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 ∘ ∪ 𝑘 ∈ (1...𝑛)(𝑄‘𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))))) ⇒ ⊢ (𝜑 → (𝐾 ∈ ((𝐿 ↾t (0[,](𝑁 / 𝑁))) Cn 𝐶) ∧ (𝐹 ∘ 𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁))))) | ||
Theorem | cvmliftlem11 33236* | Lemma for cvmlift 33240. (Contributed by Mario Carneiro, 14-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) & ⊢ 𝐾 = ∪ 𝑘 ∈ (1...𝑁)(𝑄‘𝑘) ⇒ ⊢ (𝜑 → (𝐾 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝐾) = 𝐺)) | ||
Theorem | cvmliftlem13 33237* | Lemma for cvmlift 33240. The initial value of 𝐾 is 𝑃 because 𝑄(1) is a subset of 𝐾 which takes value 𝑃 at 0. (Contributed by Mario Carneiro, 16-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) & ⊢ 𝐾 = ∪ 𝑘 ∈ (1...𝑁)(𝑄‘𝑘) ⇒ ⊢ (𝜑 → (𝐾‘0) = 𝑃) | ||
Theorem | cvmliftlem14 33238* | Lemma for cvmlift 33240. Putting the results of cvmliftlem11 33236, cvmliftlem13 33237 and cvmliftmo 33225 together, we have that 𝐾 is a continuous function, satisfies 𝐹 ∘ 𝐾 = 𝐺 and 𝐾(0) = 𝑃, and is equal to any other function which also has these properties, so it follows that 𝐾 is the unique lift of 𝐺. (Contributed by Mario Carneiro, 16-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) & ⊢ 𝐾 = ∪ 𝑘 ∈ (1...𝑁)(𝑄‘𝑘) ⇒ ⊢ (𝜑 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) | ||
Theorem | cvmliftlem15 33239* | Lemma for cvmlift 33240. Discharge the assumptions of cvmliftlem14 33238. The set of all open subsets 𝑢 of the unit interval such that 𝐺 “ 𝑢 is contained in an even covering of some open set in 𝐽 is a cover of II by the definition of a covering map, so by the Lebesgue number lemma lebnumii 24110, there is a subdivision of the closed unit interval into 𝑁 equal parts such that each part is entirely contained within one such open set of 𝐽. Then using finite choice ac6sfi 9019 to uniformly select one such subset and one even covering of each subset, we are ready to finish the proof with cvmliftlem14 33238. (Contributed by Mario Carneiro, 14-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) ⇒ ⊢ (𝜑 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) | ||
Theorem | cvmlift 33240* | One of the important properties of covering maps is that any path 𝐺 in the base space "lifts" to a path 𝑓 in the covering space such that 𝐹 ∘ 𝑓 = 𝐺, and given a starting point 𝑃 in the covering space this lift is unique. The proof is contained in cvmliftlem1 33226 thru cvmliftlem15 33239. (Contributed by Mario Carneiro, 16-Feb-2015.) |
⊢ 𝐵 = ∪ 𝐶 ⇒ ⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽)) ∧ (𝑃 ∈ 𝐵 ∧ (𝐹‘𝑃) = (𝐺‘0))) → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) | ||
Theorem | cvmfo 33241 | A covering map is an onto function. (Contributed by Mario Carneiro, 13-Feb-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹:𝐵–onto→𝑋) | ||
Theorem | cvmliftiota 33242* | Write out a function 𝐻 that is the unique lift of 𝐹. (Contributed by Mario Carneiro, 16-Feb-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) ⇒ ⊢ (𝜑 → (𝐻 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝐻) = 𝐺 ∧ (𝐻‘0) = 𝑃)) | ||
Theorem | cvmlift2lem1 33243* | Lemma for cvmlift2 33257. (Contributed by Mario Carneiro, 1-Jun-2015.) |
