| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > qqhval | Structured version Visualization version GIF version | ||
| Description: Value of the canonical homormorphism from the rational number to a field. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
| Ref | Expression |
|---|---|
| qqhval.1 | ⊢ / = (/r‘𝑅) |
| qqhval.2 | ⊢ 1 = (1r‘𝑅) |
| qqhval.3 | ⊢ 𝐿 = (ℤRHom‘𝑅) |
| Ref | Expression |
|---|---|
| qqhval | ⊢ (𝑅 ∈ V → (ℚHom‘𝑅) = ran (𝑥 ∈ ℤ, 𝑦 ∈ (◡𝐿 “ (Unit‘𝑅)) ↦ 〈(𝑥 / 𝑦), ((𝐿‘𝑥) / (𝐿‘𝑦))〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2730 | . . . 4 ⊢ (𝑓 = 𝑅 → ℤ = ℤ) | |
| 2 | fveq2 6822 | . . . . . . 7 ⊢ (𝑓 = 𝑅 → (ℤRHom‘𝑓) = (ℤRHom‘𝑅)) | |
| 3 | qqhval.3 | . . . . . . 7 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
| 4 | 2, 3 | eqtr4di 2782 | . . . . . 6 ⊢ (𝑓 = 𝑅 → (ℤRHom‘𝑓) = 𝐿) |
| 5 | 4 | cnveqd 5818 | . . . . 5 ⊢ (𝑓 = 𝑅 → ◡(ℤRHom‘𝑓) = ◡𝐿) |
| 6 | fveq2 6822 | . . . . 5 ⊢ (𝑓 = 𝑅 → (Unit‘𝑓) = (Unit‘𝑅)) | |
| 7 | 5, 6 | imaeq12d 6012 | . . . 4 ⊢ (𝑓 = 𝑅 → (◡(ℤRHom‘𝑓) “ (Unit‘𝑓)) = (◡𝐿 “ (Unit‘𝑅))) |
| 8 | fveq2 6822 | . . . . . . 7 ⊢ (𝑓 = 𝑅 → (/r‘𝑓) = (/r‘𝑅)) | |
| 9 | qqhval.1 | . . . . . . 7 ⊢ / = (/r‘𝑅) | |
| 10 | 8, 9 | eqtr4di 2782 | . . . . . 6 ⊢ (𝑓 = 𝑅 → (/r‘𝑓) = / ) |
| 11 | 4 | fveq1d 6824 | . . . . . 6 ⊢ (𝑓 = 𝑅 → ((ℤRHom‘𝑓)‘𝑥) = (𝐿‘𝑥)) |
| 12 | 4 | fveq1d 6824 | . . . . . 6 ⊢ (𝑓 = 𝑅 → ((ℤRHom‘𝑓)‘𝑦) = (𝐿‘𝑦)) |
| 13 | 10, 11, 12 | oveq123d 7370 | . . . . 5 ⊢ (𝑓 = 𝑅 → (((ℤRHom‘𝑓)‘𝑥)(/r‘𝑓)((ℤRHom‘𝑓)‘𝑦)) = ((𝐿‘𝑥) / (𝐿‘𝑦))) |
| 14 | 13 | opeq2d 4831 | . . . 4 ⊢ (𝑓 = 𝑅 → 〈(𝑥 / 𝑦), (((ℤRHom‘𝑓)‘𝑥)(/r‘𝑓)((ℤRHom‘𝑓)‘𝑦))〉 = 〈(𝑥 / 𝑦), ((𝐿‘𝑥) / (𝐿‘𝑦))〉) |
| 15 | 1, 7, 14 | mpoeq123dv 7424 | . . 3 ⊢ (𝑓 = 𝑅 → (𝑥 ∈ ℤ, 𝑦 ∈ (◡(ℤRHom‘𝑓) “ (Unit‘𝑓)) ↦ 〈(𝑥 / 𝑦), (((ℤRHom‘𝑓)‘𝑥)(/r‘𝑓)((ℤRHom‘𝑓)‘𝑦))〉) = (𝑥 ∈ ℤ, 𝑦 ∈ (◡𝐿 “ (Unit‘𝑅)) ↦ 〈(𝑥 / 𝑦), ((𝐿‘𝑥) / (𝐿‘𝑦))〉)) |
| 16 | 15 | rneqd 5880 | . 2 ⊢ (𝑓 = 𝑅 → ran (𝑥 ∈ ℤ, 𝑦 ∈ (◡(ℤRHom‘𝑓) “ (Unit‘𝑓)) ↦ 〈(𝑥 / 𝑦), (((ℤRHom‘𝑓)‘𝑥)(/r‘𝑓)((ℤRHom‘𝑓)‘𝑦))〉) = ran (𝑥 ∈ ℤ, 𝑦 ∈ (◡𝐿 “ (Unit‘𝑅)) ↦ 〈(𝑥 / 𝑦), ((𝐿‘𝑥) / (𝐿‘𝑦))〉)) |
| 17 | df-qqh 33938 | . 2 ⊢ ℚHom = (𝑓 ∈ V ↦ ran (𝑥 ∈ ℤ, 𝑦 ∈ (◡(ℤRHom‘𝑓) “ (Unit‘𝑓)) ↦ 〈(𝑥 / 𝑦), (((ℤRHom‘𝑓)‘𝑥)(/r‘𝑓)((ℤRHom‘𝑓)‘𝑦))〉)) | |
| 18 | zex 12480 | . . . 4 ⊢ ℤ ∈ V | |
| 19 | 3 | fvexi 6836 | . . . . . 6 ⊢ 𝐿 ∈ V |
| 20 | 19 | cnvex 7858 | . . . . 5 ⊢ ◡𝐿 ∈ V |
| 21 | imaexg 7846 | . . . . 5 ⊢ (◡𝐿 ∈ V → (◡𝐿 “ (Unit‘𝑅)) ∈ V) | |
| 22 | 20, 21 | ax-mp 5 | . . . 4 ⊢ (◡𝐿 “ (Unit‘𝑅)) ∈ V |
| 23 | 18, 22 | mpoex 8014 | . . 3 ⊢ (𝑥 ∈ ℤ, 𝑦 ∈ (◡𝐿 “ (Unit‘𝑅)) ↦ 〈(𝑥 / 𝑦), ((𝐿‘𝑥) / (𝐿‘𝑦))〉) ∈ V |
| 24 | 23 | rnex 7843 | . 2 ⊢ ran (𝑥 ∈ ℤ, 𝑦 ∈ (◡𝐿 “ (Unit‘𝑅)) ↦ 〈(𝑥 / 𝑦), ((𝐿‘𝑥) / (𝐿‘𝑦))〉) ∈ V |
| 25 | 16, 17, 24 | fvmpt 6930 | 1 ⊢ (𝑅 ∈ V → (ℚHom‘𝑅) = ran (𝑥 ∈ ℤ, 𝑦 ∈ (◡𝐿 “ (Unit‘𝑅)) ↦ 〈(𝑥 / 𝑦), ((𝐿‘𝑥) / (𝐿‘𝑦))〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3436 〈cop 4583 ◡ccnv 5618 ran crn 5620 “ cima 5622 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 / cdiv 11777 ℤcz 12471 1rcur 20066 Unitcui 20240 /rcdvr 20285 ℤRHomczrh 21406 ℚHomcqqh 33937 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-neg 11350 df-z 12472 df-qqh 33938 |
| This theorem is referenced by: qqhval2 33949 |
| Copyright terms: Public domain | W3C validator |