| Metamath
Proof Explorer Theorem List (p. 333 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | irrednzr 33201 | A ring with an irreducible element cannot be the zero ring. (Contributed by Thierry Arnoux, 18-May-2025.) |
| ⊢ 𝐼 = (Irred‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) ⇒ ⊢ (𝜑 → 𝑅 ∈ NzRing) | ||
| Theorem | 0ringsubrg 33202 | A subring of a zero ring is a zero ring. (Contributed by Thierry Arnoux, 5-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → (♯‘𝐵) = 1) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) ⇒ ⊢ (𝜑 → (♯‘𝑆) = 1) | ||
| Theorem | 0ringcring 33203 | The zero ring is commutative. (Contributed by Thierry Arnoux, 18-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → (♯‘𝐵) = 1) ⇒ ⊢ (𝜑 → 𝑅 ∈ CRing) | ||
| Syntax | cerl 33204 | Syntax for ring localization equivalence class operation. |
| class ~RL | ||
| Syntax | crloc 33205 | Syntax for ring localization operation. |
| class RLocal | ||
| Definition | df-erl 33206* | Define the operation giving the equivalence relation used in the localization of a ring 𝑟 by a set 𝑠. Two pairs 𝑎 = 〈𝑥, 𝑦〉 and 𝑏 = 〈𝑧, 𝑤〉 are equivalent if there exists 𝑡 ∈ 𝑠 such that 𝑡 · (𝑥 · 𝑤 − 𝑧 · 𝑦) = 0. This corresponds to the usual comparison of fractions 𝑥 / 𝑦 and 𝑧 / 𝑤. (Contributed by Thierry Arnoux, 28-Apr-2025.) |
| ⊢ ~RL = (𝑟 ∈ V, 𝑠 ∈ V ↦ ⦋(.r‘𝑟) / 𝑥⦌⦋((Base‘𝑟) × 𝑠) / 𝑤⦌{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ∃𝑡 ∈ 𝑠 (𝑡𝑥(((1st ‘𝑎)𝑥(2nd ‘𝑏))(-g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))) = (0g‘𝑟))}) | ||
| Definition | df-rloc 33207* | Define the operation giving the localization of a ring 𝑟 by a given set 𝑠. The localized ring 𝑟 RLocal 𝑠 is the set of equivalence classes of pairs of elements in 𝑟 over the relation 𝑟 ~RL 𝑠 with addition and multiplication defined naturally. (Contributed by Thierry Arnoux, 27-Apr-2025.) |
| ⊢ RLocal = (𝑟 ∈ V, 𝑠 ∈ V ↦ ⦋(.r‘𝑟) / 𝑥⦌⦋((Base‘𝑟) × 𝑠) / 𝑤⦌((({〈(Base‘ndx), 𝑤〉, 〈(+g‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈(((1st ‘𝑎)𝑥(2nd ‘𝑏))(+g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉, 〈(.r‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈((1st ‘𝑎)𝑥(1st ‘𝑏)), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉} ∪ {〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎 ∈ 𝑤 ↦ 〈(𝑘( ·𝑠 ‘𝑟)(1st ‘𝑎)), (2nd ‘𝑎)〉)〉, 〈(·𝑖‘ndx), ∅〉}) ∪ {〈(TopSet‘ndx), ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))〉, 〈(le‘ndx), {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ((1st ‘𝑎)𝑥(2nd ‘𝑏))(le‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))}〉, 〈(dist‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ (((1st ‘𝑎)𝑥(2nd ‘𝑏))(dist‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))))〉}) /s (𝑟 ~RL 𝑠))) | ||
| Theorem | reldmrloc 33208 | Ring localization is a proper operator, so it can be used with ovprc1 7426. (Contributed by Thierry Arnoux, 10-May-2025.) |
| ⊢ Rel dom RLocal | ||
| Theorem | erlval 33209* | Value of the ring localization equivalence relation. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ − = (-g‘𝑅) & ⊢ 𝑊 = (𝐵 × 𝑆) & ⊢ ∼ = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊) ∧ ∃𝑡 ∈ 𝑆 (𝑡 · (((1st ‘𝑎) · (2nd ‘𝑏)) − ((1st ‘𝑏) · (2nd ‘𝑎)))) = 0 )} & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝑅 ~RL 𝑆) = ∼ ) | ||
| Theorem | rlocval 33210* | Expand the value of the ring localization operation. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ − = (-g‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ ≤ = (le‘𝑅) & ⊢ 𝐹 = (Scalar‘𝑅) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝐶 = ( ·𝑠 ‘𝑅) & ⊢ 𝑊 = (𝐵 × 𝑆) & ⊢ ∼ = (𝑅 ~RL 𝑆) & ⊢ 𝐽 = (TopSet‘𝑅) & ⊢ 𝐷 = (dist‘𝑅) & ⊢ ⊕ = (𝑎 ∈ 𝑊, 𝑏 ∈ 𝑊 ↦ 〈(((1st ‘𝑎) · (2nd ‘𝑏)) + ((1st ‘𝑏) · (2nd ‘𝑎))), ((2nd ‘𝑎) · (2nd ‘𝑏))〉) & ⊢ ⊗ = (𝑎 ∈ 𝑊, 𝑏 ∈ 𝑊 ↦ 〈((1st ‘𝑎) · (1st ‘𝑏)), ((2nd ‘𝑎) · (2nd ‘𝑏))〉) & ⊢ × = (𝑘 ∈ 𝐾, 𝑎 ∈ 𝑊 ↦ 〈(𝑘𝐶(1st ‘𝑎)), (2nd ‘𝑎)〉) & ⊢ ≲ = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑊 ∧ 𝑏 ∈ 𝑊) ∧ ((1st ‘𝑎) · (2nd ‘𝑏)) ≤ ((1st ‘𝑏) · (2nd ‘𝑎)))} & ⊢ 𝐸 = (𝑎 ∈ 𝑊, 𝑏 ∈ 𝑊 ↦ (((1st ‘𝑎) · (2nd ‘𝑏))𝐷((1st ‘𝑏) · (2nd ‘𝑎)))) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝑅 RLocal 𝑆) = ((({〈(Base‘ndx), 𝑊〉, 〈(+g‘ndx), ⊕ 〉, 〈(.r‘ndx), ⊗ 〉} ∪ {〈(Scalar‘ndx), 𝐹〉, 〈( ·𝑠 ‘ndx), × 〉, 〈(·𝑖‘ndx), ∅〉}) ∪ {〈(TopSet‘ndx), (𝐽 ×t (𝐽 ↾t 𝑆))〉, 〈(le‘ndx), ≲ 〉, 〈(dist‘ndx), 𝐸〉}) /s ∼ )) | ||
| Theorem | erlcl1 33211 | Closure for the ring localization equivalence relation. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ ∼ = (𝑅 ~RL 𝑆) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ (𝜑 → 𝑈 ∼ 𝑉) ⇒ ⊢ (𝜑 → 𝑈 ∈ (𝐵 × 𝑆)) | ||
| Theorem | erlcl2 33212 | Closure for the ring localization equivalence relation. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ ∼ = (𝑅 ~RL 𝑆) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ (𝜑 → 𝑈 ∼ 𝑉) ⇒ ⊢ (𝜑 → 𝑉 ∈ (𝐵 × 𝑆)) | ||
| Theorem | erldi 33213* | Main property of the ring localization equivalence relation. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ ∼ = (𝑅 ~RL 𝑆) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ − = (-g‘𝑅) & ⊢ (𝜑 → 𝑈 ∼ 𝑉) ⇒ ⊢ (𝜑 → ∃𝑡 ∈ 𝑆 (𝑡 · (((1st ‘𝑈) · (2nd ‘𝑉)) − ((1st ‘𝑉) · (2nd ‘𝑈)))) = 0 ) | ||
| Theorem | erlbrd 33214 | Deduce the ring localization equivalence relation. If for some 𝑇 ∈ 𝑆 we have 𝑇 · (𝐸 · 𝐻 − 𝐹 · 𝐺) = 0, then pairs 〈𝐸, 𝐺〉 and 〈𝐹, 𝐻〉 are equivalent under the localization relation. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ ∼ = (𝑅 ~RL 𝑆) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ − = (-g‘𝑅) & ⊢ (𝜑 → 𝑈 = 〈𝐸, 𝐺〉) & ⊢ (𝜑 → 𝑉 = 〈𝐹, 𝐻〉) & ⊢ (𝜑 → 𝐸 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝑆) & ⊢ (𝜑 → 𝐻 ∈ 𝑆) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → (𝑇 · ((𝐸 · 𝐻) − (𝐹 · 𝐺))) = 0 ) ⇒ ⊢ (𝜑 → 𝑈 ∼ 𝑉) | ||
| Theorem | erlbr2d 33215 | Deduce the ring localization equivalence relation. Pairs 〈𝐸, 𝐺〉 and 〈𝑇 · 𝐸, 𝑇 · 𝐺〉 for 𝑇 ∈ 𝑆 are equivalent under the localization relation. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ ∼ = (𝑅 ~RL 𝑆) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑈 = 〈𝐸, 𝐺〉) & ⊢ (𝜑 → 𝑉 = 〈𝐹, 𝐻〉) & ⊢ (𝜑 → 𝐸 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝑆) & ⊢ (𝜑 → 𝐻 ∈ 𝑆) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 = (𝑇 · 𝐸)) & ⊢ (𝜑 → 𝐻 = (𝑇 · 𝐺)) ⇒ ⊢ (𝜑 → 𝑈 ∼ 𝑉) | ||
| Theorem | erler 33216 | The relation used to build the ring localization is an equivalence relation. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ − = (-g‘𝑅) & ⊢ 𝑊 = (𝐵 × 𝑆) & ⊢ ∼ = (𝑅 ~RL 𝑆) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) ⇒ ⊢ (𝜑 → ∼ Er 𝑊) | ||
| Theorem | elrlocbasi 33217* | Membership in the basis of a ring localization. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ ((𝐵 × 𝑆) / ∼ )) ⇒ ⊢ (𝜑 → ∃𝑎 ∈ 𝐵 ∃𝑏 ∈ 𝑆 𝑋 = [〈𝑎, 𝑏〉] ∼ ) | ||
| Theorem | rlocbas 33218 | The base set of a ring localization. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ − = (-g‘𝑅) & ⊢ 𝑊 = (𝐵 × 𝑆) & ⊢ 𝐿 = (𝑅 RLocal 𝑆) & ⊢ ∼ = (𝑅 ~RL 𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝑊 / ∼ ) = (Base‘𝐿)) | ||
| Theorem | rlocaddval 33219 | Value of the addition in the ring localization, given two representatives. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ 𝐿 = (𝑅 RLocal 𝑆) & ⊢ ∼ = (𝑅 ~RL 𝑆) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) & ⊢ (𝜑 → 𝐸 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝑆) & ⊢ (𝜑 → 𝐻 ∈ 𝑆) & ⊢ ⊕ = (+g‘𝐿) ⇒ ⊢ (𝜑 → ([〈𝐸, 𝐺〉] ∼ ⊕ [〈𝐹, 𝐻〉] ∼ ) = [〈((𝐸 · 𝐻) + (𝐹 · 𝐺)), (𝐺 · 𝐻)〉] ∼ ) | ||
| Theorem | rlocmulval 33220 | Value of the addition in the ring localization, given two representatives. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ 𝐿 = (𝑅 RLocal 𝑆) & ⊢ ∼ = (𝑅 ~RL 𝑆) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) & ⊢ (𝜑 → 𝐸 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝑆) & ⊢ (𝜑 → 𝐻 ∈ 𝑆) & ⊢ ⊗ = (.r‘𝐿) ⇒ ⊢ (𝜑 → ([〈𝐸, 𝐺〉] ∼ ⊗ [〈𝐹, 𝐻〉] ∼ ) = [〈(𝐸 · 𝐹), (𝐺 · 𝐻)〉] ∼ ) | ||
| Theorem | rloccring 33221 | The ring localization 𝐿 of a commutative ring 𝑅 by a multiplicatively closed set 𝑆 is itself a commutative ring. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ 𝐿 = (𝑅 RLocal 𝑆) & ⊢ ∼ = (𝑅 ~RL 𝑆) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) ⇒ ⊢ (𝜑 → 𝐿 ∈ CRing) | ||
| Theorem | rloc0g 33222 | The zero of a ring localization. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐿 = (𝑅 RLocal 𝑆) & ⊢ ∼ = (𝑅 ~RL 𝑆) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) & ⊢ 𝑂 = [〈 0 , 1 〉] ∼ ⇒ ⊢ (𝜑 → 𝑂 = (0g‘𝐿)) | ||
| Theorem | rloc1r 33223 | The multiplicative identity of a ring localization. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐿 = (𝑅 RLocal 𝑆) & ⊢ ∼ = (𝑅 ~RL 𝑆) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) & ⊢ 𝐼 = [〈 1 , 1 〉] ∼ ⇒ ⊢ (𝜑 → 𝐼 = (1r‘𝐿)) | ||
| Theorem | rlocf1 33224* | The embedding 𝐹 of a ring 𝑅 into its localization 𝐿. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐿 = (𝑅 RLocal 𝑆) & ⊢ ∼ = (𝑅 ~RL 𝑆) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [〈𝑥, 1 〉] ∼ ) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) & ⊢ (𝜑 → 𝑆 ⊆ (RLReg‘𝑅)) ⇒ ⊢ (𝜑 → (𝐹:𝐵–1-1→((𝐵 × 𝑆) / ∼ ) ∧ 𝐹 ∈ (𝑅 RingHom 𝐿))) | ||
| Theorem | domnmuln0rd 33225 | In a domain, factors of a nonzero product are nonzero. (Contributed by Thierry Arnoux, 8-Jun-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Domn) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → (𝑋 · 𝑌) ≠ 0 ) ⇒ ⊢ (𝜑 → (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 )) | ||
| Theorem | domnprodn0 33226 | In a domain, a finite product of nonzero terms is nonzero. (Contributed by Thierry Arnoux, 6-Jun-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Domn) & ⊢ (𝜑 → 𝐹 ∈ Word (𝐵 ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝑀 Σg 𝐹) ≠ 0 ) | ||
| Theorem | domnpropd 33227* | If two structures have the same components (properties), one is a domain iff the other one is. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ Domn ↔ 𝐿 ∈ Domn)) | ||
| Theorem | idompropd 33228* | If two structures have the same components (properties), one is a integral domain iff the other one is. See also domnpropd 33227. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ IDomn ↔ 𝐿 ∈ IDomn)) | ||
| Theorem | idomrcan 33229 | Right-cancellation law for integral domains. (Contributed by Thierry Arnoux, 22-Mar-2025.) (Proof shortened by SN, 21-Jun-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ (𝐵 ∖ { 0 })) & ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → (𝑋 · 𝑍) = (𝑌 · 𝑍)) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
| Theorem | domnlcanOLD 33230 | Obsolete version of domnlcan 20630 as of 21-Jun-2025. (Contributed by Thierry Arnoux, 22-Mar-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑅 ∈ Domn) & ⊢ (𝜑 → (𝑋 · 𝑌) = (𝑋 · 𝑍)) ⇒ ⊢ (𝜑 → 𝑌 = 𝑍) | ||
| Theorem | domnlcanbOLD 33231 | Obsolete version of domnlcanb 20629 as of 21-Jun-2025. (Contributed by Thierry Arnoux, 8-Jun-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑅 ∈ Domn) ⇒ ⊢ (𝜑 → ((𝑋 · 𝑌) = (𝑋 · 𝑍) ↔ 𝑌 = 𝑍)) | ||
| Theorem | idomrcanOLD 33232 | Obsolete version of idomrcan 33229 as of 21-Jun-2025. (Contributed by Thierry Arnoux, 22-Mar-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → (𝑌 · 𝑋) = (𝑍 · 𝑋)) ⇒ ⊢ (𝜑 → 𝑌 = 𝑍) | ||
| Theorem | 1rrg 33233 | The multiplicative identity is a left-regular element. (Contributed by Thierry Arnoux, 6-May-2025.) |
| ⊢ 1 = (1r‘𝑅) & ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → 1 ∈ 𝐸) | ||
| Theorem | rrgsubm 33234 | The left regular elements of a ring form a submonoid of the multiplicative group. (Contributed by Thierry Arnoux, 10-May-2025.) |
| ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → 𝐸 ∈ (SubMnd‘𝑀)) | ||
| Theorem | subrdom 33235 | A subring of a domain is a domain. (Contributed by Thierry Arnoux, 18-May-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Domn) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) ⇒ ⊢ (𝜑 → (𝑅 ↾s 𝑆) ∈ Domn) | ||
| Theorem | subridom 33236 | A subring of an integral domain is an integral domain. (Contributed by Thierry Arnoux, 18-May-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) ⇒ ⊢ (𝜑 → (𝑅 ↾s 𝑆) ∈ IDomn) | ||
| Theorem | subrfld 33237 | A subring of a field is an integral domain. (Contributed by Thierry Arnoux, 18-May-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Field) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) ⇒ ⊢ (𝜑 → (𝑅 ↾s 𝑆) ∈ IDomn) | ||
| Syntax | ceuf 33238 | Declare the syntax for the Euclidean function index extractor. |
| class EuclF | ||
| Definition | df-euf 33239 | Define the Euclidean function. (Contributed by Thierry Arnoux, 22-Mar-2025.) Use its index-independent form eufid 33241 instead. (New usage is discouraged.) |
| ⊢ EuclF = Slot ;21 | ||
| Theorem | eufndx 33240 | Index value of the Euclidean function slot. Use ndxarg 17166. (Contributed by Thierry Arnoux, 22-Mar-2025.) (New usage is discouraged.) |
| ⊢ (EuclF‘ndx) = ;21 | ||
| Theorem | eufid 33241 | Utility theorem: index-independent form of df-euf 33239. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| ⊢ EuclF = Slot (EuclF‘ndx) | ||
| Syntax | cedom 33242 | Declare the syntax for the Euclidean Domain. |
| class EDomn | ||
| Definition | df-edom 33243* | Define Euclidean Domains. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| ⊢ EDomn = {𝑑 ∈ IDomn ∣ [(EuclF‘𝑑) / 𝑒][(Base‘𝑑) / 𝑣](Fun 𝑒 ∧ (𝑒 “ (𝑣 ∖ {(0g‘𝑑)})) ⊆ (0[,)+∞) ∧ ∀𝑎 ∈ 𝑣 ∀𝑏 ∈ (𝑣 ∖ {(0g‘𝑑)})∃𝑞 ∈ 𝑣 ∃𝑟 ∈ 𝑣 (𝑎 = ((𝑏(.r‘𝑑)𝑞)(+g‘𝑑)𝑟) ∧ (𝑟 = (0g‘𝑑) ∨ (𝑒‘𝑟) < (𝑒‘𝑏))))} | ||
| Theorem | ringinveu 33244 | If a ring unit element 𝑋 admits both a left inverse 𝑌 and a right inverse 𝑍, they are equal. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → (𝑌 · 𝑋) = 1 ) & ⊢ (𝜑 → (𝑋 · 𝑍) = 1 ) ⇒ ⊢ (𝜑 → 𝑍 = 𝑌) | ||
| Theorem | isdrng4 33245* | A division ring is a ring in which 1 ≠ 0 and every nonzero element has a left and right inverse. (Contributed by Thierry Arnoux, 2-Mar-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → (𝑅 ∈ DivRing ↔ ( 1 ≠ 0 ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∃𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 1 ∧ (𝑦 · 𝑥) = 1 )))) | ||
| Theorem | rndrhmcl 33246 | The image of a division ring by a ring homomorphism is a division ring. (Contributed by Thierry Arnoux, 25-Feb-2025.) |
| ⊢ 𝑅 = (𝑁 ↾s ran 𝐹) & ⊢ 0 = (0g‘𝑁) & ⊢ (𝜑 → 𝐹 ∈ (𝑀 RingHom 𝑁)) & ⊢ (𝜑 → ran 𝐹 ≠ { 0 }) & ⊢ (𝜑 → 𝑀 ∈ DivRing) ⇒ ⊢ (𝜑 → 𝑅 ∈ DivRing) | ||
| Theorem | qfld 33247 | The field of rational numbers is a field. (Contributed by Thierry Arnoux, 19-Oct-2025.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) ⇒ ⊢ 𝑄 ∈ Field | ||
| Theorem | subsdrg 33248 | A subring of a sub-division-ring is a sub-division-ring. See also subsubrg 20507. (Contributed by Thierry Arnoux, 26-Oct-2025.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ (𝜑 → 𝐴 ∈ (SubDRing‘𝑅)) ⇒ ⊢ (𝜑 → (𝐵 ∈ (SubDRing‘𝑆) ↔ (𝐵 ∈ (SubDRing‘𝑅) ∧ 𝐵 ⊆ 𝐴))) | ||
| Theorem | sdrgdvcl 33249 | A sub-division-ring is closed under the ring division operation. (Contributed by Thierry Arnoux, 15-Jan-2025.) |
| ⊢ / = (/r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝐴 ∈ (SubDRing‘𝑅)) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝑋 / 𝑌) ∈ 𝐴) | ||
| Theorem | sdrginvcl 33250 | A sub-division-ring is closed under the ring inverse operation. (Contributed by Thierry Arnoux, 15-Jan-2025.) |
| ⊢ 𝐼 = (invr‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → (𝐼‘𝑋) ∈ 𝐴) | ||
| Theorem | primefldchr 33251 | The characteristic of a prime field is the same as the characteristic of the main field. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
| ⊢ 𝑃 = (𝑅 ↾s ∩ (SubDRing‘𝑅)) ⇒ ⊢ (𝑅 ∈ DivRing → (chr‘𝑃) = (chr‘𝑅)) | ||
| Syntax | cfrac 33252 | Syntax for the field of fractions of a given integral domain. |
| class Frac | ||
| Definition | df-frac 33253 | Define the field of fractions of a given integral domain. (Contributed by Thierry Arnoux, 26-Apr-2025.) |
| ⊢ Frac = (𝑟 ∈ V ↦ (𝑟 RLocal (RLReg‘𝑟))) | ||
| Theorem | fracval 33254 | Value of the field of fractions. (Contributed by Thierry Arnoux, 5-May-2025.) |
| ⊢ ( Frac ‘𝑅) = (𝑅 RLocal (RLReg‘𝑅)) | ||
| Theorem | fracbas 33255 | The base of the field of fractions. (Contributed by Thierry Arnoux, 10-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 𝐹 = ( Frac ‘𝑅) & ⊢ ∼ = (𝑅 ~RL 𝐸) ⇒ ⊢ ((𝐵 × 𝐸) / ∼ ) = (Base‘𝐹) | ||
| Theorem | fracerl 33256 | Rewrite the ring localization equivalence relation in the case of a field of fractions. (Contributed by Thierry Arnoux, 5-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ ∼ = (𝑅 ~RL (RLReg‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐸 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (RLReg‘𝑅)) & ⊢ (𝜑 → 𝐻 ∈ (RLReg‘𝑅)) ⇒ ⊢ (𝜑 → (〈𝐸, 𝐹〉 ∼ 〈𝐺, 𝐻〉 ↔ (𝐸 · 𝐻) = (𝐺 · 𝐹))) | ||
| Theorem | fracf1 33257* | The embedding of a commutative ring 𝑅 into its field of fractions. (Contributed by Thierry Arnoux, 10-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ ∼ = (𝑅 ~RL 𝐸) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [〈𝑥, 1 〉] ∼ ) ⇒ ⊢ (𝜑 → (𝐹:𝐵–1-1→((𝐵 × 𝐸) / ∼ ) ∧ 𝐹 ∈ (𝑅 RingHom ( Frac ‘𝑅)))) | ||
| Theorem | fracfld 33258 | The field of fractions of an integral domain is a field. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ IDomn) ⇒ ⊢ (𝜑 → ( Frac ‘𝑅) ∈ Field) | ||
| Theorem | idomsubr 33259* | Every integral domain is isomorphic with a subring of some field. (Proposed by Gerard Lang, 10-May-2025.) (Contributed by Thierry Arnoux, 10-May-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ IDomn) ⇒ ⊢ (𝜑 → ∃𝑓 ∈ Field ∃𝑠 ∈ (SubRing‘𝑓)𝑅 ≃𝑟 (𝑓 ↾s 𝑠)) | ||
| Syntax | cfldgen 33260 | Syntax for a function generating sub-fields. |
| class fldGen | ||
| Definition | df-fldgen 33261* | Define a function generating the smallest sub-division-ring of a given ring containing a given set. If the base structure is a division ring, then this is also a division ring (see fldgensdrg 33264). If the base structure is a field, this is a subfield (see fldgenfld 33270 and fldsdrgfld 20707). In general this will be used in the context of fields, hence the name fldGen. (Contributed by Saveliy Skresanov and Thierry Arnoux, 9-Jan-2025.) |
| ⊢ fldGen = (𝑓 ∈ V, 𝑠 ∈ V ↦ ∩ {𝑎 ∈ (SubDRing‘𝑓) ∣ 𝑠 ⊆ 𝑎}) | ||
| Theorem | fldgenval 33262* | Value of the field generating function: (𝐹 fldGen 𝑆) is the smallest sub-division-ring of 𝐹 containing 𝑆. (Contributed by Thierry Arnoux, 11-Jan-2025.) |
| ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ DivRing) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 fldGen 𝑆) = ∩ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆 ⊆ 𝑎}) | ||
| Theorem | fldgenssid 33263 | The field generated by a set of elements contains those elements. See lspssid 20891. (Contributed by Thierry Arnoux, 15-Jan-2025.) |
| ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ DivRing) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) ⇒ ⊢ (𝜑 → 𝑆 ⊆ (𝐹 fldGen 𝑆)) | ||
| Theorem | fldgensdrg 33264 | A generated subfield is a sub-division-ring. (Contributed by Thierry Arnoux, 11-Jan-2025.) |
| ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ DivRing) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 fldGen 𝑆) ∈ (SubDRing‘𝐹)) | ||
| Theorem | fldgenssv 33265 | A generated subfield is a subset of the field's base. (Contributed by Thierry Arnoux, 25-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ DivRing) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 fldGen 𝑆) ⊆ 𝐵) | ||
| Theorem | fldgenss 33266 | Generated subfields preserve subset ordering. ( see lspss 20890 and spanss 31277) (Contributed by Thierry Arnoux, 15-Jan-2025.) |
| ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ DivRing) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ (𝜑 → 𝑇 ⊆ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 fldGen 𝑇) ⊆ (𝐹 fldGen 𝑆)) | ||
| Theorem | fldgenidfld 33267 | The subfield generated by a subfield is the subfield itself. (Contributed by Thierry Arnoux, 15-Jan-2025.) |
| ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ DivRing) & ⊢ (𝜑 → 𝑆 ∈ (SubDRing‘𝐹)) ⇒ ⊢ (𝜑 → (𝐹 fldGen 𝑆) = 𝑆) | ||
| Theorem | fldgenssp 33268 | The field generated by a set of elements in a division ring is contained in any sub-division-ring which contains those elements. (Contributed by Thierry Arnoux, 25-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ DivRing) & ⊢ (𝜑 → 𝑆 ∈ (SubDRing‘𝐹)) & ⊢ (𝜑 → 𝑇 ⊆ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 fldGen 𝑇) ⊆ 𝑆) | ||
| Theorem | fldgenid 33269 | The subfield of a field 𝐹 generated by the whole base set of 𝐹 is 𝐹 itself. (Contributed by Thierry Arnoux, 11-Jan-2025.) |
| ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ DivRing) ⇒ ⊢ (𝜑 → (𝐹 fldGen 𝐵) = 𝐵) | ||
| Theorem | fldgenfld 33270 | A generated subfield is a field. (Contributed by Thierry Arnoux, 11-Jan-2025.) |
| ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ Field) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ↾s (𝐹 fldGen 𝑆)) ∈ Field) | ||
| Theorem | primefldgen1 33271 | The prime field of a division ring is the subfield generated by the multiplicative identity element. In general, we should write "prime division ring", but since most later usages are in the case where the ambient ring is commutative, we keep the term "prime field". (Contributed by Thierry Arnoux, 11-Jan-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) ⇒ ⊢ (𝜑 → ∩ (SubDRing‘𝑅) = (𝑅 fldGen { 1 })) | ||
| Theorem | 1fldgenq 33272 | The field of rational numbers ℚ is generated by 1 in ℂfld, that is, ℚ is the prime field of ℂfld. (Contributed by Thierry Arnoux, 15-Jan-2025.) |
| ⊢ (ℂfld fldGen {1}) = ℚ | ||
| Syntax | corng 33273 | Extend class notation with the class of all ordered rings. |
| class oRing | ||
| Syntax | cofld 33274 | Extend class notation with the class of all ordered fields. |
| class oField | ||
| Definition | df-orng 33275* | Define class of all ordered rings. An ordered ring is a ring with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
| ⊢ oRing = {𝑟 ∈ (Ring ∩ oGrp) ∣ [(Base‘𝑟) / 𝑣][(0g‘𝑟) / 𝑧][(.r‘𝑟) / 𝑡][(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏))} | ||
| Definition | df-ofld 33276 | Define class of all ordered fields. An ordered field is a field with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 18-Jan-2018.) |
| ⊢ oField = (Field ∩ oRing) | ||
| Theorem | isorng 33277* | An ordered ring is a ring with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 18-Jan-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ ≤ = (le‘𝑅) ⇒ ⊢ (𝑅 ∈ oRing ↔ (𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏)))) | ||
| Theorem | orngring 33278 | An ordered ring is a ring. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
| ⊢ (𝑅 ∈ oRing → 𝑅 ∈ Ring) | ||
| Theorem | orngogrp 33279 | An ordered ring is an ordered group. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
| ⊢ (𝑅 ∈ oRing → 𝑅 ∈ oGrp) | ||
| Theorem | isofld 33280 | An ordered field is a field with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
| ⊢ (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing)) | ||
| Theorem | orngmul 33281 | In an ordered ring, the ordering is compatible with the ring multiplication operation. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ ≤ = (le‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ oRing ∧ (𝑋 ∈ 𝐵 ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ 𝐵 ∧ 0 ≤ 𝑌)) → 0 ≤ (𝑋 · 𝑌)) | ||
| Theorem | orngsqr 33282 | In an ordered ring, all squares are positive. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ ≤ = (le‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵) → 0 ≤ (𝑋 · 𝑋)) | ||
| Theorem | ornglmulle 33283 | In an ordered ring, multiplication with a positive does not change comparison. (Contributed by Thierry Arnoux, 10-Apr-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ oRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ ≤ = (le‘𝑅) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 0 ≤ 𝑍) ⇒ ⊢ (𝜑 → (𝑍 · 𝑋) ≤ (𝑍 · 𝑌)) | ||
| Theorem | orngrmulle 33284 | In an ordered ring, multiplication with a positive does not change comparison. (Contributed by Thierry Arnoux, 10-Apr-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ oRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ ≤ = (le‘𝑅) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 0 ≤ 𝑍) ⇒ ⊢ (𝜑 → (𝑋 · 𝑍) ≤ (𝑌 · 𝑍)) | ||
| Theorem | ornglmullt 33285 | In an ordered ring, multiplication with a positive does not change strict comparison. (Contributed by Thierry Arnoux, 9-Apr-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ oRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ < = (lt‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 < 𝑌) & ⊢ (𝜑 → 0 < 𝑍) ⇒ ⊢ (𝜑 → (𝑍 · 𝑋) < (𝑍 · 𝑌)) | ||
| Theorem | orngrmullt 33286 | In an ordered ring, multiplication with a positive does not change strict comparison. (Contributed by Thierry Arnoux, 9-Apr-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ oRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ < = (lt‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 < 𝑌) & ⊢ (𝜑 → 0 < 𝑍) ⇒ ⊢ (𝜑 → (𝑋 · 𝑍) < (𝑌 · 𝑍)) | ||
| Theorem | orngmullt 33287 | In an ordered ring, the strict ordering is compatible with the ring multiplication operation. (Contributed by Thierry Arnoux, 9-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ < = (lt‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ oRing) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 0 < 𝑋) & ⊢ (𝜑 → 0 < 𝑌) ⇒ ⊢ (𝜑 → 0 < (𝑋 · 𝑌)) | ||
| Theorem | ofldfld 33288 | An ordered field is a field. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
| ⊢ (𝐹 ∈ oField → 𝐹 ∈ Field) | ||
| Theorem | ofldtos 33289 | An ordered field is a totally ordered set. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
| ⊢ (𝐹 ∈ oField → 𝐹 ∈ Toset) | ||
| Theorem | orng0le1 33290 | In an ordered ring, the ring unity is positive. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
| ⊢ 0 = (0g‘𝐹) & ⊢ 1 = (1r‘𝐹) & ⊢ ≤ = (le‘𝐹) ⇒ ⊢ (𝐹 ∈ oRing → 0 ≤ 1 ) | ||
| Theorem | ofldlt1 33291 | In an ordered field, the ring unity is strictly positive. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
| ⊢ 0 = (0g‘𝐹) & ⊢ 1 = (1r‘𝐹) & ⊢ < = (lt‘𝐹) ⇒ ⊢ (𝐹 ∈ oField → 0 < 1 ) | ||
| Theorem | ofldchr 33292 | The characteristic of an ordered field is zero. (Contributed by Thierry Arnoux, 21-Jan-2018.) (Proof shortened by AV, 6-Oct-2020.) |
| ⊢ (𝐹 ∈ oField → (chr‘𝐹) = 0) | ||
| Theorem | suborng 33293 | Every subring of an ordered ring is also an ordered ring. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
| ⊢ ((𝑅 ∈ oRing ∧ (𝑅 ↾s 𝐴) ∈ Ring) → (𝑅 ↾s 𝐴) ∈ oRing) | ||
| Theorem | subofld 33294 | Every subfield of an ordered field is also an ordered field. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
| ⊢ ((𝐹 ∈ oField ∧ (𝐹 ↾s 𝐴) ∈ Field) → (𝐹 ↾s 𝐴) ∈ oField) | ||
| Theorem | isarchiofld 33295* | Axiom of Archimedes : a characterization of the Archimedean property for ordered fields. (Contributed by Thierry Arnoux, 9-Apr-2018.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐻 = (ℤRHom‘𝑊) & ⊢ < = (lt‘𝑊) ⇒ ⊢ (𝑊 ∈ oField → (𝑊 ∈ Archi ↔ ∀𝑥 ∈ 𝐵 ∃𝑛 ∈ ℕ 𝑥 < (𝐻‘𝑛))) | ||
| Theorem | rhmdvd 33296 | A ring homomorphism preserves ratios. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
| ⊢ 𝑈 = (Unit‘𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ / = (/r‘𝑆) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ ((𝐹‘𝐵) ∈ 𝑈 ∧ (𝐹‘𝐶) ∈ 𝑈)) → ((𝐹‘𝐴) / (𝐹‘𝐵)) = ((𝐹‘(𝐴 · 𝐶)) / (𝐹‘(𝐵 · 𝐶)))) | ||
| Theorem | kerunit 33297 | If a unit element lies in the kernel of a ring homomorphism, then 0 = 1, i.e. the target ring is the zero ring. (Contributed by Thierry Arnoux, 24-Oct-2017.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑆) & ⊢ 1 = (1r‘𝑆) ⇒ ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑈 ∩ (◡𝐹 “ { 0 })) ≠ ∅) → 1 = 0 ) | ||
| Syntax | cresv 33298 | Extend class notation with the scalar restriction operation. |
| class ↾v | ||
| Definition | df-resv 33299* | Define an operator to restrict the scalar field component of an extended structure. (Contributed by Thierry Arnoux, 5-Sep-2018.) |
| ⊢ ↾v = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘(Scalar‘𝑤)) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Scalar‘ndx), ((Scalar‘𝑤) ↾s 𝑥)〉))) | ||
| Theorem | reldmresv 33300 | The scalar restriction is a proper operator, so it can be used with ovprc1 7426. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
| ⊢ Rel dom ↾v | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |