HomeHome Metamath Proof Explorer
Theorem List (p. 333 of 465)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29259)
  Hilbert Space Explorer  Hilbert Space Explorer
(29260-30782)
  Users' Mathboxes  Users' Mathboxes
(30783-46465)
 

Theorem List for Metamath Proof Explorer - 33201-33300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcvmtop1 33201 Reverse closure for a covering map. (Contributed by Mario Carneiro, 11-Feb-2015.)
(𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)
 
Theoremcvmtop2 33202 Reverse closure for a covering map. (Contributed by Mario Carneiro, 13-Feb-2015.)
(𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐽 ∈ Top)
 
Theoremcvmcn 33203 A covering map is a continuous function. (Contributed by Mario Carneiro, 13-Feb-2015.)
(𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
 
Theoremcvmcov 33204* Property of a covering map. In order to make the covering property more manageable, we define here the set 𝑆(𝑘) of all even coverings of an open set 𝑘 in the range. Then the covering property states that every point has a neighborhood which has an even covering. (Contributed by Mario Carneiro, 13-Feb-2015.)
𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})    &   𝑋 = 𝐽       ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑃𝑋) → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝑆𝑥) ≠ ∅))
 
Theoremcvmsrcl 33205* Reverse closure for an even covering. (Contributed by Mario Carneiro, 11-Feb-2015.)
𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})       (𝑇 ∈ (𝑆𝑈) → 𝑈𝐽)
 
Theoremcvmsi 33206* One direction of cvmsval 33207. (Contributed by Mario Carneiro, 13-Feb-2015.)
𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})       (𝑇 ∈ (𝑆𝑈) → (𝑈𝐽 ∧ (𝑇𝐶𝑇 ≠ ∅) ∧ ( 𝑇 = (𝐹𝑈) ∧ ∀𝑢𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))))))
 
Theoremcvmsval 33207* Elementhood in the set 𝑆 of all even coverings of an open set in 𝐽. 𝑆 is an even covering of 𝑈 if it is a nonempty collection of disjoint open sets in 𝐶 whose union is the preimage of 𝑈, such that each set 𝑢𝑆 is homeomorphic under 𝐹 to 𝑈. (Contributed by Mario Carneiro, 13-Feb-2015.)
𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})       (𝐶𝑉 → (𝑇 ∈ (𝑆𝑈) ↔ (𝑈𝐽 ∧ (𝑇𝐶𝑇 ≠ ∅) ∧ ( 𝑇 = (𝐹𝑈) ∧ ∀𝑢𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈)))))))
 
Theoremcvmsss 33208* An even covering is a subset of the topology of the domain (i.e. a collection of open sets). (Contributed by Mario Carneiro, 11-Feb-2015.)
𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})       (𝑇 ∈ (𝑆𝑈) → 𝑇𝐶)
 
Theoremcvmsn0 33209* An even covering is nonempty. (Contributed by Mario Carneiro, 11-Feb-2015.)
𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})       (𝑇 ∈ (𝑆𝑈) → 𝑇 ≠ ∅)
 
Theoremcvmsuni 33210* An even covering of 𝑈 has union equal to the preimage of 𝑈 by 𝐹. (Contributed by Mario Carneiro, 11-Feb-2015.)
𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})       (𝑇 ∈ (𝑆𝑈) → 𝑇 = (𝐹𝑈))
 
Theoremcvmsdisj 33211* An even covering of 𝑈 is a disjoint union. (Contributed by Mario Carneiro, 13-Feb-2015.)
𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})       ((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇𝐵𝑇) → (𝐴 = 𝐵 ∨ (𝐴𝐵) = ∅))
 
Theoremcvmshmeo 33212* Every element of an even covering of 𝑈 is homeomorphic to 𝑈 via 𝐹. (Contributed by Mario Carneiro, 13-Feb-2015.)
𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})       ((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝐹𝐴) ∈ ((𝐶t 𝐴)Homeo(𝐽t 𝑈)))
 
Theoremcvmsf1o 33213* 𝐹, localized to an element of an even covering of 𝑈, is a bijection. (Contributed by Mario Carneiro, 14-Feb-2015.)
𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})       ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝐹𝐴):𝐴1-1-onto𝑈)
 
Theoremcvmscld 33214* The sets of an even covering are clopen in the subspace topology on 𝑇. (Contributed by Mario Carneiro, 14-Feb-2015.)
𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})       ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝐴 ∈ (Clsd‘(𝐶t (𝐹𝑈))))
 
Theoremcvmsss2 33215* An open subset of an evenly covered set is evenly covered. (Contributed by Mario Carneiro, 7-Jul-2015.)
𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})       ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉𝐽𝑉𝑈) → ((𝑆𝑈) ≠ ∅ → (𝑆𝑉) ≠ ∅))
 
Theoremcvmcov2 33216* The covering map property can be restricted to an open subset. (Contributed by Mario Carneiro, 7-Jul-2015.)
𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})       ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈𝐽𝑃𝑈) → ∃𝑥 ∈ 𝒫 𝑈(𝑃𝑥 ∧ (𝑆𝑥) ≠ ∅))
 
Theoremcvmseu 33217* Every element in 𝑇 is a member of a unique element of 𝑇. (Contributed by Mario Carneiro, 14-Feb-2015.)
𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})    &   𝐵 = 𝐶       ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → ∃!𝑥𝑇 𝐴𝑥)
 
Theoremcvmsiota 33218* Identify the unique element of 𝑇 containing 𝐴. (Contributed by Mario Carneiro, 14-Feb-2015.)
𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})    &   𝐵 = 𝐶    &   𝑊 = (𝑥𝑇 𝐴𝑥)       ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → (𝑊𝑇𝐴𝑊))
 
Theoremcvmopnlem 33219* Lemma for cvmopn 33221. (Contributed by Mario Carneiro, 7-May-2015.)
𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})    &   𝐵 = 𝐶       ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) → (𝐹𝐴) ∈ 𝐽)
 
Theoremcvmfolem 33220* Lemma for cvmfo 33241. (Contributed by Mario Carneiro, 13-Feb-2015.)
𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})    &   𝐵 = 𝐶    &   𝑋 = 𝐽       (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹:𝐵onto𝑋)
 
Theoremcvmopn 33221 A covering map is an open map. (Contributed by Mario Carneiro, 7-May-2015.)
((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) → (𝐹𝐴) ∈ 𝐽)
 
Theoremcvmliftmolem1 33222* Lemma for cvmliftmo 33225. (Contributed by Mario Carneiro, 10-Mar-2015.)
𝐵 = 𝐶    &   𝑌 = 𝐾    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐾 ∈ Conn)    &   (𝜑𝐾 ∈ 𝑛-Locally Conn)    &   (𝜑𝑂𝑌)    &   (𝜑𝑀 ∈ (𝐾 Cn 𝐶))    &   (𝜑𝑁 ∈ (𝐾 Cn 𝐶))    &   (𝜑 → (𝐹𝑀) = (𝐹𝑁))    &   (𝜑 → (𝑀𝑂) = (𝑁𝑂))    &   𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})    &   ((𝜑𝜓) → 𝑇 ∈ (𝑆𝑈))    &   ((𝜑𝜓) → 𝑊𝑇)    &   ((𝜑𝜓) → 𝐼 ⊆ (𝑀𝑊))    &   ((𝜑𝜓) → (𝐾t 𝐼) ∈ Conn)    &   ((𝜑𝜓) → 𝑋𝐼)    &   ((𝜑𝜓) → 𝑄𝐼)    &   ((𝜑𝜓) → 𝑅𝐼)    &   ((𝜑𝜓) → (𝐹‘(𝑀𝑋)) ∈ 𝑈)       ((𝜑𝜓) → (𝑄 ∈ dom (𝑀𝑁) → 𝑅 ∈ dom (𝑀𝑁)))
 
Theoremcvmliftmolem2 33223* Lemma for cvmliftmo 33225. (Contributed by Mario Carneiro, 10-Mar-2015.)
𝐵 = 𝐶    &   𝑌 = 𝐾    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐾 ∈ Conn)    &   (𝜑𝐾 ∈ 𝑛-Locally Conn)    &   (𝜑𝑂𝑌)    &   (𝜑𝑀 ∈ (𝐾 Cn 𝐶))    &   (𝜑𝑁 ∈ (𝐾 Cn 𝐶))    &   (𝜑 → (𝐹𝑀) = (𝐹𝑁))    &   (𝜑 → (𝑀𝑂) = (𝑁𝑂))    &   𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})       (𝜑𝑀 = 𝑁)
 
Theoremcvmliftmoi 33224 A lift of a continuous function from a connected and locally connected space over a covering map is unique when it exists. (Contributed by Mario Carneiro, 10-Mar-2015.)
𝐵 = 𝐶    &   𝑌 = 𝐾    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐾 ∈ Conn)    &   (𝜑𝐾 ∈ 𝑛-Locally Conn)    &   (𝜑𝑂𝑌)    &   (𝜑𝑀 ∈ (𝐾 Cn 𝐶))    &   (𝜑𝑁 ∈ (𝐾 Cn 𝐶))    &   (𝜑 → (𝐹𝑀) = (𝐹𝑁))    &   (𝜑 → (𝑀𝑂) = (𝑁𝑂))       (𝜑𝑀 = 𝑁)
 
Theoremcvmliftmo 33225* A lift of a continuous function from a connected and locally connected space over a covering map is unique when it exists. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by NM, 17-Jun-2017.)
𝐵 = 𝐶    &   𝑌 = 𝐾    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐾 ∈ Conn)    &   (𝜑𝐾 ∈ 𝑛-Locally Conn)    &   (𝜑𝑂𝑌)    &   (𝜑𝐺 ∈ (𝐾 Cn 𝐽))    &   (𝜑𝑃𝐵)    &   (𝜑 → (𝐹𝑃) = (𝐺𝑂))       (𝜑 → ∃*𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃))
 
Theoremcvmliftlem1 33226* Lemma for cvmlift 33240. In cvmliftlem15 33239, we picked an 𝑁 large enough so that the sections (𝐺 “ [(𝑘 − 1) / 𝑁, 𝑘 / 𝑁]) are all contained in an even covering, and the function 𝑇 enumerates these even coverings. So 1st ‘(𝑇𝑀) is a neighborhood of (𝐺 “ [(𝑀 − 1) / 𝑁, 𝑀 / 𝑁]), and 2nd ‘(𝑇𝑀) is an even covering of 1st ‘(𝑇𝑀), which is to say a disjoint union of open sets in 𝐶 whose image is 1st ‘(𝑇𝑀). (Contributed by Mario Carneiro, 14-Feb-2015.)
𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})    &   𝐵 = 𝐶    &   𝑋 = 𝐽    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐺 ∈ (II Cn 𝐽))    &   (𝜑𝑃𝐵)    &   (𝜑 → (𝐹𝑃) = (𝐺‘0))    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))    &   (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))    &   𝐿 = (topGen‘ran (,))    &   ((𝜑𝜓) → 𝑀 ∈ (1...𝑁))       ((𝜑𝜓) → (2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))))
 
Theoremcvmliftlem2 33227* Lemma for cvmlift 33240. 𝑊 = [(𝑘 − 1) / 𝑁, 𝑘 / 𝑁] is a subset of [0, 1] for each 𝑀 ∈ (1...𝑁). (Contributed by Mario Carneiro, 16-Feb-2015.)
𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})    &   𝐵 = 𝐶    &   𝑋 = 𝐽    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐺 ∈ (II Cn 𝐽))    &   (𝜑𝑃𝐵)    &   (𝜑 → (𝐹𝑃) = (𝐺‘0))    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))    &   (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))    &   𝐿 = (topGen‘ran (,))    &   ((𝜑𝜓) → 𝑀 ∈ (1...𝑁))    &   𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))       ((𝜑𝜓) → 𝑊 ⊆ (0[,]1))
 
Theoremcvmliftlem3 33228* Lemma for cvmlift 33240. Since 1st ‘(𝑇𝑀) is a neighborhood of (𝐺𝑊), every element 𝐴𝑊 satisfies (𝐺𝐴) ∈ (1st ‘(𝑇𝑀)). (Contributed by Mario Carneiro, 16-Feb-2015.)
𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})    &   𝐵 = 𝐶    &   𝑋 = 𝐽    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐺 ∈ (II Cn 𝐽))    &   (𝜑𝑃𝐵)    &   (𝜑 → (𝐹𝑃) = (𝐺‘0))    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))    &   (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))    &   𝐿 = (topGen‘ran (,))    &   ((𝜑𝜓) → 𝑀 ∈ (1...𝑁))    &   𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))    &   ((𝜑𝜓) → 𝐴𝑊)       ((𝜑𝜓) → (𝐺𝐴) ∈ (1st ‘(𝑇𝑀)))
 
Theoremcvmliftlem4 33229* Lemma for cvmlift 33240. The function 𝑄 will be our lifted path, defined piecewise on each section [(𝑀 − 1) / 𝑁, 𝑀 / 𝑁] for 𝑀 ∈ (1...𝑁). For 𝑀 = 0, it is a "seed" value which makes the rest of the recursion work, a singleton function mapping 0 to 𝑃. (Contributed by Mario Carneiro, 15-Feb-2015.)
𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})    &   𝐵 = 𝐶    &   𝑋 = 𝐽    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐺 ∈ (II Cn 𝐽))    &   (𝜑𝑃𝐵)    &   (𝜑 → (𝐹𝑃) = (𝐺‘0))    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))    &   (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))    &   𝐿 = (topGen‘ran (,))    &   𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))       (𝑄‘0) = {⟨0, 𝑃⟩}
 
Theoremcvmliftlem5 33230* Lemma for cvmlift 33240. Definition of 𝑄 at a successor. This is a function defined on 𝑊 as (𝑇𝐼) ∘ 𝐺 where 𝐼 is the unique covering set of 2nd ‘(𝑇𝑀) that contains 𝑄(𝑀 − 1) evaluated at the last defined point, namely (𝑀 − 1) / 𝑁 (note that for 𝑀 = 1 this is using the seed value 𝑄(0)(0) = 𝑃). (Contributed by Mario Carneiro, 15-Feb-2015.)
𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})    &   𝐵 = 𝐶    &   𝑋 = 𝐽    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐺 ∈ (II Cn 𝐽))    &   (𝜑𝑃𝐵)    &   (𝜑 → (𝐹𝑃) = (𝐺‘0))    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))    &   (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))    &   𝐿 = (topGen‘ran (,))    &   𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))    &   𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))       ((𝜑𝑀 ∈ ℕ) → (𝑄𝑀) = (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
 
Theoremcvmliftlem6 33231* Lemma for cvmlift 33240. Induction step for cvmliftlem7 33232. Assuming that 𝑄(𝑀 − 1) is defined at (𝑀 − 1) / 𝑁 and is a preimage of 𝐺((𝑀 − 1) / 𝑁), the next segment 𝑄(𝑀) is also defined and is a function on 𝑊 which is a lift 𝐺 for this segment. This follows explicitly from the definition 𝑄(𝑀) = (𝐹𝐼) ∘ 𝐺 since 𝐺 is in 1st ‘(𝐹𝑀) for the entire interval so that (𝐹𝐼) maps this into 𝐼 and 𝐹𝑄 maps back to 𝐺. (Contributed by Mario Carneiro, 16-Feb-2015.)
𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})    &   𝐵 = 𝐶    &   𝑋 = 𝐽    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐺 ∈ (II Cn 𝐽))    &   (𝜑𝑃𝐵)    &   (𝜑 → (𝐹𝑃) = (𝐺‘0))    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))    &   (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))    &   𝐿 = (topGen‘ran (,))    &   𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))    &   𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))    &   ((𝜑𝜓) → 𝑀 ∈ (1...𝑁))    &   ((𝜑𝜓) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))       ((𝜑𝜓) → ((𝑄𝑀):𝑊𝐵 ∧ (𝐹 ∘ (𝑄𝑀)) = (𝐺𝑊)))
 
Theoremcvmliftlem7 33232* Lemma for cvmlift 33240. Prove by induction that every 𝑄 function is well-defined (we can immediately follow this theorem with cvmliftlem6 33231 to show functionality and lifting of 𝑄). (Contributed by Mario Carneiro, 14-Feb-2015.)
𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})    &   𝐵 = 𝐶    &   𝑋 = 𝐽    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐺 ∈ (II Cn 𝐽))    &   (𝜑𝑃𝐵)    &   (𝜑 → (𝐹𝑃) = (𝐺‘0))    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))    &   (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))    &   𝐿 = (topGen‘ran (,))    &   𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))    &   𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))       ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))
 
Theoremcvmliftlem8 33233* Lemma for cvmlift 33240. The functions 𝑄 are continuous functions because they are defined as (𝐹𝐼) ∘ 𝐺 where 𝐺 is continuous and (𝐹𝐼) is a homeomorphism. (Contributed by Mario Carneiro, 16-Feb-2015.)
𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})    &   𝐵 = 𝐶    &   𝑋 = 𝐽    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐺 ∈ (II Cn 𝐽))    &   (𝜑𝑃𝐵)    &   (𝜑 → (𝐹𝑃) = (𝐺‘0))    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))    &   (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))    &   𝐿 = (topGen‘ran (,))    &   𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))    &   𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))       ((𝜑𝑀 ∈ (1...𝑁)) → (𝑄𝑀) ∈ ((𝐿t 𝑊) Cn 𝐶))
 
Theoremcvmliftlem9 33234* Lemma for cvmlift 33240. The 𝑄(𝑀) functions are defined on almost disjoint intervals, but they overlap at the edges. Here we show that at these points the 𝑄 functions agree on their common domain. (Contributed by Mario Carneiro, 14-Feb-2015.)
𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})    &   𝐵 = 𝐶    &   𝑋 = 𝐽    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐺 ∈ (II Cn 𝐽))    &   (𝜑𝑃𝐵)    &   (𝜑 → (𝐹𝑃) = (𝐺‘0))    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))    &   (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))    &   𝐿 = (topGen‘ran (,))    &   𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))       ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑄𝑀)‘((𝑀 − 1) / 𝑁)) = ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)))
 
Theoremcvmliftlem10 33235* Lemma for cvmlift 33240. The function 𝐾 is going to be our complete lifted path, formed by unioning together all the 𝑄 functions (each of which is defined on one segment [(𝑀 − 1) / 𝑁, 𝑀 / 𝑁] of the interval). Here we prove by induction that 𝐾 is a continuous function and a lift of 𝐺 by applying cvmliftlem6 33231, cvmliftlem7 33232 (to show it is a function and a lift), cvmliftlem8 33233 (to show it is continuous), and cvmliftlem9 33234 (to show that different 𝑄 functions agree on the intersection of their domains, so that the pasting lemma paste 22426 gives that 𝐾 is well-defined and continuous). (Contributed by Mario Carneiro, 14-Feb-2015.)
𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})    &   𝐵 = 𝐶    &   𝑋 = 𝐽    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐺 ∈ (II Cn 𝐽))    &   (𝜑𝑃𝐵)    &   (𝜑 → (𝐹𝑃) = (𝐺‘0))    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))    &   (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))    &   𝐿 = (topGen‘ran (,))    &   𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))    &   𝐾 = 𝑘 ∈ (1...𝑁)(𝑄𝑘)    &   (𝜒 ↔ ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑁)) ∧ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁))))))       (𝜑 → (𝐾 ∈ ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶) ∧ (𝐹𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁)))))
 
Theoremcvmliftlem11 33236* Lemma for cvmlift 33240. (Contributed by Mario Carneiro, 14-Feb-2015.)
𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})    &   𝐵 = 𝐶    &   𝑋 = 𝐽    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐺 ∈ (II Cn 𝐽))    &   (𝜑𝑃𝐵)    &   (𝜑 → (𝐹𝑃) = (𝐺‘0))    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))    &   (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))    &   𝐿 = (topGen‘ran (,))    &   𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))    &   𝐾 = 𝑘 ∈ (1...𝑁)(𝑄𝑘)       (𝜑 → (𝐾 ∈ (II Cn 𝐶) ∧ (𝐹𝐾) = 𝐺))
 
Theoremcvmliftlem13 33237* Lemma for cvmlift 33240. The initial value of 𝐾 is 𝑃 because 𝑄(1) is a subset of 𝐾 which takes value 𝑃 at 0. (Contributed by Mario Carneiro, 16-Feb-2015.)
𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})    &   𝐵 = 𝐶    &   𝑋 = 𝐽    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐺 ∈ (II Cn 𝐽))    &   (𝜑𝑃𝐵)    &   (𝜑 → (𝐹𝑃) = (𝐺‘0))    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))    &   (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))    &   𝐿 = (topGen‘ran (,))    &   𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))    &   𝐾 = 𝑘 ∈ (1...𝑁)(𝑄𝑘)       (𝜑 → (𝐾‘0) = 𝑃)
 
Theoremcvmliftlem14 33238* Lemma for cvmlift 33240. Putting the results of cvmliftlem11 33236, cvmliftlem13 33237 and cvmliftmo 33225 together, we have that 𝐾 is a continuous function, satisfies 𝐹𝐾 = 𝐺 and 𝐾(0) = 𝑃, and is equal to any other function which also has these properties, so it follows that 𝐾 is the unique lift of 𝐺. (Contributed by Mario Carneiro, 16-Feb-2015.)
𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})    &   𝐵 = 𝐶    &   𝑋 = 𝐽    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐺 ∈ (II Cn 𝐽))    &   (𝜑𝑃𝐵)    &   (𝜑 → (𝐹𝑃) = (𝐺‘0))    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))    &   (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))    &   𝐿 = (topGen‘ran (,))    &   𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))    &   𝐾 = 𝑘 ∈ (1...𝑁)(𝑄𝑘)       (𝜑 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
 
Theoremcvmliftlem15 33239* Lemma for cvmlift 33240. Discharge the assumptions of cvmliftlem14 33238. The set of all open subsets 𝑢 of the unit interval such that 𝐺𝑢 is contained in an even covering of some open set in 𝐽 is a cover of II by the definition of a covering map, so by the Lebesgue number lemma lebnumii 24110, there is a subdivision of the closed unit interval into 𝑁 equal parts such that each part is entirely contained within one such open set of 𝐽. Then using finite choice ac6sfi 9019 to uniformly select one such subset and one even covering of each subset, we are ready to finish the proof with cvmliftlem14 33238. (Contributed by Mario Carneiro, 14-Feb-2015.)
𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})    &   𝐵 = 𝐶    &   𝑋 = 𝐽    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐺 ∈ (II Cn 𝐽))    &   (𝜑𝑃𝐵)    &   (𝜑 → (𝐹𝑃) = (𝐺‘0))       (𝜑 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
 
Theoremcvmlift 33240* One of the important properties of covering maps is that any path 𝐺 in the base space "lifts" to a path 𝑓 in the covering space such that 𝐹𝑓 = 𝐺, and given a starting point 𝑃 in the covering space this lift is unique. The proof is contained in cvmliftlem1 33226 thru cvmliftlem15 33239. (Contributed by Mario Carneiro, 16-Feb-2015.)
𝐵 = 𝐶       (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽)) ∧ (𝑃𝐵 ∧ (𝐹𝑃) = (𝐺‘0))) → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
 
Theoremcvmfo 33241 A covering map is an onto function. (Contributed by Mario Carneiro, 13-Feb-2015.)
𝐵 = 𝐶    &   𝑋 = 𝐽       (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹:𝐵onto𝑋)
 
Theoremcvmliftiota 33242* Write out a function 𝐻 that is the unique lift of 𝐹. (Contributed by Mario Carneiro, 16-Feb-2015.)
𝐵 = 𝐶    &   𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐺 ∈ (II Cn 𝐽))    &   (𝜑𝑃𝐵)    &   (𝜑 → (𝐹𝑃) = (𝐺‘0))       (𝜑 → (𝐻 ∈ (II Cn 𝐶) ∧ (𝐹𝐻) = 𝐺 ∧ (𝐻‘0) = 𝑃))
 
Theoremcvmlift2lem1 33243* Lemma for cvmlift2 33257. (Contributed by Mario Carneiro, 1-Jun-2015.)
(∀𝑦 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑦})((𝑢 × {𝑥}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → (((0[,]1) × {𝑥}) ⊆ 𝑀 → ((0[,]1) × {𝑡}) ⊆ 𝑀))
 
Theoremcvmlift2lem9a 33244* Lemma for cvmlift2 33257 and cvmlift3 33269. (Contributed by Mario Carneiro, 9-Jul-2015.)
𝐵 = 𝐶    &   𝑌 = 𝐾    &   𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐻:𝑌𝐵)    &   (𝜑 → (𝐹𝐻) ∈ (𝐾 Cn 𝐽))    &   (𝜑𝐾 ∈ Top)    &   (𝜑𝑋𝑌)    &   (𝜑𝑇 ∈ (𝑆𝐴))    &   (𝜑 → (𝑊𝑇 ∧ (𝐻𝑋) ∈ 𝑊))    &   (𝜑𝑀𝑌)    &   (𝜑 → (𝐻𝑀) ⊆ 𝑊)       (𝜑 → (𝐻𝑀) ∈ ((𝐾t 𝑀) Cn 𝐶))
 
Theoremcvmlift2lem2 33245* Lemma for cvmlift2 33257. (Contributed by Mario Carneiro, 7-May-2015.)
𝐵 = 𝐶    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))    &   (𝜑𝑃𝐵)    &   (𝜑 → (𝐹𝑃) = (0𝐺0))    &   𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))       (𝜑 → (𝐻 ∈ (II Cn 𝐶) ∧ (𝐹𝐻) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝐻‘0) = 𝑃))
 
Theoremcvmlift2lem3 33246* Lemma for cvmlift2 33257. (Contributed by Mario Carneiro, 7-May-2015.)
𝐵 = 𝐶    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))    &   (𝜑𝑃𝐵)    &   (𝜑 → (𝐹𝑃) = (0𝐺0))    &   𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))    &   𝐾 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))       ((𝜑𝑋 ∈ (0[,]1)) → (𝐾 ∈ (II Cn 𝐶) ∧ (𝐹𝐾) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝐾‘0) = (𝐻𝑋)))
 
Theoremcvmlift2lem4 33247* Lemma for cvmlift2 33257. (Contributed by Mario Carneiro, 1-Jun-2015.)
𝐵 = 𝐶    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))    &   (𝜑𝑃𝐵)    &   (𝜑 → (𝐹𝑃) = (0𝐺0))    &   𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))    &   𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))       ((𝑋 ∈ (0[,]1) ∧ 𝑌 ∈ (0[,]1)) → (𝑋𝐾𝑌) = ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))‘𝑌))
 
Theoremcvmlift2lem5 33248* Lemma for cvmlift2 33257. (Contributed by Mario Carneiro, 7-May-2015.)
𝐵 = 𝐶    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))    &   (𝜑𝑃𝐵)    &   (𝜑 → (𝐹𝑃) = (0𝐺0))    &   𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))    &   𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))       (𝜑𝐾:((0[,]1) × (0[,]1))⟶𝐵)
 
Theoremcvmlift2lem6 33249* Lemma for cvmlift2 33257. (Contributed by Mario Carneiro, 7-May-2015.)
𝐵 = 𝐶    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))    &   (𝜑𝑃𝐵)    &   (𝜑 → (𝐹𝑃) = (0𝐺0))    &   𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))    &   𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))       ((𝜑𝑋 ∈ (0[,]1)) → (𝐾 ↾ ({𝑋} × (0[,]1))) ∈ (((II ×t II) ↾t ({𝑋} × (0[,]1))) Cn 𝐶))
 
Theoremcvmlift2lem7 33250* Lemma for cvmlift2 33257. (Contributed by Mario Carneiro, 7-May-2015.)
𝐵 = 𝐶    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))    &   (𝜑𝑃𝐵)    &   (𝜑 → (𝐹𝑃) = (0𝐺0))    &   𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))    &   𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))       (𝜑 → (𝐹𝐾) = 𝐺)
 
Theoremcvmlift2lem8 33251* Lemma for cvmlift2 33257. (Contributed by Mario Carneiro, 9-Mar-2015.)
𝐵 = 𝐶    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))    &   (𝜑𝑃𝐵)    &   (𝜑 → (𝐹𝑃) = (0𝐺0))    &   𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))    &   𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))       ((𝜑𝑋 ∈ (0[,]1)) → (𝑋𝐾0) = (𝐻𝑋))
 
Theoremcvmlift2lem9 33252* Lemma for cvmlift2 33257. (Contributed by Mario Carneiro, 1-Jun-2015.)
𝐵 = 𝐶    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))    &   (𝜑𝑃𝐵)    &   (𝜑 → (𝐹𝑃) = (0𝐺0))    &   𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))    &   𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))    &   𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})    &   (𝜑 → (𝑋𝐺𝑌) ∈ 𝑀)    &   (𝜑𝑇 ∈ (𝑆𝑀))    &   (𝜑𝑈 ∈ II)    &   (𝜑𝑉 ∈ II)    &   (𝜑 → (II ↾t 𝑈) ∈ Conn)    &   (𝜑 → (II ↾t 𝑉) ∈ Conn)    &   (𝜑𝑋𝑈)    &   (𝜑𝑌𝑉)    &   (𝜑 → (𝑈 × 𝑉) ⊆ (𝐺𝑀))    &   (𝜑𝑍𝑉)    &   (𝜑 → (𝐾 ↾ (𝑈 × {𝑍})) ∈ (((II ×t II) ↾t (𝑈 × {𝑍})) Cn 𝐶))    &   𝑊 = (𝑏𝑇 (𝑋𝐾𝑌) ∈ 𝑏)       (𝜑 → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶))
 
Theoremcvmlift2lem10 33253* Lemma for cvmlift2 33257. (Contributed by Mario Carneiro, 1-Jun-2015.)
𝐵 = 𝐶    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))    &   (𝜑𝑃𝐵)    &   (𝜑 → (𝐹𝑃) = (0𝐺0))    &   𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))    &   𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))    &   𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})    &   (𝜑𝑋 ∈ (0[,]1))    &   (𝜑𝑌 ∈ (0[,]1))       (𝜑 → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))))
 
Theoremcvmlift2lem11 33254* Lemma for cvmlift2 33257. (Contributed by Mario Carneiro, 1-Jun-2015.)
𝐵 = 𝐶    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))    &   (𝜑𝑃𝐵)    &   (𝜑 → (𝐹𝑃) = (0𝐺0))    &   𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))    &   𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))    &   𝑀 = {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)}    &   (𝜑𝑈 ∈ II)    &   (𝜑𝑉 ∈ II)    &   (𝜑𝑌𝑉)    &   (𝜑𝑍𝑉)    &   (𝜑 → (∃𝑤𝑉 (𝐾 ↾ (𝑈 × {𝑤})) ∈ (((II ×t II) ↾t (𝑈 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶)))       (𝜑 → ((𝑈 × {𝑌}) ⊆ 𝑀 → (𝑈 × {𝑍}) ⊆ 𝑀))
 
Theoremcvmlift2lem12 33255* Lemma for cvmlift2 33257. (Contributed by Mario Carneiro, 1-Jun-2015.)
𝐵 = 𝐶    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))    &   (𝜑𝑃𝐵)    &   (𝜑 → (𝐹𝑃) = (0𝐺0))    &   𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))    &   𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))    &   𝑀 = {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)}    &   𝐴 = {𝑎 ∈ (0[,]1) ∣ ((0[,]1) × {𝑎}) ⊆ 𝑀}    &   𝑆 = {⟨𝑟, 𝑡⟩ ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))}       (𝜑𝐾 ∈ ((II ×t II) Cn 𝐶))
 
Theoremcvmlift2lem13 33256* Lemma for cvmlift2 33257. (Contributed by Mario Carneiro, 7-May-2015.)
𝐵 = 𝐶    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))    &   (𝜑𝑃𝐵)    &   (𝜑 → (𝐹𝑃) = (0𝐺0))    &   𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))    &   𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))       (𝜑 → ∃!𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃))
 
Theoremcvmlift2 33257* A two-dimensional version of cvmlift 33240. There is a unique lift of functions on the unit square II ×t II which commutes with the covering map. (Contributed by Mario Carneiro, 1-Jun-2015.)
𝐵 = 𝐶    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))    &   (𝜑𝑃𝐵)    &   (𝜑 → (𝐹𝑃) = (0𝐺0))       (𝜑 → ∃!𝑓 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (0𝑓0) = 𝑃))
 
Theoremcvmliftphtlem 33258* Lemma for cvmliftpht 33259. (Contributed by Mario Carneiro, 6-Jul-2015.)
𝐵 = 𝐶    &   𝑀 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))    &   𝑁 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃))    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝑃𝐵)    &   (𝜑 → (𝐹𝑃) = (𝐺‘0))    &   (𝜑𝐺 ∈ (II Cn 𝐽))    &   (𝜑𝐻 ∈ (II Cn 𝐽))    &   (𝜑𝐾 ∈ (𝐺(PHtpy‘𝐽)𝐻))    &   (𝜑𝐴 ∈ ((II ×t II) Cn 𝐶))    &   (𝜑 → (𝐹𝐴) = 𝐾)    &   (𝜑 → (0𝐴0) = 𝑃)       (𝜑𝐴 ∈ (𝑀(PHtpy‘𝐶)𝑁))
 
Theoremcvmliftpht 33259* If 𝐺 and 𝐻 are path-homotopic, then their lifts 𝑀 and 𝑁 are also path-homotopic. (Contributed by Mario Carneiro, 6-Jul-2015.)
𝐵 = 𝐶    &   𝑀 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))    &   𝑁 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃))    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝑃𝐵)    &   (𝜑 → (𝐹𝑃) = (𝐺‘0))    &   (𝜑𝐺( ≃ph𝐽)𝐻)       (𝜑𝑀( ≃ph𝐶)𝑁)
 
Theoremcvmlift3lem1 33260* Lemma for cvmlift3 33269. (Contributed by Mario Carneiro, 6-Jul-2015.)
𝐵 = 𝐶    &   𝑌 = 𝐾    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐾 ∈ SConn)    &   (𝜑𝐾 ∈ 𝑛-Locally PConn)    &   (𝜑𝑂𝑌)    &   (𝜑𝐺 ∈ (𝐾 Cn 𝐽))    &   (𝜑𝑃𝐵)    &   (𝜑 → (𝐹𝑃) = (𝐺𝑂))    &   (𝜑𝑀 ∈ (II Cn 𝐾))    &   (𝜑 → (𝑀‘0) = 𝑂)    &   (𝜑𝑁 ∈ (II Cn 𝐾))    &   (𝜑 → (𝑁‘0) = 𝑂)    &   (𝜑 → (𝑀‘1) = (𝑁‘1))       (𝜑 → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑀) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑁) ∧ (𝑔‘0) = 𝑃))‘1))
 
Theoremcvmlift3lem2 33261* Lemma for cvmlift2 33257. (Contributed by Mario Carneiro, 6-Jul-2015.)
𝐵 = 𝐶    &   𝑌 = 𝐾    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐾 ∈ SConn)    &   (𝜑𝐾 ∈ 𝑛-Locally PConn)    &   (𝜑𝑂𝑌)    &   (𝜑𝐺 ∈ (𝐾 Cn 𝐽))    &   (𝜑𝑃𝐵)    &   (𝜑 → (𝐹𝑃) = (𝐺𝑂))       ((𝜑𝑋𝑌) → ∃!𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))
 
Theoremcvmlift3lem3 33262* Lemma for cvmlift2 33257. (Contributed by Mario Carneiro, 6-Jul-2015.)
𝐵 = 𝐶    &   𝑌 = 𝐾    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐾 ∈ SConn)    &   (𝜑𝐾 ∈ 𝑛-Locally PConn)    &   (𝜑𝑂𝑌)    &   (𝜑𝐺 ∈ (𝐾 Cn 𝐽))    &   (𝜑𝑃𝐵)    &   (𝜑 → (𝐹𝑃) = (𝐺𝑂))    &   𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))       (𝜑𝐻:𝑌𝐵)
 
Theoremcvmlift3lem4 33263* Lemma for cvmlift2 33257. (Contributed by Mario Carneiro, 6-Jul-2015.)
𝐵 = 𝐶    &   𝑌 = 𝐾    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐾 ∈ SConn)    &   (𝜑𝐾 ∈ 𝑛-Locally PConn)    &   (𝜑𝑂𝑌)    &   (𝜑𝐺 ∈ (𝐾 Cn 𝐽))    &   (𝜑𝑃𝐵)    &   (𝜑 → (𝐹𝑃) = (𝐺𝑂))    &   𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))       ((𝜑𝑋𝑌) → ((𝐻𝑋) = 𝐴 ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝐴)))
 
Theoremcvmlift3lem5 33264* Lemma for cvmlift2 33257. (Contributed by Mario Carneiro, 6-Jul-2015.)
𝐵 = 𝐶    &   𝑌 = 𝐾    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐾 ∈ SConn)    &   (𝜑𝐾 ∈ 𝑛-Locally PConn)    &   (𝜑𝑂𝑌)    &   (𝜑𝐺 ∈ (𝐾 Cn 𝐽))    &   (𝜑𝑃𝐵)    &   (𝜑 → (𝐹𝑃) = (𝐺𝑂))    &   𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))       (𝜑 → (𝐹𝐻) = 𝐺)
 
Theoremcvmlift3lem6 33265* Lemma for cvmlift3 33269. (Contributed by Mario Carneiro, 9-Jul-2015.)
𝐵 = 𝐶    &   𝑌 = 𝐾    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐾 ∈ SConn)    &   (𝜑𝐾 ∈ 𝑛-Locally PConn)    &   (𝜑𝑂𝑌)    &   (𝜑𝐺 ∈ (𝐾 Cn 𝐽))    &   (𝜑𝑃𝐵)    &   (𝜑 → (𝐹𝑃) = (𝐺𝑂))    &   𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))    &   𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})    &   (𝜑 → (𝐺𝑋) ∈ 𝐴)    &   (𝜑𝑇 ∈ (𝑆𝐴))    &   (𝜑𝑀 ⊆ (𝐺𝐴))    &   𝑊 = (𝑏𝑇 (𝐻𝑋) ∈ 𝑏)    &   (𝜑𝑋𝑀)    &   (𝜑𝑍𝑀)    &   (𝜑𝑄 ∈ (II Cn 𝐾))    &   𝑅 = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑄) ∧ (𝑔‘0) = 𝑃))    &   (𝜑 → ((𝑄‘0) = 𝑂 ∧ (𝑄‘1) = 𝑋 ∧ (𝑅‘1) = (𝐻𝑋)))    &   (𝜑𝑁 ∈ (II Cn (𝐾t 𝑀)))    &   (𝜑 → ((𝑁‘0) = 𝑋 ∧ (𝑁‘1) = 𝑍))    &   𝐼 = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑁) ∧ (𝑔‘0) = (𝐻𝑋)))       (𝜑 → (𝐻𝑍) ∈ 𝑊)
 
Theoremcvmlift3lem7 33266* Lemma for cvmlift3 33269. (Contributed by Mario Carneiro, 9-Jul-2015.)
𝐵 = 𝐶    &   𝑌 = 𝐾    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐾 ∈ SConn)    &   (𝜑𝐾 ∈ 𝑛-Locally PConn)    &   (𝜑𝑂𝑌)    &   (𝜑𝐺 ∈ (𝐾 Cn 𝐽))    &   (𝜑𝑃𝐵)    &   (𝜑 → (𝐹𝑃) = (𝐺𝑂))    &   𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))    &   𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})    &   (𝜑 → (𝐺𝑋) ∈ 𝐴)    &   (𝜑𝑇 ∈ (𝑆𝐴))    &   (𝜑𝑀 ⊆ (𝐺𝐴))    &   𝑊 = (𝑏𝑇 (𝐻𝑋) ∈ 𝑏)    &   (𝜑 → (𝐾t 𝑀) ∈ PConn)    &   (𝜑𝑉𝐾)    &   (𝜑𝑉𝑀)    &   (𝜑𝑋𝑉)       (𝜑𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑋))
 
Theoremcvmlift3lem8 33267* Lemma for cvmlift2 33257. (Contributed by Mario Carneiro, 6-Jul-2015.)
𝐵 = 𝐶    &   𝑌 = 𝐾    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐾 ∈ SConn)    &   (𝜑𝐾 ∈ 𝑛-Locally PConn)    &   (𝜑𝑂𝑌)    &   (𝜑𝐺 ∈ (𝐾 Cn 𝐽))    &   (𝜑𝑃𝐵)    &   (𝜑 → (𝐹𝑃) = (𝐺𝑂))    &   𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))    &   𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})       (𝜑𝐻 ∈ (𝐾 Cn 𝐶))
 
Theoremcvmlift3lem9 33268* Lemma for cvmlift2 33257. (Contributed by Mario Carneiro, 7-May-2015.)
𝐵 = 𝐶    &   𝑌 = 𝐾    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐾 ∈ SConn)    &   (𝜑𝐾 ∈ 𝑛-Locally PConn)    &   (𝜑𝑂𝑌)    &   (𝜑𝐺 ∈ (𝐾 Cn 𝐽))    &   (𝜑𝑃𝐵)    &   (𝜑 → (𝐹𝑃) = (𝐺𝑂))    &   𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))    &   𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})       (𝜑 → ∃𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃))
 
Theoremcvmlift3 33269* A general version of cvmlift 33240. If 𝐾 is simply connected and weakly locally path-connected, then there is a unique lift of functions on 𝐾 which commutes with the covering map. (Contributed by Mario Carneiro, 9-Jul-2015.)
𝐵 = 𝐶    &   𝑌 = 𝐾    &   (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))    &   (𝜑𝐾 ∈ SConn)    &   (𝜑𝐾 ∈ 𝑛-Locally PConn)    &   (𝜑𝑂𝑌)    &   (𝜑𝐺 ∈ (𝐾 Cn 𝐽))    &   (𝜑𝑃𝐵)    &   (𝜑 → (𝐹𝑃) = (𝐺𝑂))       (𝜑 → ∃!𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃))
 
20.6.9  Normal numbers
 
Theoremsnmlff 33270* The function 𝐹 from snmlval 33272 is a mapping from positive integers to real numbers in the range [0, 1]. (Contributed by Mario Carneiro, 6-Apr-2015.)
𝐹 = (𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛))       𝐹:ℕ⟶(0[,]1)
 
Theoremsnmlfval 33271* The function 𝐹 from snmlval 33272 maps 𝑁 to the relative density of 𝐵 in the first 𝑁 digits of the digit string of 𝐴 in base 𝑅. (Contributed by Mario Carneiro, 6-Apr-2015.)
𝐹 = (𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛))       (𝑁 ∈ ℕ → (𝐹𝑁) = ((♯‘{𝑘 ∈ (1...𝑁) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑁))
 
Theoremsnmlval 33272* The property "𝐴 is simply normal in base 𝑅". A number is simply normal if each digit 0 ≤ 𝑏 < 𝑅 occurs in the base- 𝑅 digit string of 𝐴 with frequency 1 / 𝑅 (which is consistent with the expectation in an infinite random string of numbers selected from 0...𝑅 − 1). (Contributed by Mario Carneiro, 6-Apr-2015.)
𝑆 = (𝑟 ∈ (ℤ‘2) ↦ {𝑥 ∈ ℝ ∣ ∀𝑏 ∈ (0...(𝑟 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑟𝑘)) mod 𝑟)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑟)})       (𝐴 ∈ (𝑆𝑅) ↔ (𝑅 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ ∧ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)))
 
Theoremsnmlflim 33273* If 𝐴 is simply normal, then the function 𝐹 of relative density of 𝐵 in the digit string converges to 1 / 𝑅, i.e. the set of occurrences of 𝐵 in the digit string has natural density 1 / 𝑅. (Contributed by Mario Carneiro, 6-Apr-2015.)
𝑆 = (𝑟 ∈ (ℤ‘2) ↦ {𝑥 ∈ ℝ ∣ ∀𝑏 ∈ (0...(𝑟 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑟𝑘)) mod 𝑟)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑟)})    &   𝐹 = (𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛))       ((𝐴 ∈ (𝑆𝑅) ∧ 𝐵 ∈ (0...(𝑅 − 1))) → 𝐹 ⇝ (1 / 𝑅))
 
20.6.10  Godel-sets of formulas - part 1
 
Syntaxcgoe 33274 The Godel-set of membership.
class 𝑔
 
Syntaxcgna 33275 The Godel-set for the Sheffer stroke.
class 𝑔
 
Syntaxcgol 33276 The Godel-set of universal quantification. (Note that this is not a wff.)
class 𝑔𝑁𝑈
 
Syntaxcsat 33277 The satisfaction function.
class Sat
 
Syntaxcfmla 33278 The formula set predicate.
class Fmla
 
Syntaxcsate 33279 The -satisfaction function.
class Sat
 
Syntaxcprv 33280 The "proves" relation.
class
 
Definitiondf-goel 33281 Define the Godel-set of membership. Here the arguments 𝑥 = ⟨𝑁, 𝑃 correspond to vN and vP , so (∅∈𝑔1o) actually means v0 v1 , not 0 ∈ 1. (Contributed by Mario Carneiro, 14-Jul-2013.)
𝑔 = (𝑥 ∈ (ω × ω) ↦ ⟨∅, 𝑥⟩)
 
Definitiondf-gona 33282 Define the Godel-set for the Sheffer stroke NAND. Here the arguments 𝑥 = ⟨𝑈, 𝑉 are also Godel-sets corresponding to smaller formulas. (Contributed by Mario Carneiro, 14-Jul-2013.)
𝑔 = (𝑥 ∈ (V × V) ↦ ⟨1o, 𝑥⟩)
 
Definitiondf-goal 33283 Define the Godel-set of universal quantification. Here 𝑁 ∈ ω corresponds to vN , and 𝑈 represents another formula, and this expression is [∀𝑥𝜑] = ∀𝑔𝑁𝑈 where 𝑥 is the 𝑁-th variable, 𝑈 = [𝜑] is the code for 𝜑. Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013.)
𝑔𝑁𝑈 = ⟨2o, ⟨𝑁, 𝑈⟩⟩
 
Definitiondf-sat 33284* Define the satisfaction predicate. This recursive construction builds up a function over wff codes (see satff 33351) and simultaneously defines the set of assignments to all variables from 𝑀 that makes the coded wff true in the model 𝑀, where is interpreted as the binary relation 𝐸 on 𝑀. The interpretation of the statement 𝑆 ∈ (((𝑀 Sat 𝐸)‘𝑛)‘𝑈) is that for the model 𝑀, 𝐸, 𝑆:ω⟶𝑀 is a valuation of the variables (v0 = (𝑆‘∅), v1 = (𝑆‘1o), etc.) and 𝑈 is a code for a wff using ∈ , ⊼ , ∀ that is true under the assignment 𝑆. The function is defined by finite recursion; ((𝑀 Sat 𝐸)‘𝑛) only operates on wffs of depth at most 𝑛 ∈ ω, and ((𝑀 Sat 𝐸)‘ω) = 𝑛 ∈ ω((𝑀 Sat 𝐸)‘𝑛) operates on all wffs. The coding scheme for the wffs is defined so that
  • vi vj is coded as ⟨∅, ⟨𝑖, 𝑗⟩⟩,
  • (𝜑𝜓) is coded as ⟨1o, ⟨𝜑, 𝜓⟩⟩, and
  • vi 𝜑 is coded as ⟨2o, ⟨𝑖, 𝜑⟩⟩.

(Contributed by Mario Carneiro, 14-Jul-2013.)

Sat = (𝑚 ∈ V, 𝑒 ∈ V ↦ (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑚m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑚m ω) ∣ ∀𝑧𝑚 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})), {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑚m ω) ∣ (𝑎𝑖)𝑒(𝑎𝑗)})}) ↾ suc ω))
 
Definitiondf-sate 33285* A simplified version of the satisfaction predicate, using the standard membership relation and eliminating the extra variable 𝑛. (Contributed by Mario Carneiro, 14-Jul-2013.)
Sat = (𝑚 ∈ V, 𝑢 ∈ V ↦ (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢))
 
Definitiondf-fmla 33286 Define the predicate which defines the set of valid Godel formulas. The parameter 𝑛 defines the maximum height of the formulas: the set (Fmla‘∅) is all formulas of the form 𝑥𝑦 (which in our coding scheme is the set ({∅} × (ω × ω)); see df-sat 33284 for the full coding scheme), see fmla0 33323, and each extra level adds to the complexity of the formulas in (Fmla‘𝑛), see fmlasuc 33327. Remark: it is sufficient to have atomic formulas of the form 𝑥𝑦 only, because equations (formulas of the form 𝑥 = 𝑦), which are required as (atomic) formulas, can be introduced as a defined notion in terms of 𝑔, see df-goeq 33385. (Fmla‘ω) = 𝑛 ∈ ω(Fmla‘𝑛) is the set of all valid formulas, see fmla 33322. (Contributed by Mario Carneiro, 14-Jul-2013.)
Fmla = (𝑛 ∈ suc ω ↦ dom ((∅ Sat ∅)‘𝑛))
 
Definitiondf-prv 33287* Define the "proves" relation on a set. A wff is true in a model 𝑀 if for every valuation 𝑠 ∈ (𝑀m ω), the interpretation of the wff using the membership relation on 𝑀 is true. Since is defined in terms of the interpretations making the given formula true, it is not defined on the empty "model" 𝑀 = ∅, since there are no interpretations. In particular, the empty set on the LHS of should not be interpreted as the empty model. Statement prv0 33371 shows that our definition yields ∅⊧𝑈 for all formulas, though of course the formula 𝑥𝑥 = 𝑥 is not satisfied on the empty model. (Contributed by Mario Carneiro, 14-Jul-2013.)
⊧ = {⟨𝑚, 𝑢⟩ ∣ (𝑚 Sat 𝑢) = (𝑚m ω)}
 
Theoremgoel 33288 A "Godel-set of membership". The variables are identified by their indices (which are natural numbers), and the membership vi vj is coded as ⟨∅, ⟨𝑖, 𝑗⟩⟩. (Contributed by AV, 15-Sep-2023.)
((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼𝑔𝐽) = ⟨∅, ⟨𝐼, 𝐽⟩⟩)
 
Theoremgoelel3xp 33289 A "Godel-set of membership" is a member of a doubled Cartesian product. (Contributed by AV, 16-Sep-2023.)
((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼𝑔𝐽) ∈ (ω × (ω × ω)))
 
Theoremgoeleq12bg 33290 Two "Godel-set of membership" codes for two variables are equal iff the two corresponding variables are equal. (Contributed by AV, 8-Oct-2023.)
(((𝑀 ∈ ω ∧ 𝑁 ∈ ω) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω)) → ((𝐼𝑔𝐽) = (𝑀𝑔𝑁) ↔ (𝐼 = 𝑀𝐽 = 𝑁)))
 
Theoremgonafv 33291 The "Godel-set for the Sheffer stroke NAND" for two formulas 𝐴 and 𝐵. (Contributed by AV, 16-Oct-2023.)
((𝐴𝑉𝐵𝑊) → (𝐴𝑔𝐵) = ⟨1o, ⟨𝐴, 𝐵⟩⟩)
 
Theoremgoaleq12d 33292 Equality of the "Godel-set of universal quantification". (Contributed by AV, 18-Sep-2023.)
(𝜑𝑀 = 𝑁)    &   (𝜑𝐴 = 𝐵)       (𝜑 → ∀𝑔𝑀𝐴 = ∀𝑔𝑁𝐵)
 
Theoremgonanegoal 33293 The Godel-set for the Sheffer stroke NAND is not equal to the Godel-set of universal quantification. (Contributed by AV, 21-Oct-2023.)
(𝑎𝑔𝑏) ≠ ∀𝑔𝑖𝑢
 
Theoremsatf 33294* The satisfaction predicate as function over wff codes in the model 𝑀 and the binary relation 𝐸 on 𝑀. (Contributed by AV, 14-Sep-2023.)
((𝑀𝑉𝐸𝑊) → (𝑀 Sat 𝐸) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})), {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})}) ↾ suc ω))
 
Theoremsatfsucom 33295* The satisfaction predicate for wff codes in the model 𝑀 and the binary relation 𝐸 on 𝑀 at an element of the successor of ω. (Contributed by AV, 22-Sep-2023.)
((𝑀𝑉𝐸𝑊𝑁 ∈ suc ω) → ((𝑀 Sat 𝐸)‘𝑁) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})), {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})})‘𝑁))
 
Theoremsatfn 33296 The satisfaction predicate for wff codes in the model 𝑀 and the binary relation 𝐸 on 𝑀 is a function over suc ω. (Contributed by AV, 6-Oct-2023.)
((𝑀𝑉𝐸𝑊) → (𝑀 Sat 𝐸) Fn suc ω)
 
Theoremsatom 33297* The satisfaction predicate for wff codes in the model 𝑀 and the binary relation 𝐸 on 𝑀 at omega (ω). (Contributed by AV, 6-Oct-2023.)
((𝑀𝑉𝐸𝑊) → ((𝑀 Sat 𝐸)‘ω) = 𝑛 ∈ ω ((𝑀 Sat 𝐸)‘𝑛))
 
Theoremsatfvsucom 33298* The satisfaction predicate as function over wff codes at a successor of ω. (Contributed by AV, 22-Sep-2023.)
𝑆 = (𝑀 Sat 𝐸)       ((𝑀𝑉𝐸𝑊𝑁 ∈ suc ω) → (𝑆𝑁) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})), {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})})‘𝑁))
 
Theoremsatfv0 33299* The value of the satisfaction predicate as function over wff codes at . (Contributed by AV, 8-Oct-2023.)
𝑆 = (𝑀 Sat 𝐸)       ((𝑀𝑉𝐸𝑊) → (𝑆‘∅) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})})
 
Theoremsatfvsuclem1 33300* Lemma 1 for satfvsuc 33302. (Contributed by AV, 8-Oct-2023.)
𝑆 = (𝑀 Sat 𝐸)       ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∧ 𝑦 ∈ 𝒫 (𝑀m ω))} ∈ V)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46465
  Copyright terms: Public domain < Previous  Next >