⊢ (∀𝑦 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑦})((𝑢 × {𝑥}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → (((0[,]1) × {𝑥}) ⊆ 𝑀 → ((0[,]1) × {𝑡}) ⊆ 𝑀)) | ||
Theorem | cvmlift2lem9a 33244* | Lemma for cvmlift2 33257 and cvmlift3 33269. (Contributed by Mario Carneiro, 9-Jul-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐻:𝑌⟶𝐵) & ⊢ (𝜑 → (𝐹 ∘ 𝐻) ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ Top) & ⊢ (𝜑 → 𝑋 ∈ 𝑌) & ⊢ (𝜑 → 𝑇 ∈ (𝑆‘𝐴)) & ⊢ (𝜑 → (𝑊 ∈ 𝑇 ∧ (𝐻‘𝑋) ∈ 𝑊)) & ⊢ (𝜑 → 𝑀 ⊆ 𝑌) & ⊢ (𝜑 → (𝐻 “ 𝑀) ⊆ 𝑊) ⇒ ⊢ (𝜑 → (𝐻 ↾ 𝑀) ∈ ((𝐾 ↾t 𝑀) Cn 𝐶)) | ||
Theorem | cvmlift2lem2 33245* | Lemma for cvmlift2 33257. (Contributed by Mario Carneiro, 7-May-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) ⇒ ⊢ (𝜑 → (𝐻 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝐻) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝐻‘0) = 𝑃)) | ||
Theorem | cvmlift2lem3 33246* | Lemma for cvmlift2 33257. (Contributed by Mario Carneiro, 7-May-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝐾 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝐾) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝐾‘0) = (𝐻‘𝑋))) | ||
Theorem | cvmlift2lem4 33247* | Lemma for cvmlift2 33257. (Contributed by Mario Carneiro, 1-Jun-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) ⇒ ⊢ ((𝑋 ∈ (0[,]1) ∧ 𝑌 ∈ (0[,]1)) → (𝑋𝐾𝑌) = ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋)))‘𝑌)) | ||
Theorem | cvmlift2lem5 33248* | Lemma for cvmlift2 33257. (Contributed by Mario Carneiro, 7-May-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) ⇒ ⊢ (𝜑 → 𝐾:((0[,]1) × (0[,]1))⟶𝐵) | ||
Theorem | cvmlift2lem6 33249* | Lemma for cvmlift2 33257. (Contributed by Mario Carneiro, 7-May-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝐾 ↾ ({𝑋} × (0[,]1))) ∈ (((II ×t II) ↾t ({𝑋} × (0[,]1))) Cn 𝐶)) | ||
Theorem | cvmlift2lem7 33250* | Lemma for cvmlift2 33257. (Contributed by Mario Carneiro, 7-May-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) ⇒ ⊢ (𝜑 → (𝐹 ∘ 𝐾) = 𝐺) | ||
Theorem | cvmlift2lem8 33251* | Lemma for cvmlift2 33257. (Contributed by Mario Carneiro, 9-Mar-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝑋𝐾0) = (𝐻‘𝑋)) | ||
Theorem | cvmlift2lem9 33252* | Lemma for cvmlift2 33257. (Contributed by Mario Carneiro, 1-Jun-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) & ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ (𝜑 → (𝑋𝐺𝑌) ∈ 𝑀) & ⊢ (𝜑 → 𝑇 ∈ (𝑆‘𝑀)) & ⊢ (𝜑 → 𝑈 ∈ II) & ⊢ (𝜑 → 𝑉 ∈ II) & ⊢ (𝜑 → (II ↾t 𝑈) ∈ Conn) & ⊢ (𝜑 → (II ↾t 𝑉) ∈ Conn) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 × 𝑉) ⊆ (◡𝐺 “ 𝑀)) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → (𝐾 ↾ (𝑈 × {𝑍})) ∈ (((II ×t II) ↾t (𝑈 × {𝑍})) Cn 𝐶)) & ⊢ 𝑊 = (℩𝑏 ∈ 𝑇 (𝑋𝐾𝑌) ∈ 𝑏) ⇒ ⊢ (𝜑 → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶)) | ||
Theorem | cvmlift2lem10 33253* | Lemma for cvmlift2 33257. (Contributed by Mario Carneiro, 1-Jun-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) & ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ (𝜑 → 𝑋 ∈ (0[,]1)) & ⊢ (𝜑 → 𝑌 ∈ (0[,]1)) ⇒ ⊢ (𝜑 → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (∃𝑤 ∈ 𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) | ||
Theorem | cvmlift2lem11 33254* | Lemma for cvmlift2 33257. (Contributed by Mario Carneiro, 1-Jun-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) & ⊢ 𝑀 = {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)} & ⊢ (𝜑 → 𝑈 ∈ II) & ⊢ (𝜑 → 𝑉 ∈ II) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → (∃𝑤 ∈ 𝑉 (𝐾 ↾ (𝑈 × {𝑤})) ∈ (((II ×t II) ↾t (𝑈 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶))) ⇒ ⊢ (𝜑 → ((𝑈 × {𝑌}) ⊆ 𝑀 → (𝑈 × {𝑍}) ⊆ 𝑀)) | ||
Theorem | cvmlift2lem12 33255* | Lemma for cvmlift2 33257. (Contributed by Mario Carneiro, 1-Jun-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) & ⊢ 𝑀 = {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)} & ⊢ 𝐴 = {𝑎 ∈ (0[,]1) ∣ ((0[,]1) × {𝑎}) ⊆ 𝑀} & ⊢ 𝑆 = {〈𝑟, 𝑡〉 ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))} ⇒ ⊢ (𝜑 → 𝐾 ∈ ((II ×t II) Cn 𝐶)) | ||
Theorem | cvmlift2lem13 33256* | Lemma for cvmlift2 33257. (Contributed by Mario Carneiro, 7-May-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) ⇒ ⊢ (𝜑 → ∃!𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹 ∘ 𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃)) | ||
Theorem | cvmlift2 33257* | A two-dimensional version of cvmlift 33240. There is a unique lift of functions on the unit square II ×t II which commutes with the covering map. (Contributed by Mario Carneiro, 1-Jun-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) ⇒ ⊢ (𝜑 → ∃!𝑓 ∈ ((II ×t II) Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (0𝑓0) = 𝑃)) | ||
Theorem | cvmliftphtlem 33258* | Lemma for cvmliftpht 33259. (Contributed by Mario Carneiro, 6-Jul-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑀 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝑁 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃)) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐻 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ (𝐺(PHtpy‘𝐽)𝐻)) & ⊢ (𝜑 → 𝐴 ∈ ((II ×t II) Cn 𝐶)) & ⊢ (𝜑 → (𝐹 ∘ 𝐴) = 𝐾) & ⊢ (𝜑 → (0𝐴0) = 𝑃) ⇒ ⊢ (𝜑 → 𝐴 ∈ (𝑀(PHtpy‘𝐶)𝑁)) | ||
Theorem | cvmliftpht 33259* | If 𝐺 and 𝐻 are path-homotopic, then their lifts 𝑀 and 𝑁 are also path-homotopic. (Contributed by Mario Carneiro, 6-Jul-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑀 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝑁 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃)) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝐺( ≃ph‘𝐽)𝐻) ⇒ ⊢ (𝜑 → 𝑀( ≃ph‘𝐶)𝑁) | ||
Theorem | cvmlift3lem1 33260* | Lemma for cvmlift3 33269. (Contributed by Mario Carneiro, 6-Jul-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) & ⊢ (𝜑 → 𝑀 ∈ (II Cn 𝐾)) & ⊢ (𝜑 → (𝑀‘0) = 𝑂) & ⊢ (𝜑 → 𝑁 ∈ (II Cn 𝐾)) & ⊢ (𝜑 → (𝑁‘0) = 𝑂) & ⊢ (𝜑 → (𝑀‘1) = (𝑁‘1)) ⇒ ⊢ (𝜑 → ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑀) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑁) ∧ (𝑔‘0) = 𝑃))‘1)) | ||
Theorem | cvmlift3lem2 33261* | Lemma for cvmlift2 33257. (Contributed by Mario Carneiro, 6-Jul-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑌) → ∃!𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) | ||
Theorem | cvmlift3lem3 33262* | Lemma for cvmlift2 33257. (Contributed by Mario Carneiro, 6-Jul-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) & ⊢ 𝐻 = (𝑥 ∈ 𝑌 ↦ (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) ⇒ ⊢ (𝜑 → 𝐻:𝑌⟶𝐵) | ||
Theorem | cvmlift3lem4 33263* | Lemma for cvmlift2 33257. (Contributed by Mario Carneiro, 6-Jul-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) & ⊢ 𝐻 = (𝑥 ∈ 𝑌 ↦ (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑌) → ((𝐻‘𝑋) = 𝐴 ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴))) | ||
Theorem | cvmlift3lem5 33264* | Lemma for cvmlift2 33257. (Contributed by Mario Carneiro, 6-Jul-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) & ⊢ 𝐻 = (𝑥 ∈ 𝑌 ↦ (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) ⇒ ⊢ (𝜑 → (𝐹 ∘ 𝐻) = 𝐺) | ||
Theorem | cvmlift3lem6 33265* | Lemma for cvmlift3 33269. (Contributed by Mario Carneiro, 9-Jul-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) & ⊢ 𝐻 = (𝑥 ∈ 𝑌 ↦ (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) & ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ (𝜑 → (𝐺‘𝑋) ∈ 𝐴) & ⊢ (𝜑 → 𝑇 ∈ (𝑆‘𝐴)) & ⊢ (𝜑 → 𝑀 ⊆ (◡𝐺 “ 𝐴)) & ⊢ 𝑊 = (℩𝑏 ∈ 𝑇 (𝐻‘𝑋) ∈ 𝑏) & ⊢ (𝜑 → 𝑋 ∈ 𝑀) & ⊢ (𝜑 → 𝑍 ∈ 𝑀) & ⊢ (𝜑 → 𝑄 ∈ (II Cn 𝐾)) & ⊢ 𝑅 = (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑄) ∧ (𝑔‘0) = 𝑃)) & ⊢ (𝜑 → ((𝑄‘0) = 𝑂 ∧ (𝑄‘1) = 𝑋 ∧ (𝑅‘1) = (𝐻‘𝑋))) & ⊢ (𝜑 → 𝑁 ∈ (II Cn (𝐾 ↾t 𝑀))) & ⊢ (𝜑 → ((𝑁‘0) = 𝑋 ∧ (𝑁‘1) = 𝑍)) & ⊢ 𝐼 = (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑁) ∧ (𝑔‘0) = (𝐻‘𝑋))) ⇒ ⊢ (𝜑 → (𝐻‘𝑍) ∈ 𝑊) | ||
Theorem | cvmlift3lem7 33266* | Lemma for cvmlift3 33269. (Contributed by Mario Carneiro, 9-Jul-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) & ⊢ 𝐻 = (𝑥 ∈ 𝑌 ↦ (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) & ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ (𝜑 → (𝐺‘𝑋) ∈ 𝐴) & ⊢ (𝜑 → 𝑇 ∈ (𝑆‘𝐴)) & ⊢ (𝜑 → 𝑀 ⊆ (◡𝐺 “ 𝐴)) & ⊢ 𝑊 = (℩𝑏 ∈ 𝑇 (𝐻‘𝑋) ∈ 𝑏) & ⊢ (𝜑 → (𝐾 ↾t 𝑀) ∈ PConn) & ⊢ (𝜑 → 𝑉 ∈ 𝐾) & ⊢ (𝜑 → 𝑉 ⊆ 𝑀) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑋)) | ||
Theorem | cvmlift3lem8 33267* | Lemma for cvmlift2 33257. (Contributed by Mario Carneiro, 6-Jul-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) & ⊢ 𝐻 = (𝑥 ∈ 𝑌 ↦ (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) & ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ (𝜑 → 𝐻 ∈ (𝐾 Cn 𝐶)) | ||
Theorem | cvmlift3lem9 33268* | Lemma for cvmlift2 33257. (Contributed by Mario Carneiro, 7-May-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) & ⊢ 𝐻 = (𝑥 ∈ 𝑌 ↦ (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) & ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ (𝜑 → ∃𝑓 ∈ (𝐾 Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃)) | ||
Theorem | cvmlift3 33269* | A general version of cvmlift 33240. If 𝐾 is simply connected and weakly locally path-connected, then there is a unique lift of functions on 𝐾 which commutes with the covering map. (Contributed by Mario Carneiro, 9-Jul-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) ⇒ ⊢ (𝜑 → ∃!𝑓 ∈ (𝐾 Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃)) | ||
Theorem | snmlff 33270* | The function 𝐹 from snmlval 33272 is a mapping from positive integers to real numbers in the range [0, 1]. (Contributed by Mario Carneiro, 6-Apr-2015.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵}) / 𝑛)) ⇒ ⊢ 𝐹:ℕ⟶(0[,]1) | ||
Theorem | snmlfval 33271* | The function 𝐹 from snmlval 33272 maps 𝑁 to the relative density of 𝐵 in the first 𝑁 digits of the digit string of 𝐴 in base 𝑅. (Contributed by Mario Carneiro, 6-Apr-2015.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵}) / 𝑛)) ⇒ ⊢ (𝑁 ∈ ℕ → (𝐹‘𝑁) = ((♯‘{𝑘 ∈ (1...𝑁) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵}) / 𝑁)) | ||
Theorem | snmlval 33272* | The property "𝐴 is simply normal in base 𝑅". A number is simply normal if each digit 0 ≤ 𝑏 < 𝑅 occurs in the base- 𝑅 digit string of 𝐴 with frequency 1 / 𝑅 (which is consistent with the expectation in an infinite random string of numbers selected from 0...𝑅 − 1). (Contributed by Mario Carneiro, 6-Apr-2015.) |
⊢ 𝑆 = (𝑟 ∈ (ℤ≥‘2) ↦ {𝑥 ∈ ℝ ∣ ∀𝑏 ∈ (0...(𝑟 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑟↑𝑘)) mod 𝑟)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑟)}) ⇒ ⊢ (𝐴 ∈ (𝑆‘𝑅) ↔ (𝑅 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℝ ∧ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅))) | ||
Theorem | snmlflim 33273* | If 𝐴 is simply normal, then the function 𝐹 of relative density of 𝐵 in the digit string converges to 1 / 𝑅, i.e. the set of occurrences of 𝐵 in the digit string has natural density 1 / 𝑅. (Contributed by Mario Carneiro, 6-Apr-2015.) |
⊢ 𝑆 = (𝑟 ∈ (ℤ≥‘2) ↦ {𝑥 ∈ ℝ ∣ ∀𝑏 ∈ (0...(𝑟 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑟↑𝑘)) mod 𝑟)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑟)}) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵}) / 𝑛)) ⇒ ⊢ ((𝐴 ∈ (𝑆‘𝑅) ∧ 𝐵 ∈ (0...(𝑅 − 1))) → 𝐹 ⇝ (1 / 𝑅)) | ||
Syntax | cgoe 33274 | The Godel-set of membership. |
class ∈𝑔 | ||
Syntax | cgna 33275 | The Godel-set for the Sheffer stroke. |
class ⊼𝑔 | ||
Syntax | cgol 33276 | The Godel-set of universal quantification. (Note that this is not a wff.) |
class ∀𝑔𝑁𝑈 | ||
Syntax | csat 33277 | The satisfaction function. |
class Sat | ||
Syntax | cfmla 33278 | The formula set predicate. |
class Fmla | ||
Syntax | csate 33279 | The ∈-satisfaction function. |
class Sat∈ | ||
Syntax | cprv 33280 | The "proves" relation. |
class ⊧ | ||
Definition | df-goel 33281 | Define the Godel-set of membership. Here the arguments 𝑥 = 〈𝑁, 𝑃〉 correspond to vN and vP , so (∅∈𝑔1o) actually means v0 ∈ v1 , not 0 ∈ 1. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ ∈𝑔 = (𝑥 ∈ (ω × ω) ↦ 〈∅, 𝑥〉) | ||
Definition | df-gona 33282 | Define the Godel-set for the Sheffer stroke NAND. Here the arguments 𝑥 = 〈𝑈, 𝑉〉 are also Godel-sets corresponding to smaller formulas. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ ⊼𝑔 = (𝑥 ∈ (V × V) ↦ 〈1o, 𝑥〉) | ||
Definition | df-goal 33283 | Define the Godel-set of universal quantification. Here 𝑁 ∈ ω corresponds to vN , and 𝑈 represents another formula, and this expression is [∀𝑥𝜑] = ∀𝑔𝑁𝑈 where 𝑥 is the 𝑁-th variable, 𝑈 = [𝜑] is the code for 𝜑. Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ ∀𝑔𝑁𝑈 = 〈2o, 〈𝑁, 𝑈〉〉 | ||
Definition | df-sat 33284* |
Define the satisfaction predicate. This recursive construction builds up
a function over wff codes (see satff 33351) and simultaneously defines the
set of assignments to all variables from 𝑀 that makes the coded wff
true in the model 𝑀, where ∈ is interpreted as the binary
relation 𝐸 on 𝑀.
The interpretation of the statement 𝑆 ∈ (((𝑀 Sat 𝐸)‘𝑛)‘𝑈) is that for the model 〈𝑀, 𝐸〉, 𝑆:ω⟶𝑀 is a
valuation of the variables (v0 = (𝑆‘∅), v1 = (𝑆‘1o), etc.) and 𝑈 is a code for a wff using ∈ , ⊼ , ∀ that
is true under the assignment 𝑆. The function is defined by finite
recursion; ((𝑀 Sat 𝐸)‘𝑛) only operates on wffs of depth at
most 𝑛 ∈ ω, and ((𝑀 Sat 𝐸)‘ω) = ∪ 𝑛 ∈ ω((𝑀 Sat 𝐸)‘𝑛) operates on all wffs.
The coding scheme for the wffs is defined so that
(Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ Sat = (𝑚 ∈ V, 𝑒 ∈ V ↦ (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 (𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = ((𝑚 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑚 ↑m ω) ∣ ∀𝑧 ∈ 𝑚 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})), {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑚 ↑m ω) ∣ (𝑎‘𝑖)𝑒(𝑎‘𝑗)})}) ↾ suc ω)) | ||
Definition | df-sate 33285* | A simplified version of the satisfaction predicate, using the standard membership relation and eliminating the extra variable 𝑛. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ Sat∈ = (𝑚 ∈ V, 𝑢 ∈ V ↦ (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢)) | ||
Definition | df-fmla 33286 | Define the predicate which defines the set of valid Godel formulas. The parameter 𝑛 defines the maximum height of the formulas: the set (Fmla‘∅) is all formulas of the form 𝑥 ∈ 𝑦 (which in our coding scheme is the set ({∅} × (ω × ω)); see df-sat 33284 for the full coding scheme), see fmla0 33323, and each extra level adds to the complexity of the formulas in (Fmla‘𝑛), see fmlasuc 33327. Remark: it is sufficient to have atomic formulas of the form 𝑥 ∈ 𝑦 only, because equations (formulas of the form 𝑥 = 𝑦), which are required as (atomic) formulas, can be introduced as a defined notion in terms of ∈𝑔, see df-goeq 33385. (Fmla‘ω) = ∪ 𝑛 ∈ ω(Fmla‘𝑛) is the set of all valid formulas, see fmla 33322. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ Fmla = (𝑛 ∈ suc ω ↦ dom ((∅ Sat ∅)‘𝑛)) | ||
Definition | df-prv 33287* | Define the "proves" relation on a set. A wff is true in a model 𝑀 if for every valuation 𝑠 ∈ (𝑀 ↑m ω), the interpretation of the wff using the membership relation on 𝑀 is true. Since ⊧ is defined in terms of the interpretations making the given formula true, it is not defined on the empty "model" 𝑀 = ∅, since there are no interpretations. In particular, the empty set on the LHS of ⊧ should not be interpreted as the empty model. Statement prv0 33371 shows that our definition yields ∅⊧𝑈 for all formulas, though of course the formula ∃𝑥𝑥 = 𝑥 is not satisfied on the empty model. (Contributed by Mario Carneiro, 14-Jul-2013.) |
⊢ ⊧ = {〈𝑚, 𝑢〉 ∣ (𝑚 Sat∈ 𝑢) = (𝑚 ↑m ω)} | ||
Theorem | goel 33288 | A "Godel-set of membership". The variables are identified by their indices (which are natural numbers), and the membership vi ∈ vj is coded as 〈∅, 〈𝑖, 𝑗〉〉. (Contributed by AV, 15-Sep-2023.) |
⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼∈𝑔𝐽) = 〈∅, 〈𝐼, 𝐽〉〉) | ||
Theorem | goelel3xp 33289 | A "Godel-set of membership" is a member of a doubled Cartesian product. (Contributed by AV, 16-Sep-2023.) |
⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼∈𝑔𝐽) ∈ (ω × (ω × ω))) | ||
Theorem | goeleq12bg 33290 | Two "Godel-set of membership" codes for two variables are equal iff the two corresponding variables are equal. (Contributed by AV, 8-Oct-2023.) |
⊢ (((𝑀 ∈ ω ∧ 𝑁 ∈ ω) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω)) → ((𝐼∈𝑔𝐽) = (𝑀∈𝑔𝑁) ↔ (𝐼 = 𝑀 ∧ 𝐽 = 𝑁))) | ||
Theorem | gonafv 33291 | The "Godel-set for the Sheffer stroke NAND" for two formulas 𝐴 and 𝐵. (Contributed by AV, 16-Oct-2023.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴⊼𝑔𝐵) = 〈1o, 〈𝐴, 𝐵〉〉) | ||
Theorem | goaleq12d 33292 | Equality of the "Godel-set of universal quantification". (Contributed by AV, 18-Sep-2023.) |
⊢ (𝜑 → 𝑀 = 𝑁) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ∀𝑔𝑀𝐴 = ∀𝑔𝑁𝐵) | ||
Theorem | gonanegoal 33293 | The Godel-set for the Sheffer stroke NAND is not equal to the Godel-set of universal quantification. (Contributed by AV, 21-Oct-2023.) |
⊢ (𝑎⊼𝑔𝑏) ≠ ∀𝑔𝑖𝑢 | ||
Theorem | satf 33294* | The satisfaction predicate as function over wff codes in the model 𝑀 and the binary relation 𝐸 on 𝑀. (Contributed by AV, 14-Sep-2023.) |
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑀 Sat 𝐸) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 (𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})), {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})}) ↾ suc ω)) | ||
Theorem | satfsucom 33295* | The satisfaction predicate for wff codes in the model 𝑀 and the binary relation 𝐸 on 𝑀 at an element of the successor of ω. (Contributed by AV, 22-Sep-2023.) |
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ suc ω) → ((𝑀 Sat 𝐸)‘𝑁) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 (𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})), {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})})‘𝑁)) | ||
Theorem | satfn 33296 | The satisfaction predicate for wff codes in the model 𝑀 and the binary relation 𝐸 on 𝑀 is a function over suc ω. (Contributed by AV, 6-Oct-2023.) |
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑀 Sat 𝐸) Fn suc ω) | ||
Theorem | satom 33297* | The satisfaction predicate for wff codes in the model 𝑀 and the binary relation 𝐸 on 𝑀 at omega (ω). (Contributed by AV, 6-Oct-2023.) |
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → ((𝑀 Sat 𝐸)‘ω) = ∪ 𝑛 ∈ ω ((𝑀 Sat 𝐸)‘𝑛)) | ||
Theorem | satfvsucom 33298* | The satisfaction predicate as function over wff codes at a successor of ω. (Contributed by AV, 22-Sep-2023.) |
⊢ 𝑆 = (𝑀 Sat 𝐸) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ suc ω) → (𝑆‘𝑁) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 (𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})), {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})})‘𝑁)) | ||
Theorem | satfv0 33299* | The value of the satisfaction predicate as function over wff codes at ∅. (Contributed by AV, 8-Oct-2023.) |
⊢ 𝑆 = (𝑀 Sat 𝐸) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑆‘∅) = {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})}) | ||
Theorem | satfvsuclem1 33300* | Lemma 1 for satfvsuc 33302. (Contributed by AV, 8-Oct-2023.) |
⊢ 𝑆 = (𝑀 Sat 𝐸) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → {〈𝑥, 𝑦〉 ∣ (∃𝑢 ∈ (𝑆‘𝑁)(∃𝑣 ∈ (𝑆‘𝑁)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)})) ∧ 𝑦 ∈ 𝒫 (𝑀 ↑m ω))} ∈ V) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |