Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > qqhval | Structured version Visualization version GIF version |
Description: Value of the canonical homormorphism from the rational number to a field. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
Ref | Expression |
---|---|
qqhval.1 | ⊢ / = (/r‘𝑅) |
qqhval.2 | ⊢ 1 = (1r‘𝑅) |
qqhval.3 | ⊢ 𝐿 = (ℤRHom‘𝑅) |
Ref | Expression |
---|---|
qqhval | ⊢ (𝑅 ∈ V → (ℚHom‘𝑅) = ran (𝑥 ∈ ℤ, 𝑦 ∈ (◡𝐿 “ (Unit‘𝑅)) ↦ 〈(𝑥 / 𝑦), ((𝐿‘𝑥) / (𝐿‘𝑦))〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2739 | . . . 4 ⊢ (𝑓 = 𝑅 → ℤ = ℤ) | |
2 | fveq2 6756 | . . . . . . 7 ⊢ (𝑓 = 𝑅 → (ℤRHom‘𝑓) = (ℤRHom‘𝑅)) | |
3 | qqhval.3 | . . . . . . 7 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
4 | 2, 3 | eqtr4di 2797 | . . . . . 6 ⊢ (𝑓 = 𝑅 → (ℤRHom‘𝑓) = 𝐿) |
5 | 4 | cnveqd 5773 | . . . . 5 ⊢ (𝑓 = 𝑅 → ◡(ℤRHom‘𝑓) = ◡𝐿) |
6 | fveq2 6756 | . . . . 5 ⊢ (𝑓 = 𝑅 → (Unit‘𝑓) = (Unit‘𝑅)) | |
7 | 5, 6 | imaeq12d 5959 | . . . 4 ⊢ (𝑓 = 𝑅 → (◡(ℤRHom‘𝑓) “ (Unit‘𝑓)) = (◡𝐿 “ (Unit‘𝑅))) |
8 | fveq2 6756 | . . . . . . 7 ⊢ (𝑓 = 𝑅 → (/r‘𝑓) = (/r‘𝑅)) | |
9 | qqhval.1 | . . . . . . 7 ⊢ / = (/r‘𝑅) | |
10 | 8, 9 | eqtr4di 2797 | . . . . . 6 ⊢ (𝑓 = 𝑅 → (/r‘𝑓) = / ) |
11 | 4 | fveq1d 6758 | . . . . . 6 ⊢ (𝑓 = 𝑅 → ((ℤRHom‘𝑓)‘𝑥) = (𝐿‘𝑥)) |
12 | 4 | fveq1d 6758 | . . . . . 6 ⊢ (𝑓 = 𝑅 → ((ℤRHom‘𝑓)‘𝑦) = (𝐿‘𝑦)) |
13 | 10, 11, 12 | oveq123d 7276 | . . . . 5 ⊢ (𝑓 = 𝑅 → (((ℤRHom‘𝑓)‘𝑥)(/r‘𝑓)((ℤRHom‘𝑓)‘𝑦)) = ((𝐿‘𝑥) / (𝐿‘𝑦))) |
14 | 13 | opeq2d 4808 | . . . 4 ⊢ (𝑓 = 𝑅 → 〈(𝑥 / 𝑦), (((ℤRHom‘𝑓)‘𝑥)(/r‘𝑓)((ℤRHom‘𝑓)‘𝑦))〉 = 〈(𝑥 / 𝑦), ((𝐿‘𝑥) / (𝐿‘𝑦))〉) |
15 | 1, 7, 14 | mpoeq123dv 7328 | . . 3 ⊢ (𝑓 = 𝑅 → (𝑥 ∈ ℤ, 𝑦 ∈ (◡(ℤRHom‘𝑓) “ (Unit‘𝑓)) ↦ 〈(𝑥 / 𝑦), (((ℤRHom‘𝑓)‘𝑥)(/r‘𝑓)((ℤRHom‘𝑓)‘𝑦))〉) = (𝑥 ∈ ℤ, 𝑦 ∈ (◡𝐿 “ (Unit‘𝑅)) ↦ 〈(𝑥 / 𝑦), ((𝐿‘𝑥) / (𝐿‘𝑦))〉)) |
16 | 15 | rneqd 5836 | . 2 ⊢ (𝑓 = 𝑅 → ran (𝑥 ∈ ℤ, 𝑦 ∈ (◡(ℤRHom‘𝑓) “ (Unit‘𝑓)) ↦ 〈(𝑥 / 𝑦), (((ℤRHom‘𝑓)‘𝑥)(/r‘𝑓)((ℤRHom‘𝑓)‘𝑦))〉) = ran (𝑥 ∈ ℤ, 𝑦 ∈ (◡𝐿 “ (Unit‘𝑅)) ↦ 〈(𝑥 / 𝑦), ((𝐿‘𝑥) / (𝐿‘𝑦))〉)) |
17 | df-qqh 31823 | . 2 ⊢ ℚHom = (𝑓 ∈ V ↦ ran (𝑥 ∈ ℤ, 𝑦 ∈ (◡(ℤRHom‘𝑓) “ (Unit‘𝑓)) ↦ 〈(𝑥 / 𝑦), (((ℤRHom‘𝑓)‘𝑥)(/r‘𝑓)((ℤRHom‘𝑓)‘𝑦))〉)) | |
18 | zex 12258 | . . . 4 ⊢ ℤ ∈ V | |
19 | 3 | fvexi 6770 | . . . . . 6 ⊢ 𝐿 ∈ V |
20 | 19 | cnvex 7746 | . . . . 5 ⊢ ◡𝐿 ∈ V |
21 | imaexg 7736 | . . . . 5 ⊢ (◡𝐿 ∈ V → (◡𝐿 “ (Unit‘𝑅)) ∈ V) | |
22 | 20, 21 | ax-mp 5 | . . . 4 ⊢ (◡𝐿 “ (Unit‘𝑅)) ∈ V |
23 | 18, 22 | mpoex 7893 | . . 3 ⊢ (𝑥 ∈ ℤ, 𝑦 ∈ (◡𝐿 “ (Unit‘𝑅)) ↦ 〈(𝑥 / 𝑦), ((𝐿‘𝑥) / (𝐿‘𝑦))〉) ∈ V |
24 | 23 | rnex 7733 | . 2 ⊢ ran (𝑥 ∈ ℤ, 𝑦 ∈ (◡𝐿 “ (Unit‘𝑅)) ↦ 〈(𝑥 / 𝑦), ((𝐿‘𝑥) / (𝐿‘𝑦))〉) ∈ V |
25 | 16, 17, 24 | fvmpt 6857 | 1 ⊢ (𝑅 ∈ V → (ℚHom‘𝑅) = ran (𝑥 ∈ ℤ, 𝑦 ∈ (◡𝐿 “ (Unit‘𝑅)) ↦ 〈(𝑥 / 𝑦), ((𝐿‘𝑥) / (𝐿‘𝑦))〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 〈cop 4564 ◡ccnv 5579 ran crn 5581 “ cima 5583 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 / cdiv 11562 ℤcz 12249 1rcur 19652 Unitcui 19796 /rcdvr 19839 ℤRHomczrh 20613 ℚHomcqqh 31822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-neg 11138 df-z 12250 df-qqh 31823 |
This theorem is referenced by: qqhval2 31832 |
Copyright terms: Public domain | W3C validator |