Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhval Structured version   Visualization version   GIF version

Theorem qqhval 33939
Description: Value of the canonical homormorphism from the rational number to a field. (Contributed by Thierry Arnoux, 22-Oct-2017.)
Hypotheses
Ref Expression
qqhval.1 / = (/r𝑅)
qqhval.2 1 = (1r𝑅)
qqhval.3 𝐿 = (ℤRHom‘𝑅)
Assertion
Ref Expression
qqhval (𝑅 ∈ V → (ℚHom‘𝑅) = ran (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
Distinct variable groups:   𝑥,𝑦,𝑅   𝑦,𝐿
Allowed substitution hints:   / (𝑥,𝑦)   1 (𝑥,𝑦)   𝐿(𝑥)

Proof of Theorem qqhval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eqidd 2730 . . . 4 (𝑓 = 𝑅 → ℤ = ℤ)
2 fveq2 6822 . . . . . . 7 (𝑓 = 𝑅 → (ℤRHom‘𝑓) = (ℤRHom‘𝑅))
3 qqhval.3 . . . . . . 7 𝐿 = (ℤRHom‘𝑅)
42, 3eqtr4di 2782 . . . . . 6 (𝑓 = 𝑅 → (ℤRHom‘𝑓) = 𝐿)
54cnveqd 5818 . . . . 5 (𝑓 = 𝑅(ℤRHom‘𝑓) = 𝐿)
6 fveq2 6822 . . . . 5 (𝑓 = 𝑅 → (Unit‘𝑓) = (Unit‘𝑅))
75, 6imaeq12d 6012 . . . 4 (𝑓 = 𝑅 → ((ℤRHom‘𝑓) “ (Unit‘𝑓)) = (𝐿 “ (Unit‘𝑅)))
8 fveq2 6822 . . . . . . 7 (𝑓 = 𝑅 → (/r𝑓) = (/r𝑅))
9 qqhval.1 . . . . . . 7 / = (/r𝑅)
108, 9eqtr4di 2782 . . . . . 6 (𝑓 = 𝑅 → (/r𝑓) = / )
114fveq1d 6824 . . . . . 6 (𝑓 = 𝑅 → ((ℤRHom‘𝑓)‘𝑥) = (𝐿𝑥))
124fveq1d 6824 . . . . . 6 (𝑓 = 𝑅 → ((ℤRHom‘𝑓)‘𝑦) = (𝐿𝑦))
1310, 11, 12oveq123d 7370 . . . . 5 (𝑓 = 𝑅 → (((ℤRHom‘𝑓)‘𝑥)(/r𝑓)((ℤRHom‘𝑓)‘𝑦)) = ((𝐿𝑥) / (𝐿𝑦)))
1413opeq2d 4831 . . . 4 (𝑓 = 𝑅 → ⟨(𝑥 / 𝑦), (((ℤRHom‘𝑓)‘𝑥)(/r𝑓)((ℤRHom‘𝑓)‘𝑦))⟩ = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩)
151, 7, 14mpoeq123dv 7424 . . 3 (𝑓 = 𝑅 → (𝑥 ∈ ℤ, 𝑦 ∈ ((ℤRHom‘𝑓) “ (Unit‘𝑓)) ↦ ⟨(𝑥 / 𝑦), (((ℤRHom‘𝑓)‘𝑥)(/r𝑓)((ℤRHom‘𝑓)‘𝑦))⟩) = (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
1615rneqd 5880 . 2 (𝑓 = 𝑅 → ran (𝑥 ∈ ℤ, 𝑦 ∈ ((ℤRHom‘𝑓) “ (Unit‘𝑓)) ↦ ⟨(𝑥 / 𝑦), (((ℤRHom‘𝑓)‘𝑥)(/r𝑓)((ℤRHom‘𝑓)‘𝑦))⟩) = ran (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
17 df-qqh 33938 . 2 ℚHom = (𝑓 ∈ V ↦ ran (𝑥 ∈ ℤ, 𝑦 ∈ ((ℤRHom‘𝑓) “ (Unit‘𝑓)) ↦ ⟨(𝑥 / 𝑦), (((ℤRHom‘𝑓)‘𝑥)(/r𝑓)((ℤRHom‘𝑓)‘𝑦))⟩))
18 zex 12480 . . . 4 ℤ ∈ V
193fvexi 6836 . . . . . 6 𝐿 ∈ V
2019cnvex 7858 . . . . 5 𝐿 ∈ V
21 imaexg 7846 . . . . 5 (𝐿 ∈ V → (𝐿 “ (Unit‘𝑅)) ∈ V)
2220, 21ax-mp 5 . . . 4 (𝐿 “ (Unit‘𝑅)) ∈ V
2318, 22mpoex 8014 . . 3 (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) ∈ V
2423rnex 7843 . 2 ran (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) ∈ V
2516, 17, 24fvmpt 6930 1 (𝑅 ∈ V → (ℚHom‘𝑅) = ran (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3436  cop 4583  ccnv 5618  ran crn 5620  cima 5622  cfv 6482  (class class class)co 7349  cmpo 7351   / cdiv 11777  cz 12471  1rcur 20066  Unitcui 20240  /rcdvr 20285  ℤRHomczrh 21406  ℚHomcqqh 33937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-neg 11350  df-z 12472  df-qqh 33938
This theorem is referenced by:  qqhval2  33949
  Copyright terms: Public domain W3C validator