| Metamath
Proof Explorer Theorem List (p. 333 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49930) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | slmdvs0 33201 | Anything times the zero vector is the zero vector. Equation 1b of [Kreyszig] p. 51. (hvmul0 31006 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → (𝑋 · 0 ) = 0 ) | ||
| Theorem | gsumvsca1 33202* | Scalar product of a finite group sum for a left module over a semiring. (Contributed by Thierry Arnoux, 16-Mar-2018.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐺 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ (𝜑 → 𝐾 ⊆ (Base‘𝐺)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝑊 ∈ SLMod) & ⊢ (𝜑 → 𝑃 ∈ 𝐾) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑄 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑊 Σg (𝑘 ∈ 𝐴 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝐴 ↦ 𝑄)))) | ||
| Theorem | gsumvsca2 33203* | Scalar product of a finite group sum for a left module over a semiring. (Contributed by Thierry Arnoux, 16-Mar-2018.) (Proof shortened by AV, 12-Dec-2019.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐺 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ (𝜑 → 𝐾 ⊆ (Base‘𝐺)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝑊 ∈ SLMod) & ⊢ (𝜑 → 𝑄 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑃 ∈ 𝐾) ⇒ ⊢ (𝜑 → (𝑊 Σg (𝑘 ∈ 𝐴 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑃)) · 𝑄)) | ||
| Theorem | prmsimpcyc 33204 | A group of prime order is cyclic if and only if it is simple. This is the first family of finite simple groups. (Contributed by Thierry Arnoux, 21-Sep-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((♯‘𝐵) ∈ ℙ → (𝐺 ∈ SimpGrp ↔ 𝐺 ∈ CycGrp)) | ||
| Theorem | ringdi22 33205 | Expand the product of two sums in a ring. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑇 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 + 𝑌) · (𝑍 + 𝑇)) = (((𝑋 · 𝑍) + (𝑌 · 𝑍)) + ((𝑋 · 𝑇) + (𝑌 · 𝑇)))) | ||
| Theorem | urpropd 33206* | Sufficient condition for ring unities to be equal. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
| ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ 𝑊) & ⊢ (𝜑 → 𝐵 = (Base‘𝑇)) & ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑥(.r‘𝑆)𝑦) = (𝑥(.r‘𝑇)𝑦)) ⇒ ⊢ (𝜑 → (1r‘𝑆) = (1r‘𝑇)) | ||
| Theorem | subrgmcld 33207 | A subring is closed under multiplication. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
| ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝐴 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐴) | ||
| Theorem | ress1r 33208 | 1r is unaffected by restriction. This is a bit more generic than subrg1 20499. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 1 = (1r‘𝑆)) | ||
| Theorem | ringinvval 33209* | The ring inverse expressed in terms of multiplication. (Contributed by Thierry Arnoux, 23-Oct-2017.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ ∗ = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑁 = (invr‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋) = (℩𝑦 ∈ 𝑈 (𝑦 ∗ 𝑋) = 1 )) | ||
| Theorem | dvrcan5 33210 | Cancellation law for common factor in ratio. (divcan5 11830 analog.) (Contributed by Thierry Arnoux, 26-Oct-2016.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 · 𝑍) / (𝑌 · 𝑍)) = (𝑋 / 𝑌)) | ||
| Theorem | subrgchr 33211 | If 𝐴 is a subring of 𝑅, then they have the same characteristic. (Contributed by Thierry Arnoux, 24-Feb-2018.) |
| ⊢ (𝐴 ∈ (SubRing‘𝑅) → (chr‘(𝑅 ↾s 𝐴)) = (chr‘𝑅)) | ||
| Theorem | rmfsupp2 33212* | A mapping of a multiplication of a constant with a function into a ring is finitely supported if the function is finitely supported. (Contributed by Thierry Arnoux, 3-Jun-2023.) |
| ⊢ 𝑅 = (Base‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ Ring) & ⊢ (𝜑 → 𝑉 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝐶 ∈ 𝑅) & ⊢ (𝜑 → 𝐴:𝑉⟶𝑅) & ⊢ (𝜑 → 𝐴 finSupp (0g‘𝑀)) ⇒ ⊢ (𝜑 → (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)(.r‘𝑀)𝐶)) finSupp (0g‘𝑀)) | ||
| Theorem | unitnz 33213 | In a nonzero ring, a unit cannot be zero. (Contributed by Thierry Arnoux, 25-Apr-2025.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ NzRing) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝑋 ≠ 0 ) | ||
| Theorem | isunit2 33214* | Alternate definition of being a unit. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝐵 ∧ (∃𝑢 ∈ 𝐵 (𝑋 · 𝑢) = 1 ∧ ∃𝑣 ∈ 𝐵 (𝑣 · 𝑋) = 1 ))) | ||
| Theorem | isunit3 33215* | Alternate definition of being a unit. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ ∃𝑦 ∈ 𝐵 ((𝑋 · 𝑦) = 1 ∧ (𝑦 · 𝑋) = 1 ))) | ||
| Theorem | elrgspnlem1 33216* | Lemma for elrgspn 33220. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ · = (.g‘𝑅) & ⊢ 𝑁 = (RingSpan‘𝑅) & ⊢ 𝐹 = {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0} & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ 𝑆 = ran (𝑔 ∈ 𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔‘𝑤) · (𝑀 Σg 𝑤))))) ⇒ ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝑅)) | ||
| Theorem | elrgspnlem2 33217* | Lemma for elrgspn 33220. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ · = (.g‘𝑅) & ⊢ 𝑁 = (RingSpan‘𝑅) & ⊢ 𝐹 = {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0} & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ 𝑆 = ran (𝑔 ∈ 𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔‘𝑤) · (𝑀 Σg 𝑤))))) ⇒ ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) | ||
| Theorem | elrgspnlem3 33218* | Lemma for elrgspn 33220. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ · = (.g‘𝑅) & ⊢ 𝑁 = (RingSpan‘𝑅) & ⊢ 𝐹 = {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0} & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ 𝑆 = ran (𝑔 ∈ 𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔‘𝑤) · (𝑀 Σg 𝑤))))) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝑆) | ||
| Theorem | elrgspnlem4 33219* | Lemma for elrgspn 33220. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ · = (.g‘𝑅) & ⊢ 𝑁 = (RingSpan‘𝑅) & ⊢ 𝐹 = {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0} & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ 𝑆 = ran (𝑔 ∈ 𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔‘𝑤) · (𝑀 Σg 𝑤))))) ⇒ ⊢ (𝜑 → (𝑁‘𝐴) = 𝑆) | ||
| Theorem | elrgspn 33220* | Membership in the subring generated by the subset 𝐴. An element 𝑋 lies in that subring if and only if 𝑋 is a linear combination with integer coefficients of products of elements of 𝐴. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ · = (.g‘𝑅) & ⊢ 𝑁 = (RingSpan‘𝑅) & ⊢ 𝐹 = {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0} & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝑁‘𝐴) ↔ ∃𝑔 ∈ 𝐹 𝑋 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔‘𝑤) · (𝑀 Σg 𝑤)))))) | ||
| Theorem | elrgspnsubrunlem1 33221* | Lemma for elrgspnsubrun 33223, first direction. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑁 = (RingSpan‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐸 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝑃:𝐹⟶𝐸) & ⊢ (𝜑 → 𝑃 finSupp 0 ) & ⊢ (𝜑 → 𝑋 = (𝑅 Σg (𝑒 ∈ 𝐹 ↦ ((𝑃‘𝑒) · 𝑒)))) & ⊢ 𝑇 = ran (𝑓 ∈ (𝑃 supp 0 ) ↦ 〈“(𝑃‘𝑓)𝑓”〉) ⇒ ⊢ (𝜑 → 𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹))) | ||
| Theorem | elrgspnsubrunlem2 33222* | Lemma for elrgspnsubrun 33223, second direction. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑁 = (RingSpan‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐸 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐺:Word (𝐸 ∪ 𝐹)⟶ℤ) & ⊢ (𝜑 → 𝐺 finSupp 0) & ⊢ (𝜑 → 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝐺‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) ⇒ ⊢ (𝜑 → ∃𝑝 ∈ (𝐸 ↑m 𝐹)(𝑝 finSupp 0 ∧ 𝑋 = (𝑅 Σg (𝑓 ∈ 𝐹 ↦ ((𝑝‘𝑓) · 𝑓))))) | ||
| Theorem | elrgspnsubrun 33223* | Membership in the ring span of the union of two subrings of a commutative ring. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑁 = (RingSpan‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐸 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝑅)) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹)) ↔ ∃𝑝 ∈ (𝐸 ↑m 𝐹)(𝑝 finSupp 0 ∧ 𝑋 = (𝑅 Σg (𝑓 ∈ 𝐹 ↦ ((𝑝‘𝑓) · 𝑓)))))) | ||
| Theorem | irrednzr 33224 | A ring with an irreducible element cannot be the zero ring. (Contributed by Thierry Arnoux, 18-May-2025.) |
| ⊢ 𝐼 = (Irred‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) ⇒ ⊢ (𝜑 → 𝑅 ∈ NzRing) | ||
| Theorem | 0ringsubrg 33225 | A subring of a zero ring is a zero ring. (Contributed by Thierry Arnoux, 5-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → (♯‘𝐵) = 1) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) ⇒ ⊢ (𝜑 → (♯‘𝑆) = 1) | ||
| Theorem | 0ringcring 33226 | The zero ring is commutative. (Contributed by Thierry Arnoux, 18-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → (♯‘𝐵) = 1) ⇒ ⊢ (𝜑 → 𝑅 ∈ CRing) | ||
| Syntax | cerl 33227 | Syntax for ring localization equivalence class operation. |
| class ~RL | ||
| Syntax | crloc 33228 | Syntax for ring localization operation. |
| class RLocal | ||
| Definition | df-erl 33229* | Define the operation giving the equivalence relation used in the localization of a ring 𝑟 by a set 𝑠. Two pairs 𝑎 = 〈𝑥, 𝑦〉 and 𝑏 = 〈𝑧, 𝑤〉 are equivalent if there exists 𝑡 ∈ 𝑠 such that 𝑡 · (𝑥 · 𝑤 − 𝑧 · 𝑦) = 0. This corresponds to the usual comparison of fractions 𝑥 / 𝑦 and 𝑧 / 𝑤. (Contributed by Thierry Arnoux, 28-Apr-2025.) |
| ⊢ ~RL = (𝑟 ∈ V, 𝑠 ∈ V ↦ ⦋(.r‘𝑟) / 𝑥⦌⦋((Base‘𝑟) × 𝑠) / 𝑤⦌{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ∃𝑡 ∈ 𝑠 (𝑡𝑥(((1st ‘𝑎)𝑥(2nd ‘𝑏))(-g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))) = (0g‘𝑟))}) | ||
| Definition | df-rloc 33230* | Define the operation giving the localization of a ring 𝑟 by a given set 𝑠. The localized ring 𝑟 RLocal 𝑠 is the set of equivalence classes of pairs of elements in 𝑟 over the relation 𝑟 ~RL 𝑠 with addition and multiplication defined naturally. (Contributed by Thierry Arnoux, 27-Apr-2025.) |
| ⊢ RLocal = (𝑟 ∈ V, 𝑠 ∈ V ↦ ⦋(.r‘𝑟) / 𝑥⦌⦋((Base‘𝑟) × 𝑠) / 𝑤⦌((({〈(Base‘ndx), 𝑤〉, 〈(+g‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈(((1st ‘𝑎)𝑥(2nd ‘𝑏))(+g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉, 〈(.r‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈((1st ‘𝑎)𝑥(1st ‘𝑏)), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉} ∪ {〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎 ∈ 𝑤 ↦ 〈(𝑘( ·𝑠 ‘𝑟)(1st ‘𝑎)), (2nd ‘𝑎)〉)〉, 〈(·𝑖‘ndx), ∅〉}) ∪ {〈(TopSet‘ndx), ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))〉, 〈(le‘ndx), {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ((1st ‘𝑎)𝑥(2nd ‘𝑏))(le‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))}〉, 〈(dist‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ (((1st ‘𝑎)𝑥(2nd ‘𝑏))(dist‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))))〉}) /s (𝑟 ~RL 𝑠))) | ||
| Theorem | reldmrloc 33231 | Ring localization is a proper operator, so it can be used with ovprc1 7391. (Contributed by Thierry Arnoux, 10-May-2025.) |
| ⊢ Rel dom RLocal | ||
| Theorem | erlval 33232* | Value of the ring localization equivalence relation. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ − = (-g‘𝑅) & ⊢ 𝑊 = (𝐵 × 𝑆) & ⊢ ∼ = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊) ∧ ∃𝑡 ∈ 𝑆 (𝑡 · (((1st ‘𝑎) · (2nd ‘𝑏)) − ((1st ‘𝑏) · (2nd ‘𝑎)))) = 0 )} & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝑅 ~RL 𝑆) = ∼ ) | ||
| Theorem | rlocval 33233* | Expand the value of the ring localization operation. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ − = (-g‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ ≤ = (le‘𝑅) & ⊢ 𝐹 = (Scalar‘𝑅) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝐶 = ( ·𝑠 ‘𝑅) & ⊢ 𝑊 = (𝐵 × 𝑆) & ⊢ ∼ = (𝑅 ~RL 𝑆) & ⊢ 𝐽 = (TopSet‘𝑅) & ⊢ 𝐷 = (dist‘𝑅) & ⊢ ⊕ = (𝑎 ∈ 𝑊, 𝑏 ∈ 𝑊 ↦ 〈(((1st ‘𝑎) · (2nd ‘𝑏)) + ((1st ‘𝑏) · (2nd ‘𝑎))), ((2nd ‘𝑎) · (2nd ‘𝑏))〉) & ⊢ ⊗ = (𝑎 ∈ 𝑊, 𝑏 ∈ 𝑊 ↦ 〈((1st ‘𝑎) · (1st ‘𝑏)), ((2nd ‘𝑎) · (2nd ‘𝑏))〉) & ⊢ × = (𝑘 ∈ 𝐾, 𝑎 ∈ 𝑊 ↦ 〈(𝑘𝐶(1st ‘𝑎)), (2nd ‘𝑎)〉) & ⊢ ≲ = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊) ∧ ((1st ‘𝑎) · (2nd ‘𝑏)) ≤ ((1st ‘𝑏) · (2nd ‘𝑎)))} & ⊢ 𝐸 = (𝑎 ∈ 𝑊, 𝑏 ∈ 𝑊 ↦ (((1st ‘𝑎) · (2nd ‘𝑏))𝐷((1st ‘𝑏) · (2nd ‘𝑎)))) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝑅 RLocal 𝑆) = ((({〈(Base‘ndx), 𝑊〉, 〈(+g‘ndx), ⊕ 〉, 〈(.r‘ndx), ⊗ 〉} ∪ {〈(Scalar‘ndx), 𝐹〉, 〈( ·𝑠 ‘ndx), × 〉, 〈(·𝑖‘ndx), ∅〉}) ∪ {〈(TopSet‘ndx), (𝐽 ×t (𝐽 ↾t 𝑆))〉, 〈(le‘ndx), ≲ 〉, 〈(dist‘ndx), 𝐸〉}) /s ∼ )) | ||
| Theorem | erlcl1 33234 | Closure for the ring localization equivalence relation. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ ∼ = (𝑅 ~RL 𝑆) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ (𝜑 → 𝑈 ∼ 𝑉) ⇒ ⊢ (𝜑 → 𝑈 ∈ (𝐵 × 𝑆)) | ||
| Theorem | erlcl2 33235 | Closure for the ring localization equivalence relation. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ ∼ = (𝑅 ~RL 𝑆) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ (𝜑 → 𝑈 ∼ 𝑉) ⇒ ⊢ (𝜑 → 𝑉 ∈ (𝐵 × 𝑆)) | ||
| Theorem | erldi 33236* | Main property of the ring localization equivalence relation. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ ∼ = (𝑅 ~RL 𝑆) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ − = (-g‘𝑅) & ⊢ (𝜑 → 𝑈 ∼ 𝑉) ⇒ ⊢ (𝜑 → ∃𝑡 ∈ 𝑆 (𝑡 · (((1st ‘𝑈) · (2nd ‘𝑉)) − ((1st ‘𝑉) · (2nd ‘𝑈)))) = 0 ) | ||
| Theorem | erlbrd 33237 | Deduce the ring localization equivalence relation. If for some 𝑇 ∈ 𝑆 we have 𝑇 · (𝐸 · 𝐻 − 𝐹 · 𝐺) = 0, then pairs 〈𝐸, 𝐺〉 and 〈𝐹, 𝐻〉 are equivalent under the localization relation. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ ∼ = (𝑅 ~RL 𝑆) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ − = (-g‘𝑅) & ⊢ (𝜑 → 𝑈 = 〈𝐸, 𝐺〉) & ⊢ (𝜑 → 𝑉 = 〈𝐹, 𝐻〉) & ⊢ (𝜑 → 𝐸 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝑆) & ⊢ (𝜑 → 𝐻 ∈ 𝑆) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → (𝑇 · ((𝐸 · 𝐻) − (𝐹 · 𝐺))) = 0 ) ⇒ ⊢ (𝜑 → 𝑈 ∼ 𝑉) | ||
| Theorem | erlbr2d 33238 | Deduce the ring localization equivalence relation. Pairs 〈𝐸, 𝐺〉 and 〈𝑇 · 𝐸, 𝑇 · 𝐺〉 for 𝑇 ∈ 𝑆 are equivalent under the localization relation. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ ∼ = (𝑅 ~RL 𝑆) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑈 = 〈𝐸, 𝐺〉) & ⊢ (𝜑 → 𝑉 = 〈𝐹, 𝐻〉) & ⊢ (𝜑 → 𝐸 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝑆) & ⊢ (𝜑 → 𝐻 ∈ 𝑆) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 = (𝑇 · 𝐸)) & ⊢ (𝜑 → 𝐻 = (𝑇 · 𝐺)) ⇒ ⊢ (𝜑 → 𝑈 ∼ 𝑉) | ||
| Theorem | erler 33239 | The relation used to build the ring localization is an equivalence relation. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ − = (-g‘𝑅) & ⊢ 𝑊 = (𝐵 × 𝑆) & ⊢ ∼ = (𝑅 ~RL 𝑆) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) ⇒ ⊢ (𝜑 → ∼ Er 𝑊) | ||
| Theorem | elrlocbasi 33240* | Membership in the basis of a ring localization. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ ((𝐵 × 𝑆) / ∼ )) ⇒ ⊢ (𝜑 → ∃𝑎 ∈ 𝐵 ∃𝑏 ∈ 𝑆 𝑋 = [〈𝑎, 𝑏〉] ∼ ) | ||
| Theorem | rlocbas 33241 | The base set of a ring localization. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ − = (-g‘𝑅) & ⊢ 𝑊 = (𝐵 × 𝑆) & ⊢ 𝐿 = (𝑅 RLocal 𝑆) & ⊢ ∼ = (𝑅 ~RL 𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝑊 / ∼ ) = (Base‘𝐿)) | ||
| Theorem | rlocaddval 33242 | Value of the addition in the ring localization, given two representatives. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ 𝐿 = (𝑅 RLocal 𝑆) & ⊢ ∼ = (𝑅 ~RL 𝑆) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) & ⊢ (𝜑 → 𝐸 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝑆) & ⊢ (𝜑 → 𝐻 ∈ 𝑆) & ⊢ ⊕ = (+g‘𝐿) ⇒ ⊢ (𝜑 → ([〈𝐸, 𝐺〉] ∼ ⊕ [〈𝐹, 𝐻〉] ∼ ) = [〈((𝐸 · 𝐻) + (𝐹 · 𝐺)), (𝐺 · 𝐻)〉] ∼ ) | ||
| Theorem | rlocmulval 33243 | Value of the addition in the ring localization, given two representatives. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ 𝐿 = (𝑅 RLocal 𝑆) & ⊢ ∼ = (𝑅 ~RL 𝑆) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) & ⊢ (𝜑 → 𝐸 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝑆) & ⊢ (𝜑 → 𝐻 ∈ 𝑆) & ⊢ ⊗ = (.r‘𝐿) ⇒ ⊢ (𝜑 → ([〈𝐸, 𝐺〉] ∼ ⊗ [〈𝐹, 𝐻〉] ∼ ) = [〈(𝐸 · 𝐹), (𝐺 · 𝐻)〉] ∼ ) | ||
| Theorem | rloccring 33244 | The ring localization 𝐿 of a commutative ring 𝑅 by a multiplicatively closed set 𝑆 is itself a commutative ring. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ 𝐿 = (𝑅 RLocal 𝑆) & ⊢ ∼ = (𝑅 ~RL 𝑆) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) ⇒ ⊢ (𝜑 → 𝐿 ∈ CRing) | ||
| Theorem | rloc0g 33245 | The zero of a ring localization. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐿 = (𝑅 RLocal 𝑆) & ⊢ ∼ = (𝑅 ~RL 𝑆) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) & ⊢ 𝑂 = [〈 0 , 1 〉] ∼ ⇒ ⊢ (𝜑 → 𝑂 = (0g‘𝐿)) | ||
| Theorem | rloc1r 33246 | The multiplicative identity of a ring localization. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐿 = (𝑅 RLocal 𝑆) & ⊢ ∼ = (𝑅 ~RL 𝑆) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) & ⊢ 𝐼 = [〈 1 , 1 〉] ∼ ⇒ ⊢ (𝜑 → 𝐼 = (1r‘𝐿)) | ||
| Theorem | rlocf1 33247* | The embedding 𝐹 of a ring 𝑅 into its localization 𝐿. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐿 = (𝑅 RLocal 𝑆) & ⊢ ∼ = (𝑅 ~RL 𝑆) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [〈𝑥, 1 〉] ∼ ) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) & ⊢ (𝜑 → 𝑆 ⊆ (RLReg‘𝑅)) ⇒ ⊢ (𝜑 → (𝐹:𝐵–1-1→((𝐵 × 𝑆) / ∼ ) ∧ 𝐹 ∈ (𝑅 RingHom 𝐿))) | ||
| Theorem | domnmuln0rd 33248 | In a domain, factors of a nonzero product are nonzero. (Contributed by Thierry Arnoux, 8-Jun-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Domn) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → (𝑋 · 𝑌) ≠ 0 ) ⇒ ⊢ (𝜑 → (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 )) | ||
| Theorem | domnprodn0 33249 | In a domain, a finite product of nonzero terms is nonzero. (Contributed by Thierry Arnoux, 6-Jun-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Domn) & ⊢ (𝜑 → 𝐹 ∈ Word (𝐵 ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝑀 Σg 𝐹) ≠ 0 ) | ||
| Theorem | domnpropd 33250* | If two structures have the same components (properties), one is a domain iff the other one is. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ Domn ↔ 𝐿 ∈ Domn)) | ||
| Theorem | idompropd 33251* | If two structures have the same components (properties), one is a integral domain iff the other one is. See also domnpropd 33250. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ IDomn ↔ 𝐿 ∈ IDomn)) | ||
| Theorem | idomrcan 33252 | Right-cancellation law for integral domains. (Contributed by Thierry Arnoux, 22-Mar-2025.) (Proof shortened by SN, 21-Jun-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ (𝐵 ∖ { 0 })) & ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → (𝑋 · 𝑍) = (𝑌 · 𝑍)) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
| Theorem | domnlcanOLD 33253 | Obsolete version of domnlcan 20638 as of 21-Jun-2025. (Contributed by Thierry Arnoux, 22-Mar-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑅 ∈ Domn) & ⊢ (𝜑 → (𝑋 · 𝑌) = (𝑋 · 𝑍)) ⇒ ⊢ (𝜑 → 𝑌 = 𝑍) | ||
| Theorem | domnlcanbOLD 33254 | Obsolete version of domnlcanb 20637 as of 21-Jun-2025. (Contributed by Thierry Arnoux, 8-Jun-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑅 ∈ Domn) ⇒ ⊢ (𝜑 → ((𝑋 · 𝑌) = (𝑋 · 𝑍) ↔ 𝑌 = 𝑍)) | ||
| Theorem | idomrcanOLD 33255 | Obsolete version of idomrcan 33252 as of 21-Jun-2025. (Contributed by Thierry Arnoux, 22-Mar-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → (𝑌 · 𝑋) = (𝑍 · 𝑋)) ⇒ ⊢ (𝜑 → 𝑌 = 𝑍) | ||
| Theorem | 1rrg 33256 | The multiplicative identity is a left-regular element. (Contributed by Thierry Arnoux, 6-May-2025.) |
| ⊢ 1 = (1r‘𝑅) & ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → 1 ∈ 𝐸) | ||
| Theorem | rrgsubm 33257 | The left regular elements of a ring form a submonoid of the multiplicative group. (Contributed by Thierry Arnoux, 10-May-2025.) |
| ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → 𝐸 ∈ (SubMnd‘𝑀)) | ||
| Theorem | subrdom 33258 | A subring of a domain is a domain. (Contributed by Thierry Arnoux, 18-May-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Domn) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) ⇒ ⊢ (𝜑 → (𝑅 ↾s 𝑆) ∈ Domn) | ||
| Theorem | subridom 33259 | A subring of an integral domain is an integral domain. (Contributed by Thierry Arnoux, 18-May-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) ⇒ ⊢ (𝜑 → (𝑅 ↾s 𝑆) ∈ IDomn) | ||
| Theorem | subrfld 33260 | A subring of a field is an integral domain. (Contributed by Thierry Arnoux, 18-May-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Field) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) ⇒ ⊢ (𝜑 → (𝑅 ↾s 𝑆) ∈ IDomn) | ||
| Syntax | ceuf 33261 | Declare the syntax for the Euclidean function index extractor. |
| class EuclF | ||
| Definition | df-euf 33262 | Define the Euclidean function. (Contributed by Thierry Arnoux, 22-Mar-2025.) Use its index-independent form eufid 33264 instead. (New usage is discouraged.) |
| ⊢ EuclF = Slot ;21 | ||
| Theorem | eufndx 33263 | Index value of the Euclidean function slot. Use ndxarg 17109. (Contributed by Thierry Arnoux, 22-Mar-2025.) (New usage is discouraged.) |
| ⊢ (EuclF‘ndx) = ;21 | ||
| Theorem | eufid 33264 | Utility theorem: index-independent form of df-euf 33262. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| ⊢ EuclF = Slot (EuclF‘ndx) | ||
| Syntax | cedom 33265 | Declare the syntax for the Euclidean Domain. |
| class EDomn | ||
| Definition | df-edom 33266* | Define Euclidean Domains. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| ⊢ EDomn = {𝑑 ∈ IDomn ∣ [(EuclF‘𝑑) / 𝑒][(Base‘𝑑) / 𝑣](Fun 𝑒 ∧ (𝑒 “ (𝑣 ∖ {(0g‘𝑑)})) ⊆ (0[,)+∞) ∧ ∀𝑎 ∈ 𝑣 ∀𝑏 ∈ (𝑣 ∖ {(0g‘𝑑)})∃𝑞 ∈ 𝑣 ∃𝑟 ∈ 𝑣 (𝑎 = ((𝑏(.r‘𝑑)𝑞)(+g‘𝑑)𝑟) ∧ (𝑟 = (0g‘𝑑) ∨ (𝑒‘𝑟) < (𝑒‘𝑏))))} | ||
| Theorem | ringinveu 33267 | If a ring unit element 𝑋 admits both a left inverse 𝑌 and a right inverse 𝑍, they are equal. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → (𝑌 · 𝑋) = 1 ) & ⊢ (𝜑 → (𝑋 · 𝑍) = 1 ) ⇒ ⊢ (𝜑 → 𝑍 = 𝑌) | ||
| Theorem | isdrng4 33268* | A division ring is a ring in which 1 ≠ 0 and every nonzero element has a left and right inverse. (Contributed by Thierry Arnoux, 2-Mar-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → (𝑅 ∈ DivRing ↔ ( 1 ≠ 0 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )))) | ||
| Theorem | rndrhmcl 33269 | The image of a division ring by a ring homomorphism is a division ring. (Contributed by Thierry Arnoux, 25-Feb-2025.) |
| ⊢ 𝑅 = (𝑁 ↾s ran 𝐹) & ⊢ 0 = (0g‘𝑁) & ⊢ (𝜑 → 𝐹 ∈ (𝑀 RingHom 𝑁)) & ⊢ (𝜑 → ran 𝐹 ≠ { 0 }) & ⊢ (𝜑 → 𝑀 ∈ DivRing) ⇒ ⊢ (𝜑 → 𝑅 ∈ DivRing) | ||
| Theorem | qfld 33270 | The field of rational numbers is a field. (Contributed by Thierry Arnoux, 19-Oct-2025.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) ⇒ ⊢ 𝑄 ∈ Field | ||
| Theorem | subsdrg 33271 | A subring of a sub-division-ring is a sub-division-ring. See also subsubrg 20515. (Contributed by Thierry Arnoux, 26-Oct-2025.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ (𝜑 → 𝐴 ∈ (SubDRing‘𝑅)) ⇒ ⊢ (𝜑 → (𝐵 ∈ (SubDRing‘𝑆) ↔ (𝐵 ∈ (SubDRing‘𝑅) ∧ 𝐵 ⊆ 𝐴))) | ||
| Theorem | sdrgdvcl 33272 | A sub-division-ring is closed under the ring division operation. (Contributed by Thierry Arnoux, 15-Jan-2025.) |
| ⊢ / = (/r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝐴 ∈ (SubDRing‘𝑅)) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝑋 / 𝑌) ∈ 𝐴) | ||
| Theorem | sdrginvcl 33273 | A sub-division-ring is closed under the ring inverse operation. (Contributed by Thierry Arnoux, 15-Jan-2025.) |
| ⊢ 𝐼 = (invr‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → (𝐼‘𝑋) ∈ 𝐴) | ||
| Theorem | primefldchr 33274 | The characteristic of a prime field is the same as the characteristic of the main field. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
| ⊢ 𝑃 = (𝑅 ↾s ∩ (SubDRing‘𝑅)) ⇒ ⊢ (𝑅 ∈ DivRing → (chr‘𝑃) = (chr‘𝑅)) | ||
| Syntax | cfrac 33275 | Syntax for the field of fractions of a given integral domain. |
| class Frac | ||
| Definition | df-frac 33276 | Define the field of fractions of a given integral domain. (Contributed by Thierry Arnoux, 26-Apr-2025.) |
| ⊢ Frac = (𝑟 ∈ V ↦ (𝑟 RLocal (RLReg‘𝑟))) | ||
| Theorem | fracval 33277 | Value of the field of fractions. (Contributed by Thierry Arnoux, 5-May-2025.) |
| ⊢ ( Frac ‘𝑅) = (𝑅 RLocal (RLReg‘𝑅)) | ||
| Theorem | fracbas 33278 | The base of the field of fractions. (Contributed by Thierry Arnoux, 10-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 𝐹 = ( Frac ‘𝑅) & ⊢ ∼ = (𝑅 ~RL 𝐸) ⇒ ⊢ ((𝐵 × 𝐸) / ∼ ) = (Base‘𝐹) | ||
| Theorem | fracerl 33279 | Rewrite the ring localization equivalence relation in the case of a field of fractions. (Contributed by Thierry Arnoux, 5-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ ∼ = (𝑅 ~RL (RLReg‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐸 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (RLReg‘𝑅)) & ⊢ (𝜑 → 𝐻 ∈ (RLReg‘𝑅)) ⇒ ⊢ (𝜑 → (〈𝐸, 𝐹〉 ∼ 〈𝐺, 𝐻〉 ↔ (𝐸 · 𝐻) = (𝐺 · 𝐹))) | ||
| Theorem | fracf1 33280* | The embedding of a commutative ring 𝑅 into its field of fractions. (Contributed by Thierry Arnoux, 10-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ ∼ = (𝑅 ~RL 𝐸) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [〈𝑥, 1 〉] ∼ ) ⇒ ⊢ (𝜑 → (𝐹:𝐵–1-1→((𝐵 × 𝐸) / ∼ ) ∧ 𝐹 ∈ (𝑅 RingHom ( Frac ‘𝑅)))) | ||
| Theorem | fracfld 33281 | The field of fractions of an integral domain is a field. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ IDomn) ⇒ ⊢ (𝜑 → ( Frac ‘𝑅) ∈ Field) | ||
| Theorem | idomsubr 33282* | Every integral domain is isomorphic with a subring of some field. (Proposed by Gerard Lang, 10-May-2025.) (Contributed by Thierry Arnoux, 10-May-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ IDomn) ⇒ ⊢ (𝜑 → ∃𝑓 ∈ Field ∃𝑠 ∈ (SubRing‘𝑓)𝑅 ≃𝑟 (𝑓 ↾s 𝑠)) | ||
| Syntax | cfldgen 33283 | Syntax for a function generating sub-fields. |
| class fldGen | ||
| Definition | df-fldgen 33284* | Define a function generating the smallest sub-division-ring of a given ring containing a given set. If the base structure is a division ring, then this is also a division ring (see fldgensdrg 33287). If the base structure is a field, this is a subfield (see fldgenfld 33293 and fldsdrgfld 20715). In general this will be used in the context of fields, hence the name fldGen. (Contributed by Saveliy Skresanov and Thierry Arnoux, 9-Jan-2025.) |
| ⊢ fldGen = (𝑓 ∈ V, 𝑠 ∈ V ↦ ∩ {𝑎 ∈ (SubDRing‘𝑓) ∣ 𝑠 ⊆ 𝑎}) | ||
| Theorem | fldgenval 33285* | Value of the field generating function: (𝐹 fldGen 𝑆) is the smallest sub-division-ring of 𝐹 containing 𝑆. (Contributed by Thierry Arnoux, 11-Jan-2025.) |
| ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ DivRing) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 fldGen 𝑆) = ∩ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆 ⊆ 𝑎}) | ||
| Theorem | fldgenssid 33286 | The field generated by a set of elements contains those elements. See lspssid 20920. (Contributed by Thierry Arnoux, 15-Jan-2025.) |
| ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ DivRing) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) ⇒ ⊢ (𝜑 → 𝑆 ⊆ (𝐹 fldGen 𝑆)) | ||
| Theorem | fldgensdrg 33287 | A generated subfield is a sub-division-ring. (Contributed by Thierry Arnoux, 11-Jan-2025.) |
| ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ DivRing) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 fldGen 𝑆) ∈ (SubDRing‘𝐹)) | ||
| Theorem | fldgenssv 33288 | A generated subfield is a subset of the field's base. (Contributed by Thierry Arnoux, 25-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ DivRing) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 fldGen 𝑆) ⊆ 𝐵) | ||
| Theorem | fldgenss 33289 | Generated subfields preserve subset ordering. ( see lspss 20919 and spanss 31330) (Contributed by Thierry Arnoux, 15-Jan-2025.) |
| ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ DivRing) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ (𝜑 → 𝑇 ⊆ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 fldGen 𝑇) ⊆ (𝐹 fldGen 𝑆)) | ||
| Theorem | fldgenidfld 33290 | The subfield generated by a subfield is the subfield itself. (Contributed by Thierry Arnoux, 15-Jan-2025.) |
| ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ DivRing) & ⊢ (𝜑 → 𝑆 ∈ (SubDRing‘𝐹)) ⇒ ⊢ (𝜑 → (𝐹 fldGen 𝑆) = 𝑆) | ||
| Theorem | fldgenssp 33291 | The field generated by a set of elements in a division ring is contained in any sub-division-ring which contains those elements. (Contributed by Thierry Arnoux, 25-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ DivRing) & ⊢ (𝜑 → 𝑆 ∈ (SubDRing‘𝐹)) & ⊢ (𝜑 → 𝑇 ⊆ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 fldGen 𝑇) ⊆ 𝑆) | ||
| Theorem | fldgenid 33292 | The subfield of a field 𝐹 generated by the whole base set of 𝐹 is 𝐹 itself. (Contributed by Thierry Arnoux, 11-Jan-2025.) |
| ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ DivRing) ⇒ ⊢ (𝜑 → (𝐹 fldGen 𝐵) = 𝐵) | ||
| Theorem | fldgenfld 33293 | A generated subfield is a field. (Contributed by Thierry Arnoux, 11-Jan-2025.) |
| ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ Field) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ↾s (𝐹 fldGen 𝑆)) ∈ Field) | ||
| Theorem | primefldgen1 33294 | The prime field of a division ring is the subfield generated by the multiplicative identity element. In general, we should write "prime division ring", but since most later usages are in the case where the ambient ring is commutative, we keep the term "prime field". (Contributed by Thierry Arnoux, 11-Jan-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) ⇒ ⊢ (𝜑 → ∩ (SubDRing‘𝑅) = (𝑅 fldGen { 1 })) | ||
| Theorem | 1fldgenq 33295 | The field of rational numbers ℚ is generated by 1 in ℂfld, that is, ℚ is the prime field of ℂfld. (Contributed by Thierry Arnoux, 15-Jan-2025.) |
| ⊢ (ℂfld fldGen {1}) = ℚ | ||
| Theorem | rhmdvd 33296 | A ring homomorphism preserves ratios. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
| ⊢ 𝑈 = (Unit‘𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ / = (/r‘𝑆) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → ((𝐹‘𝐴) / (𝐹‘𝐵)) = ((𝐹‘(𝐴 · 𝐶)) / (𝐹‘(𝐵 · 𝐶)))) | ||
| Theorem | kerunit 33297 | If a unit element lies in the kernel of a ring homomorphism, then 0 = 1, i.e. the target ring is the zero ring. (Contributed by Thierry Arnoux, 24-Oct-2017.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑆) & ⊢ 1 = (1r‘𝑆) ⇒ ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑈 ∩ (◡𝐹 “ { 0 })) ≠ ∅) → 1 = 0 ) | ||
| Syntax | cresv 33298 | Extend class notation with the scalar restriction operation. |
| class ↾v | ||
| Definition | df-resv 33299* | Define an operator to restrict the scalar field component of an extended structure. (Contributed by Thierry Arnoux, 5-Sep-2018.) |
| ⊢ ↾v = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘(Scalar‘𝑤)) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Scalar‘ndx), ((Scalar‘𝑤) ↾s 𝑥)〉))) | ||
| Theorem | reldmresv 33300 | The scalar restriction is a proper operator, so it can be used with ovprc1 7391. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
| ⊢ Rel dom ↾v | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |