| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > qqhval | Structured version Visualization version GIF version | ||
| Description: Value of the canonical homormorphism from the rational number to a field. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
| Ref | Expression |
|---|---|
| qqhval.1 | ⊢ / = (/r‘𝑅) |
| qqhval.2 | ⊢ 1 = (1r‘𝑅) |
| qqhval.3 | ⊢ 𝐿 = (ℤRHom‘𝑅) |
| Ref | Expression |
|---|---|
| qqhval | ⊢ (𝑅 ∈ V → (ℚHom‘𝑅) = ran (𝑥 ∈ ℤ, 𝑦 ∈ (◡𝐿 “ (Unit‘𝑅)) ↦ 〈(𝑥 / 𝑦), ((𝐿‘𝑥) / (𝐿‘𝑦))〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2737 | . . . 4 ⊢ (𝑓 = 𝑅 → ℤ = ℤ) | |
| 2 | fveq2 6881 | . . . . . . 7 ⊢ (𝑓 = 𝑅 → (ℤRHom‘𝑓) = (ℤRHom‘𝑅)) | |
| 3 | qqhval.3 | . . . . . . 7 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
| 4 | 2, 3 | eqtr4di 2789 | . . . . . 6 ⊢ (𝑓 = 𝑅 → (ℤRHom‘𝑓) = 𝐿) |
| 5 | 4 | cnveqd 5860 | . . . . 5 ⊢ (𝑓 = 𝑅 → ◡(ℤRHom‘𝑓) = ◡𝐿) |
| 6 | fveq2 6881 | . . . . 5 ⊢ (𝑓 = 𝑅 → (Unit‘𝑓) = (Unit‘𝑅)) | |
| 7 | 5, 6 | imaeq12d 6053 | . . . 4 ⊢ (𝑓 = 𝑅 → (◡(ℤRHom‘𝑓) “ (Unit‘𝑓)) = (◡𝐿 “ (Unit‘𝑅))) |
| 8 | fveq2 6881 | . . . . . . 7 ⊢ (𝑓 = 𝑅 → (/r‘𝑓) = (/r‘𝑅)) | |
| 9 | qqhval.1 | . . . . . . 7 ⊢ / = (/r‘𝑅) | |
| 10 | 8, 9 | eqtr4di 2789 | . . . . . 6 ⊢ (𝑓 = 