HomeHome Metamath Proof Explorer
Theorem List (p. 333 of 437)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28351)
  Hilbert Space Explorer  Hilbert Space Explorer
(28352-29876)
  Users' Mathboxes  Users' Mathboxes
(29877-43667)
 

Theorem List for Metamath Proof Explorer - 33201-33300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorembj-cbvalimt 33201 A lemma in closed form used to prove bj-cbval 33208 in a weak axiomatization. (Contributed by BJ, 12-Mar-2023.) Do not use 19.35 1924 since only the direction of the biconditional used here holds in intuitionistic logic. (Proof modification is discouraged.)
(∀𝑦𝑥𝜒 → (∀𝑦𝑥(𝜒 → (𝜑𝜓)) → ((∀𝑥𝜑 → ∀𝑦𝑥𝜑) → (∀𝑦(∃𝑥𝜓𝜓) → (∀𝑥𝜑 → ∀𝑦𝜓)))))
 
Theorembj-cbveximt 33202 A lemma in closed form used to prove bj-cbvex in a weak axiomatization. (Contributed by BJ, 12-Mar-2023.) Do not use 19.35 1924 since only the direction of the biconditional used here holds in intuitionistic logic. (Proof modification is discouraged.)
(∀𝑥𝑦𝜒 → (∀𝑥𝑦(𝜒 → (𝜑𝜓)) → (∀𝑥(𝜑 → ∀𝑦𝜑) → ((∃𝑥𝑦𝜓 → ∃𝑦𝜓) → (∃𝑥𝜑 → ∃𝑦𝜓)))))
 
20.14.4.3  Adding ax-5
 
Theorembj-ax12wlem 33203* A lemma used to prove a weak version of the axiom of substitution ax-12 2163. (Temporary comment: The general statement that ax12wlem 2126 proves.) (Contributed by BJ, 20-Mar-2020.)
(𝜑 → (𝜓𝜒))       (𝜑 → (𝜓 → ∀𝑥(𝜑𝜓)))
 
Theorembj-cbvalim 33204* A lemma used to prove a justification of df-bj-mo 33211 in a weak axiomatization. (Contributed by BJ, 12-Mar-2023.) (Proof modification is discouraged.)
(∀𝑦𝑥𝜒 → (∀𝑦𝑥(𝜒 → (𝜑𝜓)) → (∀𝑥𝜑 → ∀𝑦𝜓)))
 
Theorembj-cbvexim 33205* A lemma used to prove justification theorems in a weak axiomatization. (Contributed by BJ, 12-Mar-2023.) (Proof modification is discouraged.)
(∀𝑥𝑦𝜒 → (∀𝑥𝑦(𝜒 → (𝜑𝜓)) → (∃𝑥𝜑 → ∃𝑦𝜓)))
 
Theorembj-cbvalimi 33206* An equality-free general instance of one half of a precise form of bj-cbval 33208. (Contributed by BJ, 12-Mar-2023.) (Proof modification is discouraged.)
(𝜒 → (𝜑𝜓))    &   𝑦𝑥𝜒       (∀𝑥𝜑 → ∀𝑦𝜓)
 
Theorembj-cbveximi 33207* An equality-free general instance of one half of a precise form of bj-cbvex 33209. (Contributed by BJ, 12-Mar-2023.) (Proof modification is discouraged.)
(𝜒 → (𝜑𝜓))    &   𝑥𝑦𝜒       (∃𝑥𝜑 → ∃𝑦𝜓)
 
Theorembj-cbval 33208* Changing a bound variable (universal quantification case) in a weak axiomatization, assuming that all variables denote (which is valid in inclusive free logic) and that equality is symmetric. (Contributed by BJ, 12-Mar-2023.) (Proof modification is discouraged.)
𝑦𝑥 𝑥 = 𝑦    &   𝑥𝑦 𝑦 = 𝑥    &   (𝑥 = 𝑦 → (𝜑𝜓))    &   (𝑦 = 𝑥𝑥 = 𝑦)       (∀𝑥𝜑 ↔ ∀𝑦𝜓)
 
Theorembj-cbvex 33209* Changing a bound variable (existential quantification case) in a weak axiomatization, assuming that all variables denote (which is valid in inclusive free logic) and that equality is symmetric. (Contributed by BJ, 12-Mar-2023.) (Proof modification is discouraged.)
𝑦𝑥 𝑥 = 𝑦    &   𝑥𝑦 𝑦 = 𝑥    &   (𝑥 = 𝑦 → (𝜑𝜓))    &   (𝑦 = 𝑥𝑥 = 𝑦)       (∃𝑥𝜑 ↔ ∃𝑦𝜓)
 
Syntaxwmoo 33210 Syntax for BJ's version of the uniqueness quantifier.
wff ∃**𝑥𝜑
 
Definitiondf-bj-mo 33211* Definition of the uniqueness quantifier which is correct on the empty domain. Instead of the fresh variable 𝑧, one could save a dummy variable by using 𝑥 or 𝑦 at the cost of having nested quantifiers on the same variable. (Contributed by BJ, 12-Mar-2023.)
(∃**𝑥𝜑 ↔ ∀𝑧𝑦𝑥(𝜑𝑥 = 𝑦))
 
20.14.4.4  Equality and substitution
 
Theorembj-ssbjustlem 33212* Lemma for bj-ssbjust 33213. (Contributed by BJ, 9-Nov-2021.)
(∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)) ↔ ∀𝑧(𝑧 = 𝑡 → ∀𝑥(𝑥 = 𝑧𝜑)))
 
Theorembj-ssbjust 33213* Justification theorem for df-ssb 33215 from Tarski's FOL. (Contributed by BJ, 22-Jan-2023.)
(∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)) ↔ ∀𝑧(𝑧 = 𝑡 → ∀𝑥(𝑥 = 𝑧𝜑)))
 
Syntaxwssb 33214 Syntax for the substitution of a variable for a variable in a formula. (Contributed by BJ, 22-Dec-2020.)
wff [𝑡/𝑥]b𝜑
 
Definitiondf-ssb 33215* Alternate definition of proper substitution. Note that the occurrences of a given variable are either all bound (𝑥, 𝑦) or all free (𝑡). Also note that the definiens uses only primitive symbols. It is obtained by applying twice Tarski's definition sb6 2250 which is valid for disjoint variables, so we introduce a dummy variable 𝑦 to isolate 𝑥 from 𝑡, as in dfsb7 2535 with respect to sb5 2251.

This double level definition will make several proofs using it appear as doubled. Alternately, one could often first prove as a lemma the same theorem with a disjoint variable condition on the substitute and the substituted variables, and then prove the original theorem by applying this lemma twice in a row.

This definition uses a dummy variable, but the justification theorem, bj-ssbjust 33213, is provable from Tarski's FOL.

Once this is proved, more of the fundamental properties of proper substitution will be provable from Tarski's FOL system, sometimes with the help of specialization sp 2167, of the substitution axiom ax-12 2163, and of commutation of quantifiers ax-11 2150; that is, ax-13 2334 will often be avoided. (Contributed by BJ, 22-Dec-2020.)

([𝑡/𝑥]b𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
 
Theorembj-ssbim 33216 Distribute substitution over implication, closed form. Specialization of implication. Uses only ax-1--5. Compare spsbim 2470. (Contributed by BJ, 22-Dec-2020.)
(∀𝑥(𝜑𝜓) → ([𝑡/𝑥]b𝜑 → [𝑡/𝑥]b𝜓))
 
Theorembj-ssbbi 33217 Biconditional property for substitution, closed form. Specialization of biconditional. Uses only ax-1--5. Compare spsbbi 2478. (Contributed by BJ, 22-Dec-2020.)
(∀𝑥(𝜑𝜓) → ([𝑡/𝑥]b𝜑 ↔ [𝑡/𝑥]b𝜓))
 
Theorembj-ssbimi 33218 Distribute substitution over implication. Uses only ax-1--5. (Contributed by BJ, 22-Dec-2020.)
(𝜑𝜓)       ([𝑡/𝑥]b𝜑 → [𝑡/𝑥]b𝜓)
 
Theorembj-ssbbii 33219 Biconditional property for substitution. Uses only ax-1--5. (Contributed by BJ, 22-Dec-2020.)
(𝜑𝜓)       ([𝑡/𝑥]b𝜑 ↔ [𝑡/𝑥]b𝜓)
 
Theorembj-alsb 33220 If a proposition is true for all instances, then it is true for any specific one. Uses only ax-1--5. Compare stdpc4 2428 which uses auxiliary axioms. (Contributed by BJ, 22-Dec-2020.)
(∀𝑥𝜑 → [𝑡/𝑥]b𝜑)
 
Theorembj-sbex 33221 If a proposition is true for a specific instance, then there exists an instance such that it is true for it. Uses only ax-1--6. Compare spsbe 2015 which, due to the specific form of df-sb 2012, uses fewer axioms. (Contributed by BJ, 22-Dec-2020.)
([𝑡/𝑥]b𝜑 → ∃𝑥𝜑)
 
Theorembj-ssbeq 33222* Substitution in an equality, disjoint variables case. Uses only ax-1--6. It might be shorter to prove the result about composition of two substitutions and prove bj-ssbeq 33222 first with a DV on x,t, and then in the general case. (Contributed by BJ, 22-Dec-2020.)
([𝑡/𝑥]b𝑦 = 𝑧𝑦 = 𝑧)
 
Theorembj-ssb0 33223* Substitution for a variable not occurring in a proposition. See sbf 2456. (Contributed by BJ, 22-Dec-2020.)
([𝑡/𝑥]b𝜑𝜑)
 
Theorembj-ssbequ 33224 Equality property for substitution, from Tarski's system. Compare sbequ 2452. (Contributed by BJ, 30-Dec-2020.)
(𝑠 = 𝑡 → ([𝑠/𝑥]b𝜑 ↔ [𝑡/𝑥]b𝜑))
 
Theorembj-ssblem1 33225* A lemma for the definiens of df-sb 2012. An instance of sp 2167 proved without it. Note: it has a common subproof with bj-ssbjust 33213. (Contributed by BJ, 22-Dec-2020.)
(∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)) → (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
 
Theorembj-ssblem2 33226* An instance of ax-11 2150 proved without it. The converse may not be provable without ax-11 2150 (since using alcomiw 2088 would require a DV on 𝜑, 𝑥, which defeats the purpose). (Contributed by BJ, 22-Dec-2020.)
(∀𝑥𝑦(𝑦 = 𝑡 → (𝑥 = 𝑦𝜑)) → ∀𝑦𝑥(𝑦 = 𝑡 → (𝑥 = 𝑦𝜑)))
 
Theorembj-ssb1a 33227* One direction of a simplified definition of substitution in case of disjoint variables. See bj-ssb1 33228 for the biconditional, which requires ax-11 2150. (Contributed by BJ, 22-Dec-2020.)
(∀𝑥(𝑥 = 𝑡𝜑) → [𝑡/𝑥]b𝜑)
 
Theorembj-ssb1 33228* A simplified definition of substitution in case of disjoint variables. See bj-ssb1a 33227 for the backward implication, which does not require ax-11 2150 (note that here, the version of ax-11 2150 with disjoint setvar metavariables would suffice). Compare sb6 2250. (Contributed by BJ, 22-Dec-2020.)
([𝑡/𝑥]b𝜑 ↔ ∀𝑥(𝑥 = 𝑡𝜑))
 
Theorembj-ax12 33229* A weaker form of ax-12 2163 and ax12v2 2165, namely the generalization over 𝑥 of the latter. In this statement, all occurrences of 𝑥 are bound. (Contributed by BJ, 26-Dec-2020.)
𝑥(𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡𝜑)))
 
Theorembj-ax12ssb 33230* The axiom bj-ax12 33229 expressed using substitution. (Contributed by BJ, 26-Dec-2020.)
[𝑡/𝑥]b(𝜑 → [𝑡/𝑥]b𝜑)
 
Theorembj-19.41al 33231 Special case of 19.41 2221 proved from Tarski, ax-10 2135 (modal5) and hba1 2268 (modal4). (Contributed by BJ, 29-Dec-2020.) (Proof modification is discouraged.)
(∃𝑥(𝜑 ∧ ∀𝑥𝜓) ↔ (∃𝑥𝜑 ∧ ∀𝑥𝜓))
 
Theorembj-equsexval 33232* Special case of equsexv 2242 proved from Tarski, ax-10 2135 (modal5) and hba1 2268 (modal4). (Contributed by BJ, 29-Dec-2020.) (Proof modification is discouraged.)
(𝑥 = 𝑦 → (𝜑 ↔ ∀𝑥𝜓))       (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥𝜓)
 
Theorembj-sb56 33233* Proof of sb56 2248 from Tarski, ax-10 2135 (modal5) and bj-ax12 33229. (Contributed by BJ, 29-Dec-2020.) (Proof modification is discouraged.)
(∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
 
Theorembj-dfssb2 33234* An alternate definition of df-ssb 33215. Note that the use of a dummy variable in the definition df-ssb 33215 allows to use bj-sb56 33233 instead of equs45f 2425 and hence to avoid dependency on ax-13 2334 and to use ax-12 2163 only through bj-ax12 33229. Compare dfsb7 2535. (Contributed by BJ, 25-Dec-2020.)
([𝑡/𝑥]b𝜑 ↔ ∃𝑦(𝑦 = 𝑡 ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
 
Theorembj-ssbn 33235 The result of a substitution in the negation of a formula is the negation of the result of the same substitution in that formula. Proved from Tarski, ax-10 2135, bj-ax12 33229. Compare sbn 2467. (Contributed by BJ, 25-Dec-2020.)
([𝑡/𝑥]b ¬ 𝜑 ↔ ¬ [𝑡/𝑥]b𝜑)
 
Theorembj-ssbft 33236 See sbft 2455. This proof is from Tarski's FOL together with sp 2167 (and its dual). (Contributed by BJ, 22-Dec-2020.)
(Ⅎ𝑥𝜑 → ([𝑡/𝑥]b𝜑𝜑))
 
Theorembj-ssbequ2 33237 Note that ax-12 2163 is used only via sp 2167. See sbequ2 2013 and stdpc7 2076. (Contributed by BJ, 22-Dec-2020.)
(𝑥 = 𝑡 → ([𝑡/𝑥]b𝜑𝜑))
 
Theorembj-ssbequ1 33238 This uses ax-12 2163 with a direct reference to ax12v 2164. Therefore, compared to bj-ax12 33229, there is a hidden use of sp 2167. Note that with ax-12 2163, it can be proved with disjoint variable condition on 𝑥, 𝑡. See sbequ1 2228. (Contributed by BJ, 22-Dec-2020.)
(𝑥 = 𝑡 → (𝜑 → [𝑡/𝑥]b𝜑))
 
Theorembj-ssbid2 33239 A special case of bj-ssbequ2 33237. (Contributed by BJ, 22-Dec-2020.)
([𝑥/𝑥]b𝜑𝜑)
 
Theorembj-ssbid2ALT 33240 Alternate proof of bj-ssbid2 33239, not using bj-ssbequ2 33237. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
([𝑥/𝑥]b𝜑𝜑)
 
Theorembj-ssbid1 33241 A special case of bj-ssbequ1 33238. (Contributed by BJ, 22-Dec-2020.)
(𝜑 → [𝑥/𝑥]b𝜑)
 
Theorembj-ssbid1ALT 33242 Alternate proof of bj-ssbid1 33241, not using bj-ssbequ1 33238. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → [𝑥/𝑥]b𝜑)
 
Theorembj-ssbssblem 33243* Composition of two substitutions with a fresh intermediate variable. Remark: does not seem useful. (Contributed by BJ, 22-Dec-2020.)
([𝑡/𝑦]b[𝑦/𝑥]b𝜑 ↔ [𝑡/𝑥]b𝜑)
 
Theorembj-ssbcom3lem 33244* Lemma for bj-ssbcom3 when setvar variables are disjoint. Remark: does not seem useful. (Contributed by BJ, 30-Dec-2020.)
([𝑡/𝑦]b[𝑦/𝑥]b𝜑 ↔ [𝑡/𝑦]b[𝑡/𝑥]b𝜑)
 
Theorembj-ax6elem1 33245* Lemma for bj-ax6e 33247. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.)
(¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧))
 
Theorembj-ax6elem2 33246* Lemma for bj-ax6e 33247. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.)
(∀𝑥 𝑦 = 𝑧 → ∃𝑥 𝑥 = 𝑦)
 
Theorembj-ax6e 33247 Proof of ax6e 2347 (hence ax6 2348) from Tarski's system, ax-c9 35049, ax-c16 35051. Remark: ax-6 2021 is used only via its principal (unbundled) instance ax6v 2022. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑥 𝑥 = 𝑦
 
20.14.4.5  Adding ax-6
 
Theorembj-alequexv 33248* Version of bj-alequex 33300 with DV(x,y), requiring fewer axioms. (Contributed by BJ, 9-Nov-2021.)
(∀𝑥(𝑥 = 𝑦𝜑) → ∃𝑥𝜑)
 
Theorembj-spimvwt 33249* Closed form of spimvw 2045. See also spimt 2350. (Contributed by BJ, 8-Nov-2021.)
(∀𝑥(𝑥 = 𝑦 → (𝜑𝜓)) → (∀𝑥𝜑𝜓))
 
Theorembj-spimevw 33250* Existential introduction, using implicit substitution. This is to spimeh 2043 what spimvw 2045 is to spimw 2044. (Contributed by BJ, 17-Mar-2020.)
(𝑥 = 𝑦 → (𝜑𝜓))       (𝜑 → ∃𝑥𝜓)
 
Theorembj-spnfw 33251 Theorem close to a closed form of spnfw 2046. (Contributed by BJ, 12-May-2019.)
((∃𝑥𝜑𝜓) → (∀𝑥𝜑𝜓))
 
Theorembj-cbvexiw 33252* Change bound variable. This is to cbvexvw 2087 what cbvaliw 2053 is to cbvalvw 2086. [TODO: move after cbvalivw 2054]. (Contributed by BJ, 17-Mar-2020.)
(∃𝑥𝑦𝜓 → ∃𝑦𝜓)    &   (𝜑 → ∀𝑦𝜑)    &   (𝑦 = 𝑥 → (𝜑𝜓))       (∃𝑥𝜑 → ∃𝑦𝜓)
 
Theorembj-cbvexivw 33253* Change bound variable. This is to cbvexvw 2087 what cbvalivw 2054 is to cbvalvw 2086. [TODO: move after cbvalivw 2054]. (Contributed by BJ, 17-Mar-2020.)
(𝑦 = 𝑥 → (𝜑𝜓))       (∃𝑥𝜑 → ∃𝑦𝜓)
 
Theorembj-modald 33254 A short form of the axiom D of modal logic. (Contributed by BJ, 4-Apr-2021.)
(∀𝑥 ¬ 𝜑 → ¬ ∀𝑥𝜑)
 
Theorembj-denot 33255* A weakening of ax-6 2021 and ax6v 2022. (Contributed by BJ, 4-Apr-2021.) (New usage is discouraged.)
(𝑥 = 𝑥 → ¬ ∀𝑦 ¬ 𝑦 = 𝑥)
 
Theorembj-eqs 33256* A lemma for substitutions, proved from Tarski's FOL. The version without DV(x,y) is true but requires ax-13 2334. The disjoint variable condition DV(x,ph) is necessary for both directions: consider substituting 𝑥 = 𝑧 for 𝜑. (Contributed by BJ, 25-May-2021.)
(𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
 
20.14.4.6  Adding ax-7
 
Theorembj-cbvexw 33257* Change bound variable. This is to cbvexvw 2087 what cbvalw 2085 is to cbvalvw 2086. (Contributed by BJ, 17-Mar-2020.)
(∃𝑥𝑦𝜓 → ∃𝑦𝜓)    &   (𝜑 → ∀𝑦𝜑)    &   (∃𝑦𝑥𝜑 → ∃𝑥𝜑)    &   (𝜓 → ∀𝑥𝜓)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥𝜑 ↔ ∃𝑦𝜓)
 
Theorembj-ax12w 33258* The general statement that ax12w 2127 proves. (Contributed by BJ, 20-Mar-2020.)
(𝜑 → (𝜓𝜒))    &   (𝑦 = 𝑧 → (𝜓𝜃))       (𝜑 → (∀𝑦𝜓 → ∀𝑥(𝜑𝜓)))
 
20.14.4.7  Membership predicate, ax-8 and ax-9
 
Theorembj-elequ2g 33259* A form of elequ2 2121 with a universal quantifier. Its converse is ax-ext 2754. (TODO: move to main part, minimize axext4 2758--- as of 4-Nov-2020, minimizes only axext4 2758, by 13 bytes; and link to it in the comment of ax-ext 2754.) (Contributed by BJ, 3-Oct-2019.)
(𝑥 = 𝑦 → ∀𝑧(𝑧𝑥𝑧𝑦))
 
Theorembj-ax89 33260 A theorem which could be used as sole axiom for the non-logical predicate instead of ax-8 2109 and ax-9 2116. Indeed, it is implied over propositional calculus by the conjunction of ax-8 2109 and ax-9 2116, as proved here. In the other direction, one can prove ax-8 2109 (respectively ax-9 2116) from bj-ax89 33260 by using mpan2 681 ( respectively mpan 680) and equid 2059. (TODO: move to main part.) (Contributed by BJ, 3-Oct-2019.)
((𝑥 = 𝑦𝑧 = 𝑡) → (𝑥𝑧𝑦𝑡))
 
Theorembj-elequ12 33261 An identity law for the non-logical predicate, which combines elequ1 2114 and elequ2 2121. For the analogous theorems for class terms, see eleq1 2847, eleq2 2848 and eleq12 2849. (TODO: move to main part.) (Contributed by BJ, 29-Sep-2019.)
((𝑥 = 𝑦𝑧 = 𝑡) → (𝑥𝑧𝑦𝑡))
 
Theorembj-cleljusti 33262* One direction of cleljust 2115, requiring only ax-1 6-- ax-5 1953 and ax8v1 2111. (Contributed by BJ, 31-Dec-2020.) (Proof modification is discouraged.)
(∃𝑧(𝑧 = 𝑥𝑧𝑦) → 𝑥𝑦)
 
20.14.4.8  Adding ax-11
 
Theorembj-alcomexcom 33263 Commutation of universal quantifiers implies commutation of existential quantifiers. Can be placed in the ax-4 1853 section, soon after 2nexaln 1873, and used to prove excom 2155. (Contributed by BJ, 29-Nov-2020.) (Proof modification is discouraged.)
((∀𝑥𝑦 ¬ 𝜑 → ∀𝑦𝑥 ¬ 𝜑) → (∃𝑦𝑥𝜑 → ∃𝑥𝑦𝜑))
 
Theorembj-hbalt 33264 Closed form of hbal 2160. When in main part, prove hbal 2160 and hbald 2161 from it. (Contributed by BJ, 2-May-2019.)
(∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑥𝑦𝜑))
 
20.14.4.9  Adding ax-12
 
Theoremaxc11n11 33265 Proof of axc11n 2392 from { ax-1 6-- ax-7 2055, axc11 2396 } . Almost identical to axc11nfromc11 35085. (Contributed by NM, 6-Jul-2021.) (Proof modification is discouraged.)
(∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
 
Theoremaxc11n11r 33266 Proof of axc11n 2392 from { ax-1 6-- ax-7 2055, axc9 2346, axc11r 2333 } (note that axc16 2234 is provable from { ax-1 6-- ax-7 2055, axc11r 2333 }).

Note that axc11n 2392 proves (over minimal calculus) that axc11 2396 and axc11r 2333 are equivalent. Therefore, axc11n11 33265 and axc11n11r 33266 prove that one can use one or the other as an axiom, provided one assumes the axioms listed above (axc11 2396 appears slightly stronger since axc11n11r 33266 requires axc9 2346 while axc11n11 33265 does not).

(Contributed by BJ, 6-Jul-2021.) (Proof modification is discouraged.)

(∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
 
Theorembj-axc16g16 33267* Proof of axc16g 2233 from { ax-1 6-- ax-7 2055, axc16 2234 }. (Contributed by BJ, 6-Jul-2021.) (Proof modification is discouraged.)
(∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑))
 
Theorembj-ax12v3 33268* A weak version of ax-12 2163 which is stronger than ax12v 2164. Note that if one assumes reflexivity of equality 𝑥 = 𝑥 (equid 2059), then bj-ax12v3 33268 implies ax-5 1953 over modal logic K (substitute 𝑥 for 𝑦). See also bj-ax12v3ALT 33269. (Contributed by BJ, 6-Jul-2021.)
(𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
 
Theorembj-ax12v3ALT 33269* Alternate proof of bj-ax12v3 33268. Uses axc11r 2333 and axc15 2387 instead of ax-12 2163. (Contributed by BJ, 6-Jul-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
 
Theorembj-sb 33270* A weak variant of sbid2 2489 not requiring ax-13 2334 nor ax-10 2135. On top of Tarski's FOL, one implication requires only ax12v 2164, and the other requires only sp 2167. (Contributed by BJ, 25-May-2021.)
(𝜑 ↔ ∀𝑦(𝑦 = 𝑥 → ∀𝑥(𝑥 = 𝑦𝜑)))
 
Theorembj-modalbe 33271 The predicate-calculus version of the axiom (B) of modal logic. See also modal-b 2294. (Contributed by BJ, 20-Oct-2019.)
(𝜑 → ∀𝑥𝑥𝜑)
 
Theorembj-spst 33272 Closed form of sps 2169. Once in main part, prove sps 2169 and spsd 2171 from it. (Contributed by BJ, 20-Oct-2019.)
((𝜑𝜓) → (∀𝑥𝜑𝜓))
 
Theorembj-19.21bit 33273 Closed form of 19.21bi 2173. (Contributed by BJ, 20-Oct-2019.)
((𝜑 → ∀𝑥𝜓) → (𝜑𝜓))
 
Theorembj-19.23bit 33274 Closed form of 19.23bi 2175. (Contributed by BJ, 20-Oct-2019.)
((∃𝑥𝜑𝜓) → (𝜑𝜓))
 
Theorembj-nexrt 33275 Closed form of nexr 2176. Contrapositive of 19.8a 2166. (Contributed by BJ, 20-Oct-2019.)
(¬ ∃𝑥𝜑 → ¬ 𝜑)
 
Theorembj-alrim 33276 Closed form of alrimi 2199. (Contributed by BJ, 2-May-2019.)
(Ⅎ𝑥𝜑 → (∀𝑥(𝜑𝜓) → (𝜑 → ∀𝑥𝜓)))
 
Theorembj-alrim2 33277 Uncurried (imported) form of bj-alrim 33276. (Contributed by BJ, 2-May-2019.)
((Ⅎ𝑥𝜑 ∧ ∀𝑥(𝜑𝜓)) → (𝜑 → ∀𝑥𝜓))
 
Theorembj-nfdt0 33278 A theorem close to a closed form of nf5d 2258 and nf5dh 2141. (Contributed by BJ, 2-May-2019.)
(∀𝑥(𝜑 → (𝜓 → ∀𝑥𝜓)) → (∀𝑥𝜑 → Ⅎ𝑥𝜓))
 
Theorembj-nfdt 33279 Closed form of nf5d 2258 and nf5dh 2141. (Contributed by BJ, 2-May-2019.)
(∀𝑥(𝜑 → (𝜓 → ∀𝑥𝜓)) → ((𝜑 → ∀𝑥𝜑) → (𝜑 → Ⅎ𝑥𝜓)))
 
Theorembj-nexdt 33280 Closed form of nexd 2207. (Contributed by BJ, 20-Oct-2019.)
(Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → ¬ 𝜓) → (𝜑 → ¬ ∃𝑥𝜓)))
 
Theorembj-nexdvt 33281* Closed form of nexdv 1979. (Contributed by BJ, 20-Oct-2019.)
(∀𝑥(𝜑 → ¬ 𝜓) → (𝜑 → ¬ ∃𝑥𝜓))
 
Theorembj-alexbiex 33282 Adding a second quantifier is a tranparent operation, (∀∃ case). (Contributed by BJ, 20-Oct-2019.)
(∀𝑥𝑥𝜑 ↔ ∃𝑥𝜑)
 
Theorembj-exexbiex 33283 Adding a second quantifier is a tranparent operation, (∃∃ case). (Contributed by BJ, 20-Oct-2019.)
(∃𝑥𝑥𝜑 ↔ ∃𝑥𝜑)
 
Theorembj-alalbial 33284 Adding a second quantifier is a tranparent operation, (∀∀ case). (Contributed by BJ, 20-Oct-2019.)
(∀𝑥𝑥𝜑 ↔ ∀𝑥𝜑)
 
Theorembj-exalbial 33285 Adding a second quantifier is a tranparent operation, (∃∀ case). (Contributed by BJ, 20-Oct-2019.)
(∃𝑥𝑥𝜑 ↔ ∀𝑥𝜑)
 
Theorembj-19.9htbi 33286 Strengthening 19.9ht 2295 by replacing its succedent with a biconditional (19.9t 2189 does have a biconditional succedent). This propagates. (Contributed by BJ, 20-Oct-2019.)
(∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑥𝜑𝜑))
 
Theorembj-hbntbi 33287 Strengthening hbnt 2269 by replacing its succedent with a biconditional. See also hbntg 32303 and hbntal 39723. (Contributed by BJ, 20-Oct-2019.) Proved from bj-19.9htbi 33286. (Proof modification is discouraged.)
(∀𝑥(𝜑 → ∀𝑥𝜑) → (¬ 𝜑 ↔ ∀𝑥 ¬ 𝜑))
 
Theorembj-biexal1 33288 A general FOL biconditional that generalizes 19.9ht 2295 among others. For this and the following theorems, see also 19.35 1924, 19.21 2192, 19.23 2197. (Contributed by BJ, 20-Oct-2019.)
(∀𝑥(𝜑 → ∀𝑥𝜓) ↔ (∃𝑥𝜑 → ∀𝑥𝜓))
 
Theorembj-biexal2 33289 A general FOL biconditional. (Contributed by BJ, 20-Oct-2019.)
(∀𝑥(∃𝑥𝜑𝜓) ↔ (∃𝑥𝜑 → ∀𝑥𝜓))
 
Theorembj-biexal3 33290 A general FOL biconditional. (Contributed by BJ, 20-Oct-2019.)
(∀𝑥(𝜑 → ∀𝑥𝜓) ↔ ∀𝑥(∃𝑥𝜑𝜓))
 
Theorembj-bialal 33291 A general FOL biconditional. (Contributed by BJ, 20-Oct-2019.)
(∀𝑥(∀𝑥𝜑𝜓) ↔ (∀𝑥𝜑 → ∀𝑥𝜓))
 
Theorembj-biexex 33292 A general FOL biconditional. (Contributed by BJ, 20-Oct-2019.)
(∀𝑥(𝜑 → ∃𝑥𝜓) ↔ (∃𝑥𝜑 → ∃𝑥𝜓))
 
Theorembj-hbext 33293 Closed form of hbex 2301. (Contributed by BJ, 10-Oct-2019.)
(∀𝑦𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑦𝜑 → ∀𝑥𝑦𝜑))
 
Theorembj-nfalt 33294 Closed form of nfal 2299. (Contributed by BJ, 2-May-2019.)
(∀𝑥𝑦𝜑 → Ⅎ𝑦𝑥𝜑)
 
Theorembj-nfext 33295 Closed form of nfex 2300. (Contributed by BJ, 10-Oct-2019.)
(∀𝑥𝑦𝜑 → Ⅎ𝑦𝑥𝜑)
 
Theorembj-eeanvw 33296* Version of exdistrv 1998 with a disjoint variable condition on 𝑥, 𝑦 not requiring ax-11 2150. (The same can be done with eeeanv 2319 and ee4anv 2320.) (Contributed by BJ, 29-Sep-2019.) (Proof modification is discouraged.)
(∃𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓))
 
Theorembj-modal4e 33297 Dual statement of hba1 2268 (which is modal-4 ). (Contributed by BJ, 21-Dec-2020.)
(∃𝑥𝑥𝜑 → ∃𝑥𝜑)
 
Theorembj-modalb 33298 A short form of the axiom B of modal logic. (Contributed by BJ, 4-Apr-2021.)
𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)
 
20.14.4.10  Adding ax-13
 
Theorembj-axc10 33299 Alternate (shorter) proof of axc10 2349. One can prove a version with DV(x,y) without ax-13 2334, by using ax6ev 2023 instead of ax6e 2347. (Contributed by BJ, 31-Mar-2021.) (Proof modification is discouraged.)
(∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑)
 
Theorembj-alequex 33300 A fol lemma. See bj-alequexv 33248 for a version with a disjoint variable condition requiring fewer axioms. Can be used to reduce the proof of spimt 2350 from 133 to 112 bytes. (Contributed by BJ, 6-Oct-2018.)
(∀𝑥(𝑥 = 𝑦𝜑) → ∃𝑥𝜑)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43667
  Copyright terms: Public domain < Previous  Next >