Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhval Structured version   Visualization version   GIF version

Theorem qqhval 33962
Description: Value of the canonical homormorphism from the rational number to a field. (Contributed by Thierry Arnoux, 22-Oct-2017.)
Hypotheses
Ref Expression
qqhval.1 / = (/r𝑅)
qqhval.2 1 = (1r𝑅)
qqhval.3 𝐿 = (ℤRHom‘𝑅)
Assertion
Ref Expression
qqhval (𝑅 ∈ V → (ℚHom‘𝑅) = ran (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
Distinct variable groups:   𝑥,𝑦,𝑅   𝑦,𝐿
Allowed substitution hints:   / (𝑥,𝑦)   1 (𝑥,𝑦)   𝐿(𝑥)

Proof of Theorem qqhval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eqidd 2730 . . . 4 (𝑓 = 𝑅 → ℤ = ℤ)
2 fveq2 6858 . . . . . . 7 (𝑓 = 𝑅 → (ℤRHom‘𝑓) = (ℤRHom‘𝑅))
3 qqhval.3 . . . . . . 7 𝐿 = (ℤRHom‘𝑅)
42, 3eqtr4di 2782 . . . . . 6 (𝑓 = 𝑅 → (ℤRHom‘𝑓) = 𝐿)
54cnveqd 5839 . . . . 5 (𝑓 = 𝑅(ℤRHom‘𝑓) = 𝐿)
6 fveq2 6858 . . . . 5 (𝑓 = 𝑅 → (Unit‘𝑓) = (Unit‘𝑅))
75, 6imaeq12d 6032 . . . 4 (𝑓 = 𝑅 → ((ℤRHom‘𝑓) “ (Unit‘𝑓)) = (𝐿 “ (Unit‘𝑅)))
8 fveq2 6858 . . . . . . 7 (𝑓 = 𝑅 → (/r𝑓) = (/r𝑅))
9 qqhval.1 . . . . . . 7 / = (/r𝑅)
108, 9eqtr4di 2782 . . . . . 6 (𝑓 = 𝑅 → (/r𝑓) = / )
114fveq1d 6860 . . . . . 6 (𝑓 = 𝑅 → ((ℤRHom‘𝑓)‘𝑥) = (𝐿𝑥))
124fveq1d 6860 . . . . . 6 (𝑓 = 𝑅 → ((ℤRHom‘𝑓)‘𝑦) = (𝐿𝑦))
1310, 11, 12oveq123d 7408 . . . . 5 (𝑓 = 𝑅 → (((ℤRHom‘𝑓)‘𝑥)(/r𝑓)((ℤRHom‘𝑓)‘𝑦)) = ((𝐿𝑥) / (𝐿𝑦)))
1413opeq2d 4844 . . . 4 (𝑓 = 𝑅 → ⟨(𝑥 / 𝑦), (((ℤRHom‘𝑓)‘𝑥)(/r𝑓)((ℤRHom‘𝑓)‘𝑦))⟩ = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩)
151, 7, 14mpoeq123dv 7464 . . 3 (𝑓 = 𝑅 → (𝑥 ∈ ℤ, 𝑦 ∈ ((ℤRHom‘𝑓) “ (Unit‘𝑓)) ↦ ⟨(𝑥 / 𝑦), (((ℤRHom‘𝑓)‘𝑥)(/r𝑓)((ℤRHom‘𝑓)‘𝑦))⟩) = (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
1615rneqd 5902 . 2 (𝑓 = 𝑅 → ran (𝑥 ∈ ℤ, 𝑦 ∈ ((ℤRHom‘𝑓) “ (Unit‘𝑓)) ↦ ⟨(𝑥 / 𝑦), (((ℤRHom‘𝑓)‘𝑥)(/r𝑓)((ℤRHom‘𝑓)‘𝑦))⟩) = ran (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
17 df-qqh 33961 . 2 ℚHom = (𝑓 ∈ V ↦ ran (𝑥 ∈ ℤ, 𝑦 ∈ ((ℤRHom‘𝑓) “ (Unit‘𝑓)) ↦ ⟨(𝑥 / 𝑦), (((ℤRHom‘𝑓)‘𝑥)(/r𝑓)((ℤRHom‘𝑓)‘𝑦))⟩))
18 zex 12538 . . . 4 ℤ ∈ V
193fvexi 6872 . . . . . 6 𝐿 ∈ V
2019cnvex 7901 . . . . 5 𝐿 ∈ V
21 imaexg 7889 . . . . 5 (𝐿 ∈ V → (𝐿 “ (Unit‘𝑅)) ∈ V)
2220, 21ax-mp 5 . . . 4 (𝐿 “ (Unit‘𝑅)) ∈ V
2318, 22mpoex 8058 . . 3 (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) ∈ V
2423rnex 7886 . 2 ran (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) ∈ V
2516, 17, 24fvmpt 6968 1 (𝑅 ∈ V → (ℚHom‘𝑅) = ran (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  cop 4595  ccnv 5637  ran crn 5639  cima 5641  cfv 6511  (class class class)co 7387  cmpo 7389   / cdiv 11835  cz 12529  1rcur 20090  Unitcui 20264  /rcdvr 20309  ℤRHomczrh 21409  ℚHomcqqh 33960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-neg 11408  df-z 12530  df-qqh 33961
This theorem is referenced by:  qqhval2  33972
  Copyright terms: Public domain W3C validator