Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhval Structured version   Visualization version   GIF version

Theorem qqhval 33969
Description: Value of the canonical homormorphism from the rational number to a field. (Contributed by Thierry Arnoux, 22-Oct-2017.)
Hypotheses
Ref Expression
qqhval.1 / = (/r𝑅)
qqhval.2 1 = (1r𝑅)
qqhval.3 𝐿 = (ℤRHom‘𝑅)
Assertion
Ref Expression
qqhval (𝑅 ∈ V → (ℚHom‘𝑅) = ran (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
Distinct variable groups:   𝑥,𝑦,𝑅   𝑦,𝐿
Allowed substitution hints:   / (𝑥,𝑦)   1 (𝑥,𝑦)   𝐿(𝑥)

Proof of Theorem qqhval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eqidd 2731 . . . 4 (𝑓 = 𝑅 → ℤ = ℤ)
2 fveq2 6861 . . . . . . 7 (𝑓 = 𝑅 → (ℤRHom‘𝑓) = (ℤRHom‘𝑅))
3 qqhval.3 . . . . . . 7 𝐿 = (ℤRHom‘𝑅)
42, 3eqtr4di 2783 . . . . . 6 (𝑓 = 𝑅 → (ℤRHom‘𝑓) = 𝐿)
54cnveqd 5842 . . . . 5 (𝑓 = 𝑅(ℤRHom‘𝑓) = 𝐿)
6 fveq2 6861 . . . . 5 (𝑓 = 𝑅 → (Unit‘𝑓) = (Unit‘𝑅))
75, 6imaeq12d 6035 . . . 4 (𝑓 = 𝑅 → ((ℤRHom‘𝑓) “ (Unit‘𝑓)) = (𝐿 “ (Unit‘𝑅)))
8 fveq2 6861 . . . . . . 7 (𝑓 = 𝑅 → (/r𝑓) = (/r𝑅))
9 qqhval.1 . . . . . . 7 / = (/r𝑅)
108, 9eqtr4di 2783 . . . . . 6 (𝑓 = 𝑅 → (/r𝑓) = / )
114fveq1d 6863 . . . . . 6 (𝑓 = 𝑅 → ((ℤRHom‘𝑓)‘𝑥) = (𝐿𝑥))
124fveq1d 6863 . . . . . 6 (𝑓 = 𝑅 → ((ℤRHom‘𝑓)‘𝑦) = (𝐿𝑦))
1310, 11, 12oveq123d 7411 . . . . 5 (𝑓 = 𝑅 → (((ℤRHom‘𝑓)‘𝑥)(/r𝑓)((ℤRHom‘𝑓)‘𝑦)) = ((𝐿𝑥) / (𝐿𝑦)))
1413opeq2d 4847 . . . 4 (𝑓 = 𝑅 → ⟨(𝑥 / 𝑦), (((ℤRHom‘𝑓)‘𝑥)(/r𝑓)((ℤRHom‘𝑓)‘𝑦))⟩ = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩)
151, 7, 14mpoeq123dv 7467 . . 3 (𝑓 = 𝑅 → (𝑥 ∈ ℤ, 𝑦 ∈ ((ℤRHom‘𝑓) “ (Unit‘𝑓)) ↦ ⟨(𝑥 / 𝑦), (((ℤRHom‘𝑓)‘𝑥)(/r𝑓)((ℤRHom‘𝑓)‘𝑦))⟩) = (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
1615rneqd 5905 . 2 (𝑓 = 𝑅 → ran (𝑥 ∈ ℤ, 𝑦 ∈ ((ℤRHom‘𝑓) “ (Unit‘𝑓)) ↦ ⟨(𝑥 / 𝑦), (((ℤRHom‘𝑓)‘𝑥)(/r𝑓)((ℤRHom‘𝑓)‘𝑦))⟩) = ran (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
17 df-qqh 33968 . 2 ℚHom = (𝑓 ∈ V ↦ ran (𝑥 ∈ ℤ, 𝑦 ∈ ((ℤRHom‘𝑓) “ (Unit‘𝑓)) ↦ ⟨(𝑥 / 𝑦), (((ℤRHom‘𝑓)‘𝑥)(/r𝑓)((ℤRHom‘𝑓)‘𝑦))⟩))
18 zex 12545 . . . 4 ℤ ∈ V
193fvexi 6875 . . . . . 6 𝐿 ∈ V
2019cnvex 7904 . . . . 5 𝐿 ∈ V
21 imaexg 7892 . . . . 5 (𝐿 ∈ V → (𝐿 “ (Unit‘𝑅)) ∈ V)
2220, 21ax-mp 5 . . . 4 (𝐿 “ (Unit‘𝑅)) ∈ V
2318, 22mpoex 8061 . . 3 (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) ∈ V
2423rnex 7889 . 2 ran (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) ∈ V
2516, 17, 24fvmpt 6971 1 (𝑅 ∈ V → (ℚHom‘𝑅) = ran (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  cop 4598  ccnv 5640  ran crn 5642  cima 5644  cfv 6514  (class class class)co 7390  cmpo 7392   / cdiv 11842  cz 12536  1rcur 20097  Unitcui 20271  /rcdvr 20316  ℤRHomczrh 21416  ℚHomcqqh 33967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-neg 11415  df-z 12537  df-qqh 33968
This theorem is referenced by:  qqhval2  33979
  Copyright terms: Public domain W3C validator