![]() |
Metamath
Proof Explorer Theorem List (p. 333 of 484) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30748) |
![]() (30749-32271) |
![]() (32272-48316) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | mxidlidl 33201 | A maximal ideal is an ideal. (Contributed by Jeff Madsen, 5-Jan-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (LIdeal‘𝑅)) | ||
Theorem | mxidlnr 33202 | A maximal ideal is proper. (Contributed by Jeff Madsen, 16-Jun-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ≠ 𝐵) | ||
Theorem | mxidlmax 33203 | A maximal ideal is a maximal proper ideal. (Contributed by Jeff Madsen, 16-Jun-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝑀 ⊆ 𝐼)) → (𝐼 = 𝑀 ∨ 𝐼 = 𝐵)) | ||
Theorem | mxidln1 33204 | One is not contained in any maximal ideal. (Contributed by Jeff Madsen, 17-Jun-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → ¬ 1 ∈ 𝑀) | ||
Theorem | mxidlnzr 33205 | A ring with a maximal ideal is a nonzero ring. (Contributed by Jeff Madsen, 17-Jun-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑅 ∈ NzRing) | ||
Theorem | mxidlmaxv 33206 | An ideal 𝐼 strictly containing a maximal ideal 𝑀 is the whole ring 𝐵. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘𝑅)) & ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) & ⊢ (𝜑 → 𝑀 ⊆ 𝐼) & ⊢ (𝜑 → 𝑋 ∈ (𝐼 ∖ 𝑀)) ⇒ ⊢ (𝜑 → 𝐼 = 𝐵) | ||
Theorem | crngmxidl 33207 | In a commutative ring, maximal ideals of the opposite ring coincide with maximal ideals. (Contributed by Thierry Arnoux, 13-Mar-2025.) |
⊢ 𝑀 = (MaxIdeal‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing → 𝑀 = (MaxIdeal‘𝑂)) | ||
Theorem | mxidlprm 33208 | Every maximal ideal is prime. Statement in [Lang] p. 92. (Contributed by Thierry Arnoux, 21-Jan-2024.) |
⊢ × = (LSSum‘(mulGrp‘𝑅)) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ (MaxIdeal‘𝑅)) → 𝑀 ∈ (PrmIdeal‘𝑅)) | ||
Theorem | mxidlirredi 33209 | In an integral domain, the generator of a maximal ideal is irreducible. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐾 = (RSpan‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑀 = (𝐾‘{𝑋}) & ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ≠ 0 ) & ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘𝑅)) ⇒ ⊢ (𝜑 → 𝑋 ∈ (Irred‘𝑅)) | ||
Theorem | mxidlirred 33210 | In a principal ideal domain, maximal ideals are exactly the ideals generated by irreducible elements. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐾 = (RSpan‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑀 = (𝐾‘{𝑋}) & ⊢ (𝜑 → 𝑅 ∈ PID) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ≠ 0 ) & ⊢ (𝜑 → 𝑀 ∈ (LIdeal‘𝑅)) ⇒ ⊢ (𝜑 → (𝑀 ∈ (MaxIdeal‘𝑅) ↔ 𝑋 ∈ (Irred‘𝑅))) | ||
Theorem | ssmxidllem 33211* | The set 𝑃 used in the proof of ssmxidl 33212 satisfies the condition of Zorn's Lemma. (Contributed by Thierry Arnoux, 10-Apr-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑃 = {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝 ≠ 𝐵 ∧ 𝐼 ⊆ 𝑝)} & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) & ⊢ (𝜑 → 𝐼 ≠ 𝐵) & ⊢ (𝜑 → 𝑍 ⊆ 𝑃) & ⊢ (𝜑 → 𝑍 ≠ ∅) & ⊢ (𝜑 → [⊊] Or 𝑍) ⇒ ⊢ (𝜑 → ∪ 𝑍 ∈ 𝑃) | ||
Theorem | ssmxidl 33212* | Let 𝑅 be a ring, and let 𝐼 be a proper ideal of 𝑅. Then there is a maximal ideal of 𝑅 containing 𝐼. (Contributed by Thierry Arnoux, 10-Apr-2024.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ≠ 𝐵) → ∃𝑚 ∈ (MaxIdeal‘𝑅)𝐼 ⊆ 𝑚) | ||
Theorem | drnglidl1ne0 33213 | In a nonzero ring, the zero ideal is different of the unit ideal. (Contributed by Thierry Arnoux, 16-Mar-2025.) |
⊢ 0 = (0g‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ NzRing → 𝐵 ≠ { 0 }) | ||
Theorem | drng0mxidl 33214 | In a division ring, the zero ideal is a maximal ideal. (Contributed by Thierry Arnoux, 16-Mar-2025.) |
⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ DivRing → { 0 } ∈ (MaxIdeal‘𝑅)) | ||
Theorem | drngmxidl 33215 | The zero ideal is the only ideal of a division ring. (Contributed by Thierry Arnoux, 16-Mar-2025.) |
⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ DivRing → (MaxIdeal‘𝑅) = {{ 0 }}) | ||
Theorem | krull 33216* | Krull's theorem: Any nonzero ring has at least one maximal ideal. (Contributed by Thierry Arnoux, 10-Apr-2024.) |
⊢ (𝑅 ∈ NzRing → ∃𝑚 𝑚 ∈ (MaxIdeal‘𝑅)) | ||
Theorem | mxidlnzrb 33217* | A ring is nonzero if and only if it has maximal ideals. (Contributed by Thierry Arnoux, 10-Apr-2024.) |
⊢ (𝑅 ∈ Ring → (𝑅 ∈ NzRing ↔ ∃𝑚 𝑚 ∈ (MaxIdeal‘𝑅))) | ||
Theorem | opprabs 33218 | The opposite ring of the opposite ring is the original ring. Note the conditions on this theorem, which makes it unpractical in case we only have e.g. 𝑅 ∈ Ring as a premise. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
⊢ 𝑂 = (oppr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → Fun 𝑅) & ⊢ (𝜑 → (.r‘ndx) ∈ dom 𝑅) & ⊢ (𝜑 → · Fn (𝐵 × 𝐵)) ⇒ ⊢ (𝜑 → 𝑅 = (oppr‘𝑂)) | ||
Theorem | oppreqg 33219 | Group coset equivalence relation for the opposite ring. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ⊆ 𝐵) → (𝑅 ~QG 𝐼) = (𝑂 ~QG 𝐼)) | ||
Theorem | opprnsg 33220 | Normal subgroups of the opposite ring are the same as the original normal subgroups. (Contributed by Thierry Arnoux, 13-Mar-2025.) |
⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (NrmSGrp‘𝑅) = (NrmSGrp‘𝑂) | ||
Theorem | opprlidlabs 33221 | The ideals of the opposite ring's opposite ring are the ideals of the original ring. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
⊢ 𝑂 = (oppr‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → (LIdeal‘𝑅) = (LIdeal‘(oppr‘𝑂))) | ||
Theorem | oppr2idl 33222 | Two sided ideal of the opposite ring. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
⊢ 𝑂 = (oppr‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → (2Ideal‘𝑅) = (2Ideal‘𝑂)) | ||
Theorem | opprmxidlabs 33223 | The maximal ideal of the opposite ring's opposite ring. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
⊢ 𝑂 = (oppr‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘𝑅)) ⇒ ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘(oppr‘𝑂))) | ||
Theorem | opprqusbas 33224 | The base of the quotient of the opposite ring is the same as the base of the opposite of the quotient ring. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (Base‘(oppr‘𝑄)) = (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))) | ||
Theorem | opprqusplusg 33225 | The group operation of the quotient of the opposite ring is the same as the group operation of the opposite of the quotient ring. (Contributed by Thierry Arnoux, 13-Mar-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) & ⊢ (𝜑 → 𝐼 ∈ (NrmSGrp‘𝑅)) & ⊢ 𝐸 = (Base‘𝑄) & ⊢ (𝜑 → 𝑋 ∈ 𝐸) & ⊢ (𝜑 → 𝑌 ∈ 𝐸) ⇒ ⊢ (𝜑 → (𝑋(+g‘(oppr‘𝑄))𝑌) = (𝑋(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌)) | ||
Theorem | opprqus0g 33226 | The group identity element of the quotient of the opposite ring is the same as the group identity element of the opposite of the quotient ring. (Contributed by Thierry Arnoux, 13-Mar-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) & ⊢ (𝜑 → 𝐼 ∈ (NrmSGrp‘𝑅)) ⇒ ⊢ (𝜑 → (0g‘(oppr‘𝑄)) = (0g‘(𝑂 /s (𝑂 ~QG 𝐼)))) | ||
Theorem | opprqusmulr 33227 | The multiplication operation of the quotient of the opposite ring is the same as the multiplication operation of the opposite of the quotient ring. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐸 = (Base‘𝑄) & ⊢ (𝜑 → 𝑋 ∈ 𝐸) & ⊢ (𝜑 → 𝑌 ∈ 𝐸) ⇒ ⊢ (𝜑 → (𝑋(.r‘(oppr‘𝑄))𝑌) = (𝑋(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌)) | ||
Theorem | opprqus1r 33228 | The ring unity of the quotient of the opposite ring is the same as the ring unity of the opposite of the quotient ring. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) ⇒ ⊢ (𝜑 → (1r‘(oppr‘𝑄)) = (1r‘(𝑂 /s (𝑂 ~QG 𝐼)))) | ||
Theorem | opprqusdrng 33229 | The quotient of the opposite ring is a division ring iff the opposite of the quotient ring is. (Contributed by Thierry Arnoux, 13-Mar-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) ⇒ ⊢ (𝜑 → ((oppr‘𝑄) ∈ DivRing ↔ (𝑂 /s (𝑂 ~QG 𝐼)) ∈ DivRing)) | ||
Theorem | qsdrngilem 33230* | Lemma for qsdrngi 33231. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀)) & ⊢ (𝜑 → 𝑅 ∈ NzRing) & ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘𝑅)) & ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘𝑂)) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) & ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑀) ⇒ ⊢ (𝜑 → ∃𝑣 ∈ (Base‘𝑄)(𝑣(.r‘𝑄)[𝑋](𝑅 ~QG 𝑀)) = (1r‘𝑄)) | ||
Theorem | qsdrngi 33231 | A quotient by a maximal left and maximal right ideal is a division ring. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀)) & ⊢ (𝜑 → 𝑅 ∈ NzRing) & ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘𝑅)) & ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘𝑂)) ⇒ ⊢ (𝜑 → 𝑄 ∈ DivRing) | ||
Theorem | qsdrnglem2 33232 | Lemma for qsdrng 33233. (Contributed by Thierry Arnoux, 13-Mar-2025.) |
⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀)) & ⊢ (𝜑 → 𝑅 ∈ NzRing) & ⊢ (𝜑 → 𝑀 ∈ (2Ideal‘𝑅)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑄 ∈ DivRing) & ⊢ (𝜑 → 𝐽 ∈ (LIdeal‘𝑅)) & ⊢ (𝜑 → 𝑀 ⊆ 𝐽) & ⊢ (𝜑 → 𝑋 ∈ (𝐽 ∖ 𝑀)) ⇒ ⊢ (𝜑 → 𝐽 = 𝐵) | ||
Theorem | qsdrng 33233 | An ideal 𝑀 is both left and right maximal if and only if the factor ring 𝑄 is a division ring. (Contributed by Thierry Arnoux, 13-Mar-2025.) |
⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀)) & ⊢ (𝜑 → 𝑅 ∈ NzRing) & ⊢ (𝜑 → 𝑀 ∈ (2Ideal‘𝑅)) ⇒ ⊢ (𝜑 → (𝑄 ∈ DivRing ↔ (𝑀 ∈ (MaxIdeal‘𝑅) ∧ 𝑀 ∈ (MaxIdeal‘𝑂)))) | ||
Theorem | qsfld 33234 | An ideal 𝑀 in the commutative ring 𝑅 is maximal if and only if the factor ring 𝑄 is a field. (Contributed by Thierry Arnoux, 13-Mar-2025.) |
⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀)) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ NzRing) & ⊢ (𝜑 → 𝑀 ∈ (LIdeal‘𝑅)) ⇒ ⊢ (𝜑 → (𝑄 ∈ Field ↔ 𝑀 ∈ (MaxIdeal‘𝑅))) | ||
Theorem | mxidlprmALT 33235 | Every maximal ideal is prime - alternative proof. (Contributed by Thierry Arnoux, 15-Mar-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑀 ∈ (MaxIdeal‘𝑅)) ⇒ ⊢ (𝜑 → 𝑀 ∈ (PrmIdeal‘𝑅)) | ||
Syntax | cidlsrg 33236 | Extend class notation with the semiring of ideals of a ring. |
class IDLsrg | ||
Definition | df-idlsrg 33237* | Define a structure for the ideals of a ring. (Contributed by Thierry Arnoux, 21-Jan-2024.) |
⊢ IDLsrg = (𝑟 ∈ V ↦ ⦋(LIdeal‘𝑟) / 𝑏⦌({〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), (LSSum‘𝑟)〉, 〈(.r‘ndx), (𝑖 ∈ 𝑏, 𝑗 ∈ 𝑏 ↦ ((RSpan‘𝑟)‘(𝑖(LSSum‘(mulGrp‘𝑟))𝑗)))〉} ∪ {〈(TopSet‘ndx), ran (𝑖 ∈ 𝑏 ↦ {𝑗 ∈ 𝑏 ∣ ¬ 𝑖 ⊆ 𝑗})〉, 〈(le‘ndx), {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝑏 ∧ 𝑖 ⊆ 𝑗)}〉})) | ||
Theorem | idlsrgstr 33238 | A constructed semiring of ideals is a structure. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉}) ⇒ ⊢ 𝑊 Struct 〈1, ;10〉 | ||
Theorem | idlsrgval 33239* | Lemma for idlsrgbas 33240 through idlsrgtset 33244. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
⊢ 𝐼 = (LIdeal‘𝑅) & ⊢ ⊕ = (LSSum‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ ⊗ = (LSSum‘𝐺) ⇒ ⊢ (𝑅 ∈ 𝑉 → (IDLsrg‘𝑅) = ({〈(Base‘ndx), 𝐼〉, 〈(+g‘ndx), ⊕ 〉, 〈(.r‘ndx), (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼 ↦ ((RSpan‘𝑅)‘(𝑖 ⊗ 𝑗)))〉} ∪ {〈(TopSet‘ndx), ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗})〉, 〈(le‘ndx), {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝐼 ∧ 𝑖 ⊆ 𝑗)}〉})) | ||
Theorem | idlsrgbas 33240 | Base of the ideals of a ring. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
⊢ 𝑆 = (IDLsrg‘𝑅) & ⊢ 𝐼 = (LIdeal‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → 𝐼 = (Base‘𝑆)) | ||
Theorem | idlsrgplusg 33241 | Additive operation of the ideals of a ring. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
⊢ 𝑆 = (IDLsrg‘𝑅) & ⊢ ⊕ = (LSSum‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → ⊕ = (+g‘𝑆)) | ||
Theorem | idlsrg0g 33242 | The zero ideal is the additive identity of the semiring of ideals. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
⊢ 𝑆 = (IDLsrg‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → { 0 } = (0g‘𝑆)) | ||
Theorem | idlsrgmulr 33243* | Multiplicative operation of the ideals of a ring. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
⊢ 𝑆 = (IDLsrg‘𝑅) & ⊢ 𝐵 = (LIdeal‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ ⊗ = (LSSum‘𝐺) ⇒ ⊢ (𝑅 ∈ 𝑉 → (𝑖 ∈ 𝐵, 𝑗 ∈ 𝐵 ↦ ((RSpan‘𝑅)‘(𝑖 ⊗ 𝑗))) = (.r‘𝑆)) | ||
Theorem | idlsrgtset 33244* | Topology component of the ideals of a ring. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
⊢ 𝑆 = (IDLsrg‘𝑅) & ⊢ 𝐼 = (LIdeal‘𝑅) & ⊢ 𝐽 = ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗}) ⇒ ⊢ (𝑅 ∈ 𝑉 → 𝐽 = (TopSet‘𝑆)) | ||
Theorem | idlsrgmulrval 33245 | Value of the ring multiplication for the ideals of a ring 𝑅. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
⊢ 𝑆 = (IDLsrg‘𝑅) & ⊢ 𝐵 = (LIdeal‘𝑅) & ⊢ ⊗ = (.r‘𝑆) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ · = (LSSum‘𝐺) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐼 ⊗ 𝐽) = ((RSpan‘𝑅)‘(𝐼 · 𝐽))) | ||
Theorem | idlsrgmulrcl 33246 | Ideals of a ring 𝑅 are closed under multiplication. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
⊢ 𝑆 = (IDLsrg‘𝑅) & ⊢ 𝐵 = (LIdeal‘𝑅) & ⊢ ⊗ = (.r‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐼 ⊗ 𝐽) ∈ 𝐵) | ||
Theorem | idlsrgmulrss1 33247 | In a commutative ring, the product of two ideals is a subset of the first one. (Contributed by Thierry Arnoux, 16-Jun-2024.) |
⊢ 𝑆 = (IDLsrg‘𝑅) & ⊢ 𝐵 = (LIdeal‘𝑅) & ⊢ ⊗ = (.r‘𝑆) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐼 ⊗ 𝐽) ⊆ 𝐼) | ||
Theorem | idlsrgmulrss2 33248 | The product of two ideals is a subset of the second one. (Contributed by Thierry Arnoux, 2-Jun-2024.) |
⊢ 𝑆 = (IDLsrg‘𝑅) & ⊢ 𝐵 = (LIdeal‘𝑅) & ⊢ ⊗ = (.r‘𝑆) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐼 ⊗ 𝐽) ⊆ 𝐽) | ||
Theorem | idlsrgmulrssin 33249 | In a commutative ring, the product of two ideals is a subset of their intersection. (Contributed by Thierry Arnoux, 17-Jun-2024.) |
⊢ 𝑆 = (IDLsrg‘𝑅) & ⊢ 𝐵 = (LIdeal‘𝑅) & ⊢ ⊗ = (.r‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐼 ⊗ 𝐽) ⊆ (𝐼 ∩ 𝐽)) | ||
Theorem | idlsrgmnd 33250 | The ideals of a ring form a monoid. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
⊢ 𝑆 = (IDLsrg‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝑆 ∈ Mnd) | ||
Theorem | idlsrgcmnd 33251 | The ideals of a ring form a commutative monoid. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
⊢ 𝑆 = (IDLsrg‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝑆 ∈ CMnd) | ||
Syntax | cufd 33252 | Class of unique factorization domains. |
class UFD | ||
Definition | df-ufd 33253* | Define the class of unique factorization domains. A unique factorization domain (UFD for short), is a commutative ring with an absolute value (from abvtriv 20728 this is equivalent to being a domain) such that every nonzero prime ideal contains a prime element (this is a characterization due to Irving Kaplansky). A UFD is sometimes also called a "factorial ring" following the terminology of Bourbaki. (Contributed by Mario Carneiro, 17-Feb-2015.) (Revised by Thierry Arnoux, 9-May-2025.) |
⊢ UFD = {𝑟 ∈ CRing ∣ ((AbsVal‘𝑟) ≠ ∅ ∧ ∀𝑖 ∈ ((PrmIdeal‘𝑟) ∖ {{(0g‘𝑟)}})(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅)} | ||
Theorem | isufd 33254* | The property of being a Unique Factorization Domain. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐼 = (PrmIdeal‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ UFD ↔ (𝑅 ∈ CRing ∧ (𝐴 ≠ ∅ ∧ ∀𝑖 ∈ (𝐼 ∖ {{ 0 }})(𝑖 ∩ 𝑃) ≠ ∅))) | ||
Theorem | isufd2 33255* | Alternate definition of unique factorization domains, using integral domains, for nonzero rings. (Contributed by Thierry Arnoux, 18-May-2025.) |
⊢ 𝐼 = (PrmIdeal‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ NzRing → (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑖 ∈ (𝐼 ∖ {{ 0 }})(𝑖 ∩ 𝑃) ≠ ∅))) | ||
Theorem | ufdcringd 33256 | A unique factorization domain is a commutative ring. (Contributed by Thierry Arnoux, 18-May-2025.) |
⊢ (𝜑 → 𝑅 ∈ UFD) ⇒ ⊢ (𝜑 → 𝑅 ∈ CRing) | ||
Theorem | 0ringufd 33257 | A zero ring is a unique factorization domain. (Contributed by Thierry Arnoux, 18-May-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → (♯‘𝐵) = 1) ⇒ ⊢ (𝜑 → 𝑅 ∈ UFD) | ||
Theorem | rprmval 33258* | The prime elements of a ring 𝑅. (Contributed by Thierry Arnoux, 1-Jul-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ ∥ = (∥r‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → (RPrime‘𝑅) = {𝑝 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑝 ∥ (𝑥 · 𝑦) → (𝑝 ∥ 𝑥 ∨ 𝑝 ∥ 𝑦))}) | ||
Theorem | isrprm 33259* | Property for 𝑃 to be a prime element in the ring 𝑅. (Contributed by Thierry Arnoux, 1-Jul-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → (𝑃 ∈ (RPrime‘𝑅) ↔ (𝑃 ∈ (𝐵 ∖ (𝑈 ∪ { 0 })) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦))))) | ||
Theorem | rprmcl 33260 | A ring prime is an element of the base set. (Contributed by Thierry Arnoux, 18-May-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝐵) | ||
Theorem | rprmdvds 33261 | If a ring prime 𝑄 divides a product 𝑋 · 𝑌, then it divides either 𝑋 or 𝑌. (Contributed by Thierry Arnoux, 18-May-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑄 ∥ (𝑋 · 𝑌)) ⇒ ⊢ (𝜑 → (𝑄 ∥ 𝑋 ∨ 𝑄 ∥ 𝑌)) | ||
Theorem | rprmnz 33262 | A ring prime is nonzero. (Contributed by Thierry Arnoux, 18-May-2025.) |
⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) ⇒ ⊢ (𝜑 → 𝑄 ≠ 0 ) | ||
Theorem | rprmnunit 33263 | A ring prime is not a unit. (Contributed by Thierry Arnoux, 18-May-2025.) |
⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) ⇒ ⊢ (𝜑 → ¬ 𝑄 ∈ 𝑈) | ||
Theorem | rsprprmprmidl 33264 | In a commutative ring, ideals generated by prime elements are prime ideals. (Contributed by Thierry Arnoux, 18-May-2025.) |
⊢ 𝐾 = (RSpan‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑃 ∈ (RPrime‘𝑅)) ⇒ ⊢ (𝜑 → (𝐾‘{𝑃}) ∈ (PrmIdeal‘𝑅)) | ||
Theorem | rsprprmprmidlb 33265 | In an integral domain, an ideal generated by a single element is a prime iff that element is prime. (Contributed by Thierry Arnoux, 18-May-2025.) |
⊢ 0 = (0g‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 𝐾 = (RSpan‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝑃 ↔ (𝐾‘{𝑋}) ∈ (PrmIdeal‘𝑅))) | ||
Theorem | rprmndvdsr1 33266 | A ring prime element does not divide the ring multiplicative identity. (Contributed by Thierry Arnoux, 18-May-2025.) |
⊢ 1 = (1r‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) ⇒ ⊢ (𝜑 → ¬ 𝑄 ∥ 1 ) | ||
Theorem | rprmasso 33267 | In an integral domain, the associate of a prime is a prime. (Contributed by Thierry Arnoux, 18-May-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∥ 𝑌) & ⊢ (𝜑 → 𝑌 ∥ 𝑋) ⇒ ⊢ (𝜑 → 𝑌 ∈ 𝑃) | ||
Theorem | rprmasso2 33268 | In an integral domain, if a prime element divides another, they are associates. (Contributed by Thierry Arnoux, 18-May-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∥ 𝑌) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) ⇒ ⊢ (𝜑 → 𝑌 ∥ 𝑋) | ||
Theorem | rprmirredlem 33269 | Lemma for rprmirred 33270. (Contributed by Thierry Arnoux, 18-May-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → 𝑄 ≠ 0 ) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ 𝑈)) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑄 = (𝑋 · 𝑌)) & ⊢ (𝜑 → 𝑄 ∥ 𝑋) ⇒ ⊢ (𝜑 → 𝑌 ∈ 𝑈) | ||
Theorem | rprmirred 33270 | In an integral domain, ring primes are irreducible. (Contributed by Thierry Arnoux, 18-May-2025.) |
⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 𝐼 = (Irred‘𝑅) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) & ⊢ (𝜑 → 𝑅 ∈ IDomn) ⇒ ⊢ (𝜑 → 𝑄 ∈ 𝐼) | ||
Theorem | rprmirredb 33271 | In a principal ideal domain, the converse of rprmirred 33270 holds, i.e. irreducible elements are prime. (Contributed by Thierry Arnoux, 18-May-2025.) |
⊢ 𝑃 = (RPrime‘𝑅) & ⊢ 𝐼 = (Irred‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ PID) ⇒ ⊢ (𝜑 → 𝐼 = 𝑃) | ||
Theorem | rprmdvdspow 33272 | If a prime element divides a ring "power", it divides the term. (Contributed by Thierry Arnoux, 18-May-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ ↑ = (.g‘𝑀) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑄 ∥ (𝑁 ↑ 𝑋)) ⇒ ⊢ (𝜑 → 𝑄 ∥ 𝑋) | ||
Theorem | rprmdvdsprod 33273* | If a prime element 𝑄 divides a product, then it divides one term. (Contributed by Thierry Arnoux, 18-May-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑃 = (RPrime‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 finSupp 1 ) & ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) & ⊢ (𝜑 → 𝑄 ∥ (𝑀 Σg 𝐹)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (𝐹 supp 1 )𝑄 ∥ (𝐹‘𝑥)) | ||
Theorem | zringidom 33274 | The ring of integers is an integral domain. (Contributed by Thierry Arnoux, 4-May-2025.) |
⊢ ℤring ∈ IDomn | ||
Theorem | zringpid 33275 | The ring of integers is a principal ideal domain. (Contributed by Thierry Arnoux, 18-May-2025.) |
⊢ ℤring ∈ PID | ||
Theorem | dfprm3 33276 | The (positive) prime elements of the integer ring are the prime numbers. (Contributed by Thierry Arnoux, 18-May-2025.) |
⊢ ℙ = (ℕ ∩ (RPrime‘ℤring)) | ||
Theorem | zringfrac 33277* | The field of fractions of the ring of integers is isomorphic to the field of the rational numbers. (Contributed by Thierry Arnoux, 4-May-2025.) |
⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ ∼ = (ℤring ~RL (ℤ ∖ {0})) & ⊢ 𝐹 = (𝑞 ∈ ℚ ↦ [〈(numer‘𝑞), (denom‘𝑞)〉] ∼ ) ⇒ ⊢ 𝐹 ∈ (𝑄 RingIso ( Frac ‘ℤring)) | ||
Theorem | 0ringmon1p 33278 | There are no monic polynomials over a zero ring. (Contributed by Thierry Arnoux, 5-Feb-2025.) |
⊢ 𝑀 = (Monic1p‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → (♯‘𝐵) = 1) ⇒ ⊢ (𝜑 → 𝑀 = ∅) | ||
Theorem | fply1 33279 | Conditions for a function to be a univariate polynomial. (Contributed by Thierry Arnoux, 19-Aug-2023.) |
⊢ 0 = (0g‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑃 = (Base‘(Poly1‘𝑅)) & ⊢ (𝜑 → 𝐹:(ℕ0 ↑m 1o)⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → 𝐹 ∈ 𝑃) | ||
Theorem | ply1lvec 33280 | In a division ring, the univariate polynomials form a vector space. (Contributed by Thierry Arnoux, 19-Feb-2025.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) ⇒ ⊢ (𝜑 → 𝑃 ∈ LVec) | ||
Theorem | evls1fn 33281 | Functionality of the subring polynomial evaluation. (Contributed by Thierry Arnoux, 9-Feb-2025.) |
⊢ 𝑂 = (𝑅 evalSub1 𝑆) & ⊢ 𝑃 = (Poly1‘(𝑅 ↾s 𝑆)) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) ⇒ ⊢ (𝜑 → 𝑂 Fn 𝑈) | ||
Theorem | evls1dm 33282 | The domain of the subring polynomial evaluation function. (Contributed by Thierry Arnoux, 9-Feb-2025.) |
⊢ 𝑂 = (𝑅 evalSub1 𝑆) & ⊢ 𝑃 = (Poly1‘(𝑅 ↾s 𝑆)) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) ⇒ ⊢ (𝜑 → dom 𝑂 = 𝑈) | ||
Theorem | evls1fvf 33283 | The subring evaluation function for a univariate polynomial as a function, with domain and codomain. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
⊢ 𝑂 = (𝑅 evalSub1 𝑆) & ⊢ 𝑃 = (Poly1‘(𝑅 ↾s 𝑆)) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑄 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝑂‘𝑄):𝐵⟶𝐵) | ||
Theorem | ressdeg1 33284 | The degree of a univariate polynomial in a structure restriction. (Contributed by Thierry Arnoux, 20-Jan-2025.) |
⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝐷 = ( deg1 ‘𝑅) & ⊢ 𝑈 = (Poly1‘𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) ⇒ ⊢ (𝜑 → (𝐷‘𝑃) = (( deg1 ‘𝐻)‘𝑃)) | ||
Theorem | ressply10g 33285 | A restricted polynomial algebra has the same group identity (zero polynomial). (Contributed by Thierry Arnoux, 20-Jan-2025.) |
⊢ 𝑆 = (Poly1‘𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (Poly1‘𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝑍 = (0g‘𝑆) ⇒ ⊢ (𝜑 → 𝑍 = (0g‘𝑈)) | ||
Theorem | ressply1mon1p 33286 | The monic polynomials of a restricted polynomial algebra. (Contributed by Thierry Arnoux, 21-Jan-2025.) |
⊢ 𝑆 = (Poly1‘𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (Poly1‘𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝑀 = (Monic1p‘𝑅) & ⊢ 𝑁 = (Monic1p‘𝐻) ⇒ ⊢ (𝜑 → 𝑁 = (𝐵 ∩ 𝑀)) | ||
Theorem | ressply1invg 33287 | An element of a restricted polynomial algebra has the same group inverse. (Contributed by Thierry Arnoux, 30-Jan-2025.) |
⊢ 𝑆 = (Poly1‘𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (Poly1‘𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝑃 = (𝑆 ↾s 𝐵) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((invg‘𝑈)‘𝑋) = ((invg‘𝑃)‘𝑋)) | ||
Theorem | ressply1sub 33288 | A restricted polynomial algebra has the same subtraction operation. (Contributed by Thierry Arnoux, 30-Jan-2025.) |
⊢ 𝑆 = (Poly1‘𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (Poly1‘𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝑃 = (𝑆 ↾s 𝐵) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋(-g‘𝑈)𝑌) = (𝑋(-g‘𝑃)𝑌)) | ||
Theorem | evls1subd 33289 | Univariate polynomial evaluation of a difference of polynomials. (Contributed by Thierry Arnoux, 25-Apr-2025.) |
⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑊 = (Poly1‘𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐷 = (-g‘𝑊) & ⊢ − = (-g‘𝑆) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ (𝜑 → 𝑁 ∈ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) ⇒ ⊢ (𝜑 → ((𝑄‘(𝑀𝐷𝑁))‘𝐶) = (((𝑄‘𝑀)‘𝐶) − ((𝑄‘𝑁)‘𝐶))) | ||
Theorem | ply1ascl1 33290 | The multiplicative identity scalar as a univariate polynomial. (Contributed by Thierry Arnoux, 20-Jan-2025.) |
⊢ 𝑊 = (Poly1‘𝑅) & ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝐼 = (1r‘𝑅) & ⊢ 1 = (1r‘𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → (𝐴‘𝐼) = 1 ) | ||
Theorem | deg1le0eq0 33291 | A polynomial with nonpositive degree is the zero polynomial iff its constant term is zero. Biconditional version of deg1scl 26069. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
⊢ 𝐷 = ( deg1 ‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑂 = (0g‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → (𝐷‘𝐹) ≤ 0) ⇒ ⊢ (𝜑 → (𝐹 = 𝑂 ↔ ((coe1‘𝐹)‘0) = 0 )) | ||
Theorem | ply1asclunit 33292 | A non-zero scalar polynomial over a field 𝐹 is a unit. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
⊢ 𝑃 = (Poly1‘𝐹) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 0 = (0g‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ Field) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝐴‘𝑌) ∈ (Unit‘𝑃)) | ||
Theorem | ply1unit 33293 | In a field 𝐹, a polynomial 𝐶 is a unit iff it has degree 0. This corresponds to the nonzero scalars, see ply1asclunit 33292. (Contributed by Thierry Arnoux, 25-Apr-2025.) |
⊢ 𝑃 = (Poly1‘𝐹) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 0 = (0g‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ Field) & ⊢ 𝐷 = ( deg1 ‘𝐹) & ⊢ (𝜑 → 𝐶 ∈ (Base‘𝑃)) ⇒ ⊢ (𝜑 → (𝐶 ∈ (Unit‘𝑃) ↔ (𝐷‘𝐶) = 0)) | ||
Theorem | m1pmeq 33294 | If two monic polynomials 𝐼 and 𝐽 differ by a unit factor 𝐾, then they are equal. (Contributed by Thierry Arnoux, 27-Apr-2025.) |
⊢ 𝑃 = (Poly1‘𝐹) & ⊢ 𝑀 = (Monic1p‘𝐹) & ⊢ 𝑈 = (Unit‘𝑃) & ⊢ · = (.r‘𝑃) & ⊢ (𝜑 → 𝐹 ∈ Field) & ⊢ (𝜑 → 𝐼 ∈ 𝑀) & ⊢ (𝜑 → 𝐽 ∈ 𝑀) & ⊢ (𝜑 → 𝐾 ∈ 𝑈) & ⊢ (𝜑 → 𝐼 = (𝐾 · 𝐽)) ⇒ ⊢ (𝜑 → 𝐼 = 𝐽) | ||
Theorem | ply1fermltl 33295 | Fermat's little theorem for polynomials. If 𝑃 is prime, Then (𝑋 + 𝐴)↑𝑃 = ((𝑋↑𝑃) + 𝐴) modulo 𝑃. (Contributed by Thierry Arnoux, 24-Jul-2024.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑃) & ⊢ 𝑊 = (Poly1‘𝑍) & ⊢ 𝑋 = (var1‘𝑍) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (mulGrp‘𝑊) & ⊢ ↑ = (.g‘𝑁) & ⊢ 𝐶 = (algSc‘𝑊) & ⊢ 𝐴 = (𝐶‘((ℤRHom‘𝑍)‘𝐸)) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝐸 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑃 ↑ (𝑋 + 𝐴)) = ((𝑃 ↑ 𝑋) + 𝐴)) | ||
Theorem | coe1mon 33296* | Coefficient vector of a monomial. (Contributed by Thierry Arnoux, 20-Feb-2025.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝜑 → (coe1‘(𝑁 ↑ 𝑋)) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 𝑁, 1 , 0 ))) | ||
Theorem | ply1moneq 33297 | Two monomials are equal iff their powers are equal. (Contributed by Thierry Arnoux, 20-Feb-2025.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ (𝜑 → 𝑅 ∈ NzRing) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝑀 ↑ 𝑋) = (𝑁 ↑ 𝑋) ↔ 𝑀 = 𝑁)) | ||
Theorem | ply1degltel 33298 | Characterize elementhood in the set 𝑆 of polynomials of degree less than 𝑁. (Contributed by Thierry Arnoux, 20-Feb-2025.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐷 = ( deg1 ‘𝑅) & ⊢ 𝑆 = (◡𝐷 “ (-∞[,)𝑁)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ (𝐹 ∈ 𝐵 ∧ (𝐷‘𝐹) ≤ (𝑁 − 1)))) | ||
Theorem | ply1degleel 33299 | Characterize elementhood in the set 𝑆 of polynomials of degree less than 𝑁. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐷 = ( deg1 ‘𝑅) & ⊢ 𝑆 = (◡𝐷 “ (-∞[,)𝑁)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ (𝐹 ∈ 𝐵 ∧ (𝐷‘𝐹) < 𝑁))) | ||
Theorem | ply1degltlss 33300 | The space 𝑆 of the univariate polynomials of degree less than 𝑁 forms a vector subspace. (Contributed by Thierry Arnoux, 20-Feb-2025.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐷 = ( deg1 ‘𝑅) & ⊢ 𝑆 = (◡𝐷 “ (-∞[,)𝑁)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → 𝑆 ∈ (LSubSp‘𝑃)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |