Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhval Structured version   Visualization version   GIF version

Theorem qqhval 33418
Description: Value of the canonical homormorphism from the rational number to a field. (Contributed by Thierry Arnoux, 22-Oct-2017.)
Hypotheses
Ref Expression
qqhval.1 / = (/rβ€˜π‘…)
qqhval.2 1 = (1rβ€˜π‘…)
qqhval.3 𝐿 = (β„€RHomβ€˜π‘…)
Assertion
Ref Expression
qqhval (𝑅 ∈ V β†’ (β„šHomβ€˜π‘…) = ran (π‘₯ ∈ β„€, 𝑦 ∈ (◑𝐿 β€œ (Unitβ€˜π‘…)) ↦ ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩))
Distinct variable groups:   π‘₯,𝑦,𝑅   𝑦,𝐿
Allowed substitution hints:   / (π‘₯,𝑦)   1 (π‘₯,𝑦)   𝐿(π‘₯)

Proof of Theorem qqhval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eqidd 2732 . . . 4 (𝑓 = 𝑅 β†’ β„€ = β„€)
2 fveq2 6891 . . . . . . 7 (𝑓 = 𝑅 β†’ (β„€RHomβ€˜π‘“) = (β„€RHomβ€˜π‘…))
3 qqhval.3 . . . . . . 7 𝐿 = (β„€RHomβ€˜π‘…)
42, 3eqtr4di 2789 . . . . . 6 (𝑓 = 𝑅 β†’ (β„€RHomβ€˜π‘“) = 𝐿)
54cnveqd 5875 . . . . 5 (𝑓 = 𝑅 β†’ β—‘(β„€RHomβ€˜π‘“) = ◑𝐿)
6 fveq2 6891 . . . . 5 (𝑓 = 𝑅 β†’ (Unitβ€˜π‘“) = (Unitβ€˜π‘…))
75, 6imaeq12d 6060 . . . 4 (𝑓 = 𝑅 β†’ (β—‘(β„€RHomβ€˜π‘“) β€œ (Unitβ€˜π‘“)) = (◑𝐿 β€œ (Unitβ€˜π‘…)))
8 fveq2 6891 . . . . . . 7 (𝑓 = 𝑅 β†’ (/rβ€˜π‘“) = (/rβ€˜π‘…))
9 qqhval.1 . . . . . . 7 / = (/rβ€˜π‘…)
108, 9eqtr4di 2789 . . . . . 6 (𝑓 = 𝑅 β†’ (/rβ€˜π‘“) = / )
114fveq1d 6893 . . . . . 6 (𝑓 = 𝑅 β†’ ((β„€RHomβ€˜π‘“)β€˜π‘₯) = (πΏβ€˜π‘₯))
124fveq1d 6893 . . . . . 6 (𝑓 = 𝑅 β†’ ((β„€RHomβ€˜π‘“)β€˜π‘¦) = (πΏβ€˜π‘¦))
1310, 11, 12oveq123d 7433 . . . . 5 (𝑓 = 𝑅 β†’ (((β„€RHomβ€˜π‘“)β€˜π‘₯)(/rβ€˜π‘“)((β„€RHomβ€˜π‘“)β€˜π‘¦)) = ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦)))
1413opeq2d 4880 . . . 4 (𝑓 = 𝑅 β†’ ⟨(π‘₯ / 𝑦), (((β„€RHomβ€˜π‘“)β€˜π‘₯)(/rβ€˜π‘“)((β„€RHomβ€˜π‘“)β€˜π‘¦))⟩ = ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩)
151, 7, 14mpoeq123dv 7487 . . 3 (𝑓 = 𝑅 β†’ (π‘₯ ∈ β„€, 𝑦 ∈ (β—‘(β„€RHomβ€˜π‘“) β€œ (Unitβ€˜π‘“)) ↦ ⟨(π‘₯ / 𝑦), (((β„€RHomβ€˜π‘“)β€˜π‘₯)(/rβ€˜π‘“)((β„€RHomβ€˜π‘“)β€˜π‘¦))⟩) = (π‘₯ ∈ β„€, 𝑦 ∈ (◑𝐿 β€œ (Unitβ€˜π‘…)) ↦ ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩))
1615rneqd 5937 . 2 (𝑓 = 𝑅 β†’ ran (π‘₯ ∈ β„€, 𝑦 ∈ (β—‘(β„€RHomβ€˜π‘“) β€œ (Unitβ€˜π‘“)) ↦ ⟨(π‘₯ / 𝑦), (((β„€RHomβ€˜π‘“)β€˜π‘₯)(/rβ€˜π‘“)((β„€RHomβ€˜π‘“)β€˜π‘¦))⟩) = ran (π‘₯ ∈ β„€, 𝑦 ∈ (◑𝐿 β€œ (Unitβ€˜π‘…)) ↦ ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩))
17 df-qqh 33417 . 2 β„šHom = (𝑓 ∈ V ↦ ran (π‘₯ ∈ β„€, 𝑦 ∈ (β—‘(β„€RHomβ€˜π‘“) β€œ (Unitβ€˜π‘“)) ↦ ⟨(π‘₯ / 𝑦), (((β„€RHomβ€˜π‘“)β€˜π‘₯)(/rβ€˜π‘“)((β„€RHomβ€˜π‘“)β€˜π‘¦))⟩))
18 zex 12574 . . . 4 β„€ ∈ V
193fvexi 6905 . . . . . 6 𝐿 ∈ V
2019cnvex 7920 . . . . 5 ◑𝐿 ∈ V
21 imaexg 7910 . . . . 5 (◑𝐿 ∈ V β†’ (◑𝐿 β€œ (Unitβ€˜π‘…)) ∈ V)
2220, 21ax-mp 5 . . . 4 (◑𝐿 β€œ (Unitβ€˜π‘…)) ∈ V
2318, 22mpoex 8070 . . 3 (π‘₯ ∈ β„€, 𝑦 ∈ (◑𝐿 β€œ (Unitβ€˜π‘…)) ↦ ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) ∈ V
2423rnex 7907 . 2 ran (π‘₯ ∈ β„€, 𝑦 ∈ (◑𝐿 β€œ (Unitβ€˜π‘…)) ↦ ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩) ∈ V
2516, 17, 24fvmpt 6998 1 (𝑅 ∈ V β†’ (β„šHomβ€˜π‘…) = ran (π‘₯ ∈ β„€, 𝑦 ∈ (◑𝐿 β€œ (Unitβ€˜π‘…)) ↦ ⟨(π‘₯ / 𝑦), ((πΏβ€˜π‘₯) / (πΏβ€˜π‘¦))⟩))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1540   ∈ wcel 2105  Vcvv 3473  βŸ¨cop 4634  β—‘ccnv 5675  ran crn 5677   β€œ cima 5679  β€˜cfv 6543  (class class class)co 7412   ∈ cmpo 7414   / cdiv 11878  β„€cz 12565  1rcur 20082  Unitcui 20253  /rcdvr 20298  β„€RHomczrh 21359  β„šHomcqqh 33416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980  df-neg 11454  df-z 12566  df-qqh 33417
This theorem is referenced by:  qqhval2  33426
  Copyright terms: Public domain W3C validator