Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhval Structured version   Visualization version   GIF version

Theorem qqhval 31325
Description: Value of the canonical homormorphism from the rational number to a field. (Contributed by Thierry Arnoux, 22-Oct-2017.)
Hypotheses
Ref Expression
qqhval.1 / = (/r𝑅)
qqhval.2 1 = (1r𝑅)
qqhval.3 𝐿 = (ℤRHom‘𝑅)
Assertion
Ref Expression
qqhval (𝑅 ∈ V → (ℚHom‘𝑅) = ran (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
Distinct variable groups:   𝑥,𝑦,𝑅   𝑦,𝐿
Allowed substitution hints:   / (𝑥,𝑦)   1 (𝑥,𝑦)   𝐿(𝑥)

Proof of Theorem qqhval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eqidd 2799 . . . 4 (𝑓 = 𝑅 → ℤ = ℤ)
2 fveq2 6645 . . . . . . 7 (𝑓 = 𝑅 → (ℤRHom‘𝑓) = (ℤRHom‘𝑅))
3 qqhval.3 . . . . . . 7 𝐿 = (ℤRHom‘𝑅)
42, 3eqtr4di 2851 . . . . . 6 (𝑓 = 𝑅 → (ℤRHom‘𝑓) = 𝐿)
54cnveqd 5710 . . . . 5 (𝑓 = 𝑅(ℤRHom‘𝑓) = 𝐿)
6 fveq2 6645 . . . . 5 (𝑓 = 𝑅 → (Unit‘𝑓) = (Unit‘𝑅))
75, 6imaeq12d 5897 . . . 4 (𝑓 = 𝑅 → ((ℤRHom‘𝑓) “ (Unit‘𝑓)) = (𝐿 “ (Unit‘𝑅)))
8 fveq2 6645 . . . . . . 7 (𝑓 = 𝑅 → (/r𝑓) = (/r𝑅))
9 qqhval.1 . . . . . . 7 / = (/r𝑅)
108, 9eqtr4di 2851 . . . . . 6 (𝑓 = 𝑅 → (/r𝑓) = / )
114fveq1d 6647 . . . . . 6 (𝑓 = 𝑅 → ((ℤRHom‘𝑓)‘𝑥) = (𝐿𝑥))
124fveq1d 6647 . . . . . 6 (𝑓 = 𝑅 → ((ℤRHom‘𝑓)‘𝑦) = (𝐿𝑦))
1310, 11, 12oveq123d 7156 . . . . 5 (𝑓 = 𝑅 → (((ℤRHom‘𝑓)‘𝑥)(/r𝑓)((ℤRHom‘𝑓)‘𝑦)) = ((𝐿𝑥) / (𝐿𝑦)))
1413opeq2d 4772 . . . 4 (𝑓 = 𝑅 → ⟨(𝑥 / 𝑦), (((ℤRHom‘𝑓)‘𝑥)(/r𝑓)((ℤRHom‘𝑓)‘𝑦))⟩ = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩)
151, 7, 14mpoeq123dv 7208 . . 3 (𝑓 = 𝑅 → (𝑥 ∈ ℤ, 𝑦 ∈ ((ℤRHom‘𝑓) “ (Unit‘𝑓)) ↦ ⟨(𝑥 / 𝑦), (((ℤRHom‘𝑓)‘𝑥)(/r𝑓)((ℤRHom‘𝑓)‘𝑦))⟩) = (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
1615rneqd 5772 . 2 (𝑓 = 𝑅 → ran (𝑥 ∈ ℤ, 𝑦 ∈ ((ℤRHom‘𝑓) “ (Unit‘𝑓)) ↦ ⟨(𝑥 / 𝑦), (((ℤRHom‘𝑓)‘𝑥)(/r𝑓)((ℤRHom‘𝑓)‘𝑦))⟩) = ran (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
17 df-qqh 31324 . 2 ℚHom = (𝑓 ∈ V ↦ ran (𝑥 ∈ ℤ, 𝑦 ∈ ((ℤRHom‘𝑓) “ (Unit‘𝑓)) ↦ ⟨(𝑥 / 𝑦), (((ℤRHom‘𝑓)‘𝑥)(/r𝑓)((ℤRHom‘𝑓)‘𝑦))⟩))
18 zex 11978 . . . 4 ℤ ∈ V
193fvexi 6659 . . . . . 6 𝐿 ∈ V
2019cnvex 7612 . . . . 5 𝐿 ∈ V
21 imaexg 7602 . . . . 5 (𝐿 ∈ V → (𝐿 “ (Unit‘𝑅)) ∈ V)
2220, 21ax-mp 5 . . . 4 (𝐿 “ (Unit‘𝑅)) ∈ V
2318, 22mpoex 7760 . . 3 (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) ∈ V
2423rnex 7599 . 2 ran (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) ∈ V
2516, 17, 24fvmpt 6745 1 (𝑅 ∈ V → (ℚHom‘𝑅) = ran (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  Vcvv 3441  cop 4531  ccnv 5518  ran crn 5520  cima 5522  cfv 6324  (class class class)co 7135  cmpo 7137   / cdiv 11286  cz 11969  1rcur 19244  Unitcui 19385  /rcdvr 19428  ℤRHomczrh 20193  ℚHomcqqh 31323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-neg 10862  df-z 11970  df-qqh 31324
This theorem is referenced by:  qqhval2  31333
  Copyright terms: Public domain W3C validator