Home | Metamath
Proof Explorer Theorem List (p. 333 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | cnpconn 33201 | An image of a path-connected space is path-connected. (Contributed by Mario Carneiro, 24-Mar-2015.) |
⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ ((𝐽 ∈ PConn ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ PConn) | ||
Theorem | pconnconn 33202 | A path-connected space is connected. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ (𝐽 ∈ PConn → 𝐽 ∈ Conn) | ||
Theorem | txpconn 33203 | The topological product of two path-connected spaces is path-connected. (Contributed by Mario Carneiro, 12-Feb-2015.) |
⊢ ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → (𝑅 ×t 𝑆) ∈ PConn) | ||
Theorem | ptpconn 33204 | The topological product of a collection of path-connected spaces is path-connected. The proof uses the axiom of choice. (Contributed by Mario Carneiro, 17-Feb-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶PConn) → (∏t‘𝐹) ∈ PConn) | ||
Theorem | indispconn 33205 | The indiscrete topology (or trivial topology) on any set is path-connected. (Contributed by Mario Carneiro, 7-Jul-2015.) (Revised by Mario Carneiro, 14-Aug-2015.) |
⊢ {∅, 𝐴} ∈ PConn | ||
Theorem | connpconn 33206 | A connected and locally path-connected space is path-connected. (Contributed by Mario Carneiro, 7-Jul-2015.) |
⊢ ((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) → 𝐽 ∈ PConn) | ||
Theorem | qtoppconn 33207 | A quotient of a path-connected space is path-connected. (Contributed by Mario Carneiro, 24-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ PConn ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ PConn) | ||
Theorem | pconnpi1 33208 | All fundamental groups in a path-connected space are isomorphic. (Contributed by Mario Carneiro, 12-Feb-2015.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑃 = (𝐽 π1 𝐴) & ⊢ 𝑄 = (𝐽 π1 𝐵) & ⊢ 𝑆 = (Base‘𝑃) & ⊢ 𝑇 = (Base‘𝑄) ⇒ ⊢ ((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝑃 ≃𝑔 𝑄) | ||
Theorem | sconnpht2 33209 | Any two paths in a simply connected space with the same start and end point are path-homotopic. (Contributed by Mario Carneiro, 12-Feb-2015.) |
⊢ (𝜑 → 𝐽 ∈ SConn) & ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → (𝐹‘0) = (𝐺‘0)) & ⊢ (𝜑 → (𝐹‘1) = (𝐺‘1)) ⇒ ⊢ (𝜑 → 𝐹( ≃ph‘𝐽)𝐺) | ||
Theorem | sconnpi1 33210 | A path-connected topological space is simply connected iff its fundamental group is trivial. (Contributed by Mario Carneiro, 12-Feb-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) → (𝐽 ∈ SConn ↔ (Base‘(𝐽 π1 𝑌)) ≈ 1o)) | ||
Theorem | txsconnlem 33211 | Lemma for txsconn 33212. (Contributed by Mario Carneiro, 9-Mar-2015.) |
⊢ (𝜑 → 𝑅 ∈ Top) & ⊢ (𝜑 → 𝑆 ∈ Top) & ⊢ (𝜑 → 𝐹 ∈ (II Cn (𝑅 ×t 𝑆))) & ⊢ 𝐴 = ((1st ↾ (∪ 𝑅 × ∪ 𝑆)) ∘ 𝐹) & ⊢ 𝐵 = ((2nd ↾ (∪ 𝑅 × ∪ 𝑆)) ∘ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ (𝐴(PHtpy‘𝑅)((0[,]1) × {(𝐴‘0)}))) & ⊢ (𝜑 → 𝐻 ∈ (𝐵(PHtpy‘𝑆)((0[,]1) × {(𝐵‘0)}))) ⇒ ⊢ (𝜑 → 𝐹( ≃ph‘(𝑅 ×t 𝑆))((0[,]1) × {(𝐹‘0)})) | ||
Theorem | txsconn 33212 | The topological product of two simply connected spaces is simply connected. (Contributed by Mario Carneiro, 12-Feb-2015.) |
⊢ ((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) → (𝑅 ×t 𝑆) ∈ SConn) | ||
Theorem | cvxpconn 33213* | A convex subset of the complex numbers is path-connected. (Contributed by Mario Carneiro, 12-Feb-2015.) |
⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑡 ∈ (0[,]1))) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆) & ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐾 = (𝐽 ↾t 𝑆) ⇒ ⊢ (𝜑 → 𝐾 ∈ PConn) | ||
Theorem | cvxsconn 33214* | A convex subset of the complex numbers is simply connected. (Contributed by Mario Carneiro, 12-Feb-2015.) |
⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑡 ∈ (0[,]1))) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆) & ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐾 = (𝐽 ↾t 𝑆) ⇒ ⊢ (𝜑 → 𝐾 ∈ SConn) | ||
Theorem | blsconn 33215 | An open ball in the complex numbers is simply connected. (Contributed by Mario Carneiro, 12-Feb-2015.) |
⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝑆 = (𝑃(ball‘(abs ∘ − ))𝑅) & ⊢ 𝐾 = (𝐽 ↾t 𝑆) ⇒ ⊢ ((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) → 𝐾 ∈ SConn) | ||
Theorem | cnllysconn 33216 | The topology of the complex numbers is locally simply connected. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ 𝐽 ∈ Locally SConn | ||
Theorem | resconn 33217 | A subset of ℝ is simply connected iff it is connected. (Contributed by Mario Carneiro, 9-Mar-2015.) |
⊢ 𝐽 = ((topGen‘ran (,)) ↾t 𝐴) ⇒ ⊢ (𝐴 ⊆ ℝ → (𝐽 ∈ SConn ↔ 𝐽 ∈ Conn)) | ||
Theorem | ioosconn 33218 | An open interval is simply connected. (Contributed by Mario Carneiro, 9-Mar-2015.) |
⊢ ((topGen‘ran (,)) ↾t (𝐴(,)𝐵)) ∈ SConn | ||
Theorem | iccsconn 33219 | A closed interval is simply connected. (Contributed by Mario Carneiro, 9-Mar-2015.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ SConn) | ||
Theorem | retopsconn 33220 | The real numbers are simply connected. (Contributed by Mario Carneiro, 9-Mar-2015.) |
⊢ (topGen‘ran (,)) ∈ SConn | ||
Theorem | iccllysconn 33221 | A closed interval is locally simply connected. (Contributed by Mario Carneiro, 10-Mar-2015.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Locally SConn) | ||
Theorem | rellysconn 33222 | The real numbers are locally simply connected. (Contributed by Mario Carneiro, 10-Mar-2015.) |
⊢ (topGen‘ran (,)) ∈ Locally SConn | ||
Theorem | iisconn 33223 | The unit interval is simply connected. (Contributed by Mario Carneiro, 9-Mar-2015.) |
⊢ II ∈ SConn | ||
Theorem | iillysconn 33224 | The unit interval is locally simply connected. (Contributed by Mario Carneiro, 10-Mar-2015.) |
⊢ II ∈ Locally SConn | ||
Theorem | iinllyconn 33225 | The unit interval is locally connected. (Contributed by Mario Carneiro, 6-Jul-2015.) |
⊢ II ∈ 𝑛-Locally Conn | ||
Syntax | ccvm 33226 | Extend class notation with the class of covering maps. |
class CovMap | ||
Definition | df-cvm 33227* | Define the class of covering maps on two topological spaces. A function 𝑓:𝑐⟶𝑗 is a covering map if it is continuous and for every point 𝑥 in the target space there is a neighborhood 𝑘 of 𝑥 and a decomposition 𝑠 of the preimage of 𝑘 as a disjoint union such that 𝑓 is a homeomorphism of each set 𝑢 ∈ 𝑠 onto 𝑘. (Contributed by Mario Carneiro, 13-Feb-2015.) |
⊢ CovMap = (𝑐 ∈ Top, 𝑗 ∈ Top ↦ {𝑓 ∈ (𝑐 Cn 𝑗) ∣ ∀𝑥 ∈ ∪ 𝑗∃𝑘 ∈ 𝑗 (𝑥 ∈ 𝑘 ∧ ∃𝑠 ∈ (𝒫 𝑐 ∖ {∅})(∪ 𝑠 = (◡𝑓 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝑓 ↾ 𝑢) ∈ ((𝑐 ↾t 𝑢)Homeo(𝑗 ↾t 𝑘)))))}) | ||
Theorem | fncvm 33228 | Lemma for covering maps. (Contributed by Mario Carneiro, 13-Feb-2015.) |
⊢ CovMap Fn (Top × Top) | ||
Theorem | cvmscbv 33229* | Change bound variables in the set of even coverings. (Contributed by Mario Carneiro, 17-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ 𝑆 = (𝑎 ∈ 𝐽 ↦ {𝑏 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑏 = (◡𝐹 “ 𝑎) ∧ ∀𝑐 ∈ 𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑎))))}) | ||
Theorem | iscvm 33230* | The property of being a covering map. (Contributed by Mario Carneiro, 13-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) ↔ ((𝐶 ∈ Top ∧ 𝐽 ∈ Top ∧ 𝐹 ∈ (𝐶 Cn 𝐽)) ∧ ∀𝑥 ∈ 𝑋 ∃𝑘 ∈ 𝐽 (𝑥 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅))) | ||
Theorem | cvmtop1 33231 | Reverse closure for a covering map. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top) | ||
Theorem | cvmtop2 33232 | Reverse closure for a covering map. (Contributed by Mario Carneiro, 13-Feb-2015.) |
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐽 ∈ Top) | ||
Theorem | cvmcn 33233 | A covering map is a continuous function. (Contributed by Mario Carneiro, 13-Feb-2015.) |
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽)) | ||
Theorem | cvmcov 33234* | Property of a covering map. In order to make the covering property more manageable, we define here the set 𝑆(𝑘) of all even coverings of an open set 𝑘 in the range. Then the covering property states that every point has a neighborhood which has an even covering. (Contributed by Mario Carneiro, 13-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑃 ∈ 𝑋) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑆‘𝑥) ≠ ∅)) | ||
Theorem | cvmsrcl 33235* | Reverse closure for an even covering. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ (𝑇 ∈ (𝑆‘𝑈) → 𝑈 ∈ 𝐽) | ||
Theorem | cvmsi 33236* | One direction of cvmsval 33237. (Contributed by Mario Carneiro, 13-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ (𝑇 ∈ (𝑆‘𝑈) → (𝑈 ∈ 𝐽 ∧ (𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅) ∧ (∪ 𝑇 = (◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈)))))) | ||
Theorem | cvmsval 33237* | Elementhood in the set 𝑆 of all even coverings of an open set in 𝐽. 𝑆 is an even covering of 𝑈 if it is a nonempty collection of disjoint open sets in 𝐶 whose union is the preimage of 𝑈, such that each set 𝑢 ∈ 𝑆 is homeomorphic under 𝐹 to 𝑈. (Contributed by Mario Carneiro, 13-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ (𝐶 ∈ 𝑉 → (𝑇 ∈ (𝑆‘𝑈) ↔ (𝑈 ∈ 𝐽 ∧ (𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅) ∧ (∪ 𝑇 = (◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))))) | ||
Theorem | cvmsss 33238* | An even covering is a subset of the topology of the domain (i.e. a collection of open sets). (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ (𝑇 ∈ (𝑆‘𝑈) → 𝑇 ⊆ 𝐶) | ||
Theorem | cvmsn0 33239* | An even covering is nonempty. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ (𝑇 ∈ (𝑆‘𝑈) → 𝑇 ≠ ∅) | ||
Theorem | cvmsuni 33240* | An even covering of 𝑈 has union equal to the preimage of 𝑈 by 𝐹. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ (𝑇 ∈ (𝑆‘𝑈) → ∪ 𝑇 = (◡𝐹 “ 𝑈)) | ||
Theorem | cvmsdisj 33241* | An even covering of 𝑈 is a disjoint union. (Contributed by Mario Carneiro, 13-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ ((𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇) → (𝐴 = 𝐵 ∨ (𝐴 ∩ 𝐵) = ∅)) | ||
Theorem | cvmshmeo 33242* | Every element of an even covering of 𝑈 is homeomorphic to 𝑈 via 𝐹. (Contributed by Mario Carneiro, 13-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ ((𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (𝐹 ↾ 𝐴) ∈ ((𝐶 ↾t 𝐴)Homeo(𝐽 ↾t 𝑈))) | ||
Theorem | cvmsf1o 33243* | 𝐹, localized to an element of an even covering of 𝑈, is a bijection. (Contributed by Mario Carneiro, 14-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (𝐹 ↾ 𝐴):𝐴–1-1-onto→𝑈) | ||
Theorem | cvmscld 33244* | The sets of an even covering are clopen in the subspace topology on 𝑇. (Contributed by Mario Carneiro, 14-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝐴 ∈ (Clsd‘(𝐶 ↾t (◡𝐹 “ 𝑈)))) | ||
Theorem | cvmsss2 33245* | An open subset of an evenly covered set is evenly covered. (Contributed by Mario Carneiro, 7-Jul-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) → ((𝑆‘𝑈) ≠ ∅ → (𝑆‘𝑉) ≠ ∅)) | ||
Theorem | cvmcov2 33246* | The covering map property can be restricted to an open subset. (Contributed by Mario Carneiro, 7-Jul-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) → ∃𝑥 ∈ 𝒫 𝑈(𝑃 ∈ 𝑥 ∧ (𝑆‘𝑥) ≠ ∅)) | ||
Theorem | cvmseu 33247* | Every element in ∪ 𝑇 is a member of a unique element of 𝑇. (Contributed by Mario Carneiro, 14-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 ⇒ ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) → ∃!𝑥 ∈ 𝑇 𝐴 ∈ 𝑥) | ||
Theorem | cvmsiota 33248* | Identify the unique element of 𝑇 containing 𝐴. (Contributed by Mario Carneiro, 14-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑊 = (℩𝑥 ∈ 𝑇 𝐴 ∈ 𝑥) ⇒ ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) → (𝑊 ∈ 𝑇 ∧ 𝐴 ∈ 𝑊)) | ||
Theorem | cvmopnlem 33249* | Lemma for cvmopn 33251. (Contributed by Mario Carneiro, 7-May-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 ⇒ ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) → (𝐹 “ 𝐴) ∈ 𝐽) | ||
Theorem | cvmfolem 33250* | Lemma for cvmfo 33271. (Contributed by Mario Carneiro, 13-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹:𝐵–onto→𝑋) | ||
Theorem | cvmopn 33251 | A covering map is an open map. (Contributed by Mario Carneiro, 7-May-2015.) |
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) → (𝐹 “ 𝐴) ∈ 𝐽) | ||
Theorem | cvmliftmolem1 33252* | Lemma for cvmliftmo 33255. (Contributed by Mario Carneiro, 10-Mar-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ Conn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally Conn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝑀 ∈ (𝐾 Cn 𝐶)) & ⊢ (𝜑 → 𝑁 ∈ (𝐾 Cn 𝐶)) & ⊢ (𝜑 → (𝐹 ∘ 𝑀) = (𝐹 ∘ 𝑁)) & ⊢ (𝜑 → (𝑀‘𝑂) = (𝑁‘𝑂)) & ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ ((𝜑 ∧ 𝜓) → 𝑇 ∈ (𝑆‘𝑈)) & ⊢ ((𝜑 ∧ 𝜓) → 𝑊 ∈ 𝑇) & ⊢ ((𝜑 ∧ 𝜓) → 𝐼 ⊆ (◡𝑀 “ 𝑊)) & ⊢ ((𝜑 ∧ 𝜓) → (𝐾 ↾t 𝐼) ∈ Conn) & ⊢ ((𝜑 ∧ 𝜓) → 𝑋 ∈ 𝐼) & ⊢ ((𝜑 ∧ 𝜓) → 𝑄 ∈ 𝐼) & ⊢ ((𝜑 ∧ 𝜓) → 𝑅 ∈ 𝐼) & ⊢ ((𝜑 ∧ 𝜓) → (𝐹‘(𝑀‘𝑋)) ∈ 𝑈) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (𝑄 ∈ dom (𝑀 ∩ 𝑁) → 𝑅 ∈ dom (𝑀 ∩ 𝑁))) | ||
Theorem | cvmliftmolem2 33253* | Lemma for cvmliftmo 33255. (Contributed by Mario Carneiro, 10-Mar-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ Conn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally Conn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝑀 ∈ (𝐾 Cn 𝐶)) & ⊢ (𝜑 → 𝑁 ∈ (𝐾 Cn 𝐶)) & ⊢ (𝜑 → (𝐹 ∘ 𝑀) = (𝐹 ∘ 𝑁)) & ⊢ (𝜑 → (𝑀‘𝑂) = (𝑁‘𝑂)) & ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ (𝜑 → 𝑀 = 𝑁) | ||
Theorem | cvmliftmoi 33254 | A lift of a continuous function from a connected and locally connected space over a covering map is unique when it exists. (Contributed by Mario Carneiro, 10-Mar-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ Conn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally Conn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝑀 ∈ (𝐾 Cn 𝐶)) & ⊢ (𝜑 → 𝑁 ∈ (𝐾 Cn 𝐶)) & ⊢ (𝜑 → (𝐹 ∘ 𝑀) = (𝐹 ∘ 𝑁)) & ⊢ (𝜑 → (𝑀‘𝑂) = (𝑁‘𝑂)) ⇒ ⊢ (𝜑 → 𝑀 = 𝑁) | ||
Theorem | cvmliftmo 33255* | A lift of a continuous function from a connected and locally connected space over a covering map is unique when it exists. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by NM, 17-Jun-2017.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ Conn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally Conn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) ⇒ ⊢ (𝜑 → ∃*𝑓 ∈ (𝐾 Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃)) | ||
Theorem | cvmliftlem1 33256* | Lemma for cvmlift 33270. In cvmliftlem15 33269, we picked an 𝑁 large enough so that the sections (𝐺 “ [(𝑘 − 1) / 𝑁, 𝑘 / 𝑁]) are all contained in an even covering, and the function 𝑇 enumerates these even coverings. So 1st ‘(𝑇‘𝑀) is a neighborhood of (𝐺 “ [(𝑀 − 1) / 𝑁, 𝑀 / 𝑁]), and 2nd ‘(𝑇‘𝑀) is an even covering of 1st ‘(𝑇‘𝑀), which is to say a disjoint union of open sets in 𝐶 whose image is 1st ‘(𝑇‘𝑀). (Contributed by Mario Carneiro, 14-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (2nd ‘(𝑇‘𝑀)) ∈ (𝑆‘(1st ‘(𝑇‘𝑀)))) | ||
Theorem | cvmliftlem2 33257* | Lemma for cvmlift 33270. 𝑊 = [(𝑘 − 1) / 𝑁, 𝑘 / 𝑁] is a subset of [0, 1] for each 𝑀 ∈ (1...𝑁). (Contributed by Mario Carneiro, 16-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) & ⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝑊 ⊆ (0[,]1)) | ||
Theorem | cvmliftlem3 33258* | Lemma for cvmlift 33270. Since 1st ‘(𝑇‘𝑀) is a neighborhood of (𝐺 “ 𝑊), every element 𝐴 ∈ 𝑊 satisfies (𝐺‘𝐴) ∈ (1st ‘(𝑇‘𝑀)). (Contributed by Mario Carneiro, 16-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) & ⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝑊) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (𝐺‘𝐴) ∈ (1st ‘(𝑇‘𝑀))) | ||
Theorem | cvmliftlem4 33259* | Lemma for cvmlift 33270. The function 𝑄 will be our lifted path, defined piecewise on each section [(𝑀 − 1) / 𝑁, 𝑀 / 𝑁] for 𝑀 ∈ (1...𝑁). For 𝑀 = 0, it is a "seed" value which makes the rest of the recursion work, a singleton function mapping 0 to 𝑃. (Contributed by Mario Carneiro, 15-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) ⇒ ⊢ (𝑄‘0) = {〈0, 𝑃〉} | ||
Theorem | cvmliftlem5 33260* | Lemma for cvmlift 33270. Definition of 𝑄 at a successor. This is a function defined on 𝑊 as ◡(𝑇 ↾ 𝐼) ∘ 𝐺 where 𝐼 is the unique covering set of 2nd ‘(𝑇‘𝑀) that contains 𝑄(𝑀 − 1) evaluated at the last defined point, namely (𝑀 − 1) / 𝑁 (note that for 𝑀 = 1 this is using the seed value 𝑄(0)(0) = 𝑃). (Contributed by Mario Carneiro, 15-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) & ⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ⇒ ⊢ ((𝜑 ∧ 𝑀 ∈ ℕ) → (𝑄‘𝑀) = (𝑧 ∈ 𝑊 ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))) | ||
Theorem | cvmliftlem6 33261* | Lemma for cvmlift 33270. Induction step for cvmliftlem7 33262. Assuming that 𝑄(𝑀 − 1) is defined at (𝑀 − 1) / 𝑁 and is a preimage of 𝐺((𝑀 − 1) / 𝑁), the next segment 𝑄(𝑀) is also defined and is a function on 𝑊 which is a lift 𝐺 for this segment. This follows explicitly from the definition 𝑄(𝑀) = ◡(𝐹 ↾ 𝐼) ∘ 𝐺 since 𝐺 is in 1st ‘(𝐹‘𝑀) for the entire interval so that ◡(𝐹 ↾ 𝐼) maps this into 𝐼 and 𝐹 ∘ 𝑄 maps back to 𝐺. (Contributed by Mario Carneiro, 16-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) & ⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))})) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ((𝑄‘𝑀):𝑊⟶𝐵 ∧ (𝐹 ∘ (𝑄‘𝑀)) = (𝐺 ↾ 𝑊))) | ||
Theorem | cvmliftlem7 33262* | Lemma for cvmlift 33270. Prove by induction that every 𝑄 function is well-defined (we can immediately follow this theorem with cvmliftlem6 33261 to show functionality and lifting of 𝑄). (Contributed by Mario Carneiro, 14-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) & ⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ⇒ ⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))})) | ||
Theorem | cvmliftlem8 33263* | Lemma for cvmlift 33270. The functions 𝑄 are continuous functions because they are defined as ◡(𝐹 ↾ 𝐼) ∘ 𝐺 where 𝐺 is continuous and (𝐹 ↾ 𝐼) is a homeomorphism. (Contributed by Mario Carneiro, 16-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) & ⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ⇒ ⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝑄‘𝑀) ∈ ((𝐿 ↾t 𝑊) Cn 𝐶)) | ||
Theorem | cvmliftlem9 33264* | Lemma for cvmlift 33270. The 𝑄(𝑀) functions are defined on almost disjoint intervals, but they overlap at the edges. Here we show that at these points the 𝑄 functions agree on their common domain. (Contributed by Mario Carneiro, 14-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) ⇒ ⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝑄‘𝑀)‘((𝑀 − 1) / 𝑁)) = ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) | ||
Theorem | cvmliftlem10 33265* | Lemma for cvmlift 33270. The function 𝐾 is going to be our complete lifted path, formed by unioning together all the 𝑄 functions (each of which is defined on one segment [(𝑀 − 1) / 𝑁, 𝑀 / 𝑁] of the interval). Here we prove by induction that 𝐾 is a continuous function and a lift of 𝐺 by applying cvmliftlem6 33261, cvmliftlem7 33262 (to show it is a function and a lift), cvmliftlem8 33263 (to show it is continuous), and cvmliftlem9 33264 (to show that different 𝑄 functions agree on the intersection of their domains, so that the pasting lemma paste 22454 gives that 𝐾 is well-defined and continuous). (Contributed by Mario Carneiro, 14-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) & ⊢ 𝐾 = ∪ 𝑘 ∈ (1...𝑁)(𝑄‘𝑘) & ⊢ (𝜒 ↔ ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑁)) ∧ (∪ 𝑘 ∈ (1...𝑛)(𝑄‘𝑘) ∈ ((𝐿 ↾t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 ∘ ∪ 𝑘 ∈ (1...𝑛)(𝑄‘𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))))) ⇒ ⊢ (𝜑 → (𝐾 ∈ ((𝐿 ↾t (0[,](𝑁 / 𝑁))) Cn 𝐶) ∧ (𝐹 ∘ 𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁))))) | ||
Theorem | cvmliftlem11 33266* | Lemma for cvmlift 33270. (Contributed by Mario Carneiro, 14-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) & ⊢ 𝐾 = ∪ 𝑘 ∈ (1...𝑁)(𝑄‘𝑘) ⇒ ⊢ (𝜑 → (𝐾 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝐾) = 𝐺)) | ||
Theorem | cvmliftlem13 33267* | Lemma for cvmlift 33270. The initial value of 𝐾 is 𝑃 because 𝑄(1) is a subset of 𝐾 which takes value 𝑃 at 0. (Contributed by Mario Carneiro, 16-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) & ⊢ 𝐾 = ∪ 𝑘 ∈ (1...𝑁)(𝑄‘𝑘) ⇒ ⊢ (𝜑 → (𝐾‘0) = 𝑃) | ||
Theorem | cvmliftlem14 33268* | Lemma for cvmlift 33270. Putting the results of cvmliftlem11 33266, cvmliftlem13 33267 and cvmliftmo 33255 together, we have that 𝐾 is a continuous function, satisfies 𝐹 ∘ 𝐾 = 𝐺 and 𝐾(0) = 𝑃, and is equal to any other function which also has these properties, so it follows that 𝐾 is the unique lift of 𝐺. (Contributed by Mario Carneiro, 16-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) & ⊢ 𝐾 = ∪ 𝑘 ∈ (1...𝑁)(𝑄‘𝑘) ⇒ ⊢ (𝜑 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) | ||
Theorem | cvmliftlem15 33269* | Lemma for cvmlift 33270. Discharge the assumptions of cvmliftlem14 33268. The set of all open subsets 𝑢 of the unit interval such that 𝐺 “ 𝑢 is contained in an even covering of some open set in 𝐽 is a cover of II by the definition of a covering map, so by the Lebesgue number lemma lebnumii 24138, there is a subdivision of the closed unit interval into 𝑁 equal parts such that each part is entirely contained within one such open set of 𝐽. Then using finite choice ac6sfi 9067 to uniformly select one such subset and one even covering of each subset, we are ready to finish the proof with cvmliftlem14 33268. (Contributed by Mario Carneiro, 14-Feb-2015.) |
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) ⇒ ⊢ (𝜑 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) | ||
Theorem | cvmlift 33270* | One of the important properties of covering maps is that any path 𝐺 in the base space "lifts" to a path 𝑓 in the covering space such that 𝐹 ∘ 𝑓 = 𝐺, and given a starting point 𝑃 in the covering space this lift is unique. The proof is contained in cvmliftlem1 33256 thru cvmliftlem15 33269. (Contributed by Mario Carneiro, 16-Feb-2015.) |
⊢ 𝐵 = ∪ 𝐶 ⇒ ⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽)) ∧ (𝑃 ∈ 𝐵 ∧ (𝐹‘𝑃) = (𝐺‘0))) → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) | ||
Theorem | cvmfo 33271 | A covering map is an onto function. (Contributed by Mario Carneiro, 13-Feb-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹:𝐵–onto→𝑋) | ||
Theorem | cvmliftiota 33272* | Write out a function 𝐻 that is the unique lift of 𝐹. (Contributed by Mario Carneiro, 16-Feb-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) ⇒ ⊢ (𝜑 → (𝐻 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝐻) = 𝐺 ∧ (𝐻‘0) = 𝑃)) | ||
Theorem | cvmlift2lem1 33273* | Lemma for cvmlift2 33287. (Contributed by Mario Carneiro, 1-Jun-2015.) |
⊢ (∀𝑦 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑦})((𝑢 × {𝑥}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → (((0[,]1) × {𝑥}) ⊆ 𝑀 → ((0[,]1) × {𝑡}) ⊆ 𝑀)) | ||
Theorem | cvmlift2lem9a 33274* | Lemma for cvmlift2 33287 and cvmlift3 33299. (Contributed by Mario Carneiro, 9-Jul-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐻:𝑌⟶𝐵) & ⊢ (𝜑 → (𝐹 ∘ 𝐻) ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ Top) & ⊢ (𝜑 → 𝑋 ∈ 𝑌) & ⊢ (𝜑 → 𝑇 ∈ (𝑆‘𝐴)) & ⊢ (𝜑 → (𝑊 ∈ 𝑇 ∧ (𝐻‘𝑋) ∈ 𝑊)) & ⊢ (𝜑 → 𝑀 ⊆ 𝑌) & ⊢ (𝜑 → (𝐻 “ 𝑀) ⊆ 𝑊) ⇒ ⊢ (𝜑 → (𝐻 ↾ 𝑀) ∈ ((𝐾 ↾t 𝑀) Cn 𝐶)) | ||
Theorem | cvmlift2lem2 33275* | Lemma for cvmlift2 33287. (Contributed by Mario Carneiro, 7-May-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) ⇒ ⊢ (𝜑 → (𝐻 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝐻) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝐻‘0) = 𝑃)) | ||
Theorem | cvmlift2lem3 33276* | Lemma for cvmlift2 33287. (Contributed by Mario Carneiro, 7-May-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝐾 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝐾) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝐾‘0) = (𝐻‘𝑋))) | ||
Theorem | cvmlift2lem4 33277* | Lemma for cvmlift2 33287. (Contributed by Mario Carneiro, 1-Jun-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) ⇒ ⊢ ((𝑋 ∈ (0[,]1) ∧ 𝑌 ∈ (0[,]1)) → (𝑋𝐾𝑌) = ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋)))‘𝑌)) | ||
Theorem | cvmlift2lem5 33278* | Lemma for cvmlift2 33287. (Contributed by Mario Carneiro, 7-May-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) ⇒ ⊢ (𝜑 → 𝐾:((0[,]1) × (0[,]1))⟶𝐵) | ||
Theorem | cvmlift2lem6 33279* | Lemma for cvmlift2 33287. (Contributed by Mario Carneiro, 7-May-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝐾 ↾ ({𝑋} × (0[,]1))) ∈ (((II ×t II) ↾t ({𝑋} × (0[,]1))) Cn 𝐶)) | ||
Theorem | cvmlift2lem7 33280* | Lemma for cvmlift2 33287. (Contributed by Mario Carneiro, 7-May-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) ⇒ ⊢ (𝜑 → (𝐹 ∘ 𝐾) = 𝐺) | ||
Theorem | cvmlift2lem8 33281* | Lemma for cvmlift2 33287. (Contributed by Mario Carneiro, 9-Mar-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝑋𝐾0) = (𝐻‘𝑋)) | ||
Theorem | cvmlift2lem9 33282* | Lemma for cvmlift2 33287. (Contributed by Mario Carneiro, 1-Jun-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) & ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ (𝜑 → (𝑋𝐺𝑌) ∈ 𝑀) & ⊢ (𝜑 → 𝑇 ∈ (𝑆‘𝑀)) & ⊢ (𝜑 → 𝑈 ∈ II) & ⊢ (𝜑 → 𝑉 ∈ II) & ⊢ (𝜑 → (II ↾t 𝑈) ∈ Conn) & ⊢ (𝜑 → (II ↾t 𝑉) ∈ Conn) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 × 𝑉) ⊆ (◡𝐺 “ 𝑀)) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → (𝐾 ↾ (𝑈 × {𝑍})) ∈ (((II ×t II) ↾t (𝑈 × {𝑍})) Cn 𝐶)) & ⊢ 𝑊 = (℩𝑏 ∈ 𝑇 (𝑋𝐾𝑌) ∈ 𝑏) ⇒ ⊢ (𝜑 → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶)) | ||
Theorem | cvmlift2lem10 33283* | Lemma for cvmlift2 33287. (Contributed by Mario Carneiro, 1-Jun-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) & ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ (𝜑 → 𝑋 ∈ (0[,]1)) & ⊢ (𝜑 → 𝑌 ∈ (0[,]1)) ⇒ ⊢ (𝜑 → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (∃𝑤 ∈ 𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) | ||
Theorem | cvmlift2lem11 33284* | Lemma for cvmlift2 33287. (Contributed by Mario Carneiro, 1-Jun-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) & ⊢ 𝑀 = {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)} & ⊢ (𝜑 → 𝑈 ∈ II) & ⊢ (𝜑 → 𝑉 ∈ II) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → (∃𝑤 ∈ 𝑉 (𝐾 ↾ (𝑈 × {𝑤})) ∈ (((II ×t II) ↾t (𝑈 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶))) ⇒ ⊢ (𝜑 → ((𝑈 × {𝑌}) ⊆ 𝑀 → (𝑈 × {𝑍}) ⊆ 𝑀)) | ||
Theorem | cvmlift2lem12 33285* | Lemma for cvmlift2 33287. (Contributed by Mario Carneiro, 1-Jun-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) & ⊢ 𝑀 = {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)} & ⊢ 𝐴 = {𝑎 ∈ (0[,]1) ∣ ((0[,]1) × {𝑎}) ⊆ 𝑀} & ⊢ 𝑆 = {〈𝑟, 𝑡〉 ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))} ⇒ ⊢ (𝜑 → 𝐾 ∈ ((II ×t II) Cn 𝐶)) | ||
Theorem | cvmlift2lem13 33286* | Lemma for cvmlift2 33287. (Contributed by Mario Carneiro, 7-May-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) ⇒ ⊢ (𝜑 → ∃!𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹 ∘ 𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃)) | ||
Theorem | cvmlift2 33287* | A two-dimensional version of cvmlift 33270. There is a unique lift of functions on the unit square II ×t II which commutes with the covering map. (Contributed by Mario Carneiro, 1-Jun-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) ⇒ ⊢ (𝜑 → ∃!𝑓 ∈ ((II ×t II) Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (0𝑓0) = 𝑃)) | ||
Theorem | cvmliftphtlem 33288* | Lemma for cvmliftpht 33289. (Contributed by Mario Carneiro, 6-Jul-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑀 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝑁 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃)) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐻 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ (𝐺(PHtpy‘𝐽)𝐻)) & ⊢ (𝜑 → 𝐴 ∈ ((II ×t II) Cn 𝐶)) & ⊢ (𝜑 → (𝐹 ∘ 𝐴) = 𝐾) & ⊢ (𝜑 → (0𝐴0) = 𝑃) ⇒ ⊢ (𝜑 → 𝐴 ∈ (𝑀(PHtpy‘𝐶)𝑁)) | ||
Theorem | cvmliftpht 33289* | If 𝐺 and 𝐻 are path-homotopic, then their lifts 𝑀 and 𝑁 are also path-homotopic. (Contributed by Mario Carneiro, 6-Jul-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑀 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝑁 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃)) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝐺( ≃ph‘𝐽)𝐻) ⇒ ⊢ (𝜑 → 𝑀( ≃ph‘𝐶)𝑁) | ||
Theorem | cvmlift3lem1 33290* | Lemma for cvmlift3 33299. (Contributed by Mario Carneiro, 6-Jul-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) & ⊢ (𝜑 → 𝑀 ∈ (II Cn 𝐾)) & ⊢ (𝜑 → (𝑀‘0) = 𝑂) & ⊢ (𝜑 → 𝑁 ∈ (II Cn 𝐾)) & ⊢ (𝜑 → (𝑁‘0) = 𝑂) & ⊢ (𝜑 → (𝑀‘1) = (𝑁‘1)) ⇒ ⊢ (𝜑 → ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑀) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑁) ∧ (𝑔‘0) = 𝑃))‘1)) | ||
Theorem | cvmlift3lem2 33291* | Lemma for cvmlift2 33287. (Contributed by Mario Carneiro, 6-Jul-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑌) → ∃!𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) | ||
Theorem | cvmlift3lem3 33292* | Lemma for cvmlift2 33287. (Contributed by Mario Carneiro, 6-Jul-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) & ⊢ 𝐻 = (𝑥 ∈ 𝑌 ↦ (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) ⇒ ⊢ (𝜑 → 𝐻:𝑌⟶𝐵) | ||
Theorem | cvmlift3lem4 33293* | Lemma for cvmlift2 33287. (Contributed by Mario Carneiro, 6-Jul-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) & ⊢ 𝐻 = (𝑥 ∈ 𝑌 ↦ (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑌) → ((𝐻‘𝑋) = 𝐴 ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴))) | ||
Theorem | cvmlift3lem5 33294* | Lemma for cvmlift2 33287. (Contributed by Mario Carneiro, 6-Jul-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) & ⊢ 𝐻 = (𝑥 ∈ 𝑌 ↦ (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) ⇒ ⊢ (𝜑 → (𝐹 ∘ 𝐻) = 𝐺) | ||
Theorem | cvmlift3lem6 33295* | Lemma for cvmlift3 33299. (Contributed by Mario Carneiro, 9-Jul-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) & ⊢ 𝐻 = (𝑥 ∈ 𝑌 ↦ (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) & ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ (𝜑 → (𝐺‘𝑋) ∈ 𝐴) & ⊢ (𝜑 → 𝑇 ∈ (𝑆‘𝐴)) & ⊢ (𝜑 → 𝑀 ⊆ (◡𝐺 “ 𝐴)) & ⊢ 𝑊 = (℩𝑏 ∈ 𝑇 (𝐻‘𝑋) ∈ 𝑏) & ⊢ (𝜑 → 𝑋 ∈ 𝑀) & ⊢ (𝜑 → 𝑍 ∈ 𝑀) & ⊢ (𝜑 → 𝑄 ∈ (II Cn 𝐾)) & ⊢ 𝑅 = (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑄) ∧ (𝑔‘0) = 𝑃)) & ⊢ (𝜑 → ((𝑄‘0) = 𝑂 ∧ (𝑄‘1) = 𝑋 ∧ (𝑅‘1) = (𝐻‘𝑋))) & ⊢ (𝜑 → 𝑁 ∈ (II Cn (𝐾 ↾t 𝑀))) & ⊢ (𝜑 → ((𝑁‘0) = 𝑋 ∧ (𝑁‘1) = 𝑍)) & ⊢ 𝐼 = (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑁) ∧ (𝑔‘0) = (𝐻‘𝑋))) ⇒ ⊢ (𝜑 → (𝐻‘𝑍) ∈ 𝑊) | ||
Theorem | cvmlift3lem7 33296* | Lemma for cvmlift3 33299. (Contributed by Mario Carneiro, 9-Jul-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) & ⊢ 𝐻 = (𝑥 ∈ 𝑌 ↦ (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) & ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ (𝜑 → (𝐺‘𝑋) ∈ 𝐴) & ⊢ (𝜑 → 𝑇 ∈ (𝑆‘𝐴)) & ⊢ (𝜑 → 𝑀 ⊆ (◡𝐺 “ 𝐴)) & ⊢ 𝑊 = (℩𝑏 ∈ 𝑇 (𝐻‘𝑋) ∈ 𝑏) & ⊢ (𝜑 → (𝐾 ↾t 𝑀) ∈ PConn) & ⊢ (𝜑 → 𝑉 ∈ 𝐾) & ⊢ (𝜑 → 𝑉 ⊆ 𝑀) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑋)) | ||
Theorem | cvmlift3lem8 33297* | Lemma for cvmlift2 33287. (Contributed by Mario Carneiro, 6-Jul-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) & ⊢ 𝐻 = (𝑥 ∈ 𝑌 ↦ (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) & ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ (𝜑 → 𝐻 ∈ (𝐾 Cn 𝐶)) | ||
Theorem | cvmlift3lem9 33298* | Lemma for cvmlift2 33287. (Contributed by Mario Carneiro, 7-May-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) & ⊢ 𝐻 = (𝑥 ∈ 𝑌 ↦ (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) & ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ (𝜑 → ∃𝑓 ∈ (𝐾 Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃)) | ||
Theorem | cvmlift3 33299* | A general version of cvmlift 33270. If 𝐾 is simply connected and weakly locally path-connected, then there is a unique lift of functions on 𝐾 which commutes with the covering map. (Contributed by Mario Carneiro, 9-Jul-2015.) |
⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) ⇒ ⊢ (𝜑 → ∃!𝑓 ∈ (𝐾 Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃)) | ||
Theorem | snmlff 33300* | The function 𝐹 from snmlval 33302 is a mapping from positive integers to real numbers in the range [0, 1]. (Contributed by Mario Carneiro, 6-Apr-2015.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝐵}) / 𝑛)) ⇒ ⊢ 𝐹:ℕ⟶(0[,]1) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |