Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > qqhval | Structured version Visualization version GIF version |
Description: Value of the canonical homormorphism from the rational number to a field. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
Ref | Expression |
---|---|
qqhval.1 | ⊢ / = (/r‘𝑅) |
qqhval.2 | ⊢ 1 = (1r‘𝑅) |
qqhval.3 | ⊢ 𝐿 = (ℤRHom‘𝑅) |
Ref | Expression |
---|---|
qqhval | ⊢ (𝑅 ∈ V → (ℚHom‘𝑅) = ran (𝑥 ∈ ℤ, 𝑦 ∈ (◡𝐿 “ (Unit‘𝑅)) ↦ 〈(𝑥 / 𝑦), ((𝐿‘𝑥) / (𝐿‘𝑦))〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2741 | . . . 4 ⊢ (𝑓 = 𝑅 → ℤ = ℤ) | |
2 | fveq2 6771 | . . . . . . 7 ⊢ (𝑓 = 𝑅 → (ℤRHom‘𝑓) = (ℤRHom‘𝑅)) | |
3 | qqhval.3 | . . . . . . 7 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
4 | 2, 3 | eqtr4di 2798 | . . . . . 6 ⊢ (𝑓 = 𝑅 → (ℤRHom‘𝑓) = 𝐿) |
5 | 4 | cnveqd 5783 | . . . . 5 ⊢ (𝑓 = 𝑅 → ◡(ℤRHom‘𝑓) = ◡𝐿) |
6 | fveq2 6771 | . . . . 5 ⊢ (𝑓 = 𝑅 → (Unit‘𝑓) = (Unit‘𝑅)) | |
7 | 5, 6 | imaeq12d 5969 | . . . 4 ⊢ (𝑓 = 𝑅 → (◡(ℤRHom‘𝑓) “ (Unit‘𝑓)) = (◡𝐿 “ (Unit‘𝑅))) |
8 | fveq2 6771 | . . . . . . 7 ⊢ (𝑓 = 𝑅 → (/r‘𝑓) = (/r‘𝑅)) | |
9 | qqhval.1 | . . . . . . 7 ⊢ / = (/r‘𝑅) | |
10 | 8, 9 | eqtr4di 2798 | . . . . . 6 ⊢ (𝑓 = 𝑅 → (/r‘𝑓) = / ) |
11 | 4 | fveq1d 6773 | . . . . . 6 ⊢ (𝑓 = 𝑅 → ((ℤRHom‘𝑓)‘𝑥) = (𝐿‘𝑥)) |
12 | 4 | fveq1d 6773 | . . . . . 6 ⊢ (𝑓 = 𝑅 → ((ℤRHom‘𝑓)‘𝑦) = (𝐿‘𝑦)) |
13 | 10, 11, 12 | oveq123d 7292 | . . . . 5 ⊢ (𝑓 = 𝑅 → (((ℤRHom‘𝑓)‘𝑥)(/r‘𝑓)((ℤRHom‘𝑓)‘𝑦)) = ((𝐿‘𝑥) / (𝐿‘𝑦))) |
14 | 13 | opeq2d 4817 | . . . 4 ⊢ (𝑓 = 𝑅 → 〈(𝑥 / 𝑦), (((ℤRHom‘𝑓)‘𝑥)(/r‘𝑓)((ℤRHom‘𝑓)‘𝑦))〉 = 〈(𝑥 / 𝑦), ((𝐿‘𝑥) / (𝐿‘𝑦))〉) |
15 | 1, 7, 14 | mpoeq123dv 7344 | . . 3 ⊢ (𝑓 = 𝑅 → (𝑥 ∈ ℤ, 𝑦 ∈ (◡(ℤRHom‘𝑓) “ (Unit‘𝑓)) ↦ 〈(𝑥 / 𝑦), (((ℤRHom‘𝑓)‘𝑥)(/r‘𝑓)((ℤRHom‘𝑓)‘𝑦))〉) = (𝑥 ∈ ℤ, 𝑦 ∈ (◡𝐿 “ (Unit‘𝑅)) ↦ 〈(𝑥 / 𝑦), ((𝐿‘𝑥) / (𝐿‘𝑦))〉)) |
16 | 15 | rneqd 5846 | . 2 ⊢ (𝑓 = 𝑅 → ran (𝑥 ∈ ℤ, 𝑦 ∈ (◡(ℤRHom‘𝑓) “ (Unit‘𝑓)) ↦ 〈(𝑥 / 𝑦), (((ℤRHom‘𝑓)‘𝑥)(/r‘𝑓)((ℤRHom‘𝑓)‘𝑦))〉) = ran (𝑥 ∈ ℤ, 𝑦 ∈ (◡𝐿 “ (Unit‘𝑅)) ↦ 〈(𝑥 / 𝑦), ((𝐿‘𝑥) / (𝐿‘𝑦))〉)) |
17 | df-qqh 31919 | . 2 ⊢ ℚHom = (𝑓 ∈ V ↦ ran (𝑥 ∈ ℤ, 𝑦 ∈ (◡(ℤRHom‘𝑓) “ (Unit‘𝑓)) ↦ 〈(𝑥 / 𝑦), (((ℤRHom‘𝑓)‘𝑥)(/r‘𝑓)((ℤRHom‘𝑓)‘𝑦))〉)) | |
18 | zex 12328 | . . . 4 ⊢ ℤ ∈ V | |
19 | 3 | fvexi 6785 | . . . . . 6 ⊢ 𝐿 ∈ V |
20 | 19 | cnvex 7766 | . . . . 5 ⊢ ◡𝐿 ∈ V |
21 | imaexg 7756 | . . . . 5 ⊢ (◡𝐿 ∈ V → (◡𝐿 “ (Unit‘𝑅)) ∈ V) | |
22 | 20, 21 | ax-mp 5 | . . . 4 ⊢ (◡𝐿 “ (Unit‘𝑅)) ∈ V |
23 | 18, 22 | mpoex 7913 | . . 3 ⊢ (𝑥 ∈ ℤ, 𝑦 ∈ (◡𝐿 “ (Unit‘𝑅)) ↦ 〈(𝑥 / 𝑦), ((𝐿‘𝑥) / (𝐿‘𝑦))〉) ∈ V |
24 | 23 | rnex 7753 | . 2 ⊢ ran (𝑥 ∈ ℤ, 𝑦 ∈ (◡𝐿 “ (Unit‘𝑅)) ↦ 〈(𝑥 / 𝑦), ((𝐿‘𝑥) / (𝐿‘𝑦))〉) ∈ V |
25 | 16, 17, 24 | fvmpt 6872 | 1 ⊢ (𝑅 ∈ V → (ℚHom‘𝑅) = ran (𝑥 ∈ ℤ, 𝑦 ∈ (◡𝐿 “ (Unit‘𝑅)) ↦ 〈(𝑥 / 𝑦), ((𝐿‘𝑥) / (𝐿‘𝑦))〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 Vcvv 3431 〈cop 4573 ◡ccnv 5589 ran crn 5591 “ cima 5593 ‘cfv 6432 (class class class)co 7271 ∈ cmpo 7273 / cdiv 11632 ℤcz 12319 1rcur 19735 Unitcui 19879 /rcdvr 19922 ℤRHomczrh 20699 ℚHomcqqh 31918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7274 df-oprab 7275 df-mpo 7276 df-1st 7824 df-2nd 7825 df-neg 11208 df-z 12320 df-qqh 31919 |
This theorem is referenced by: qqhval2 31928 |
Copyright terms: Public domain | W3C validator |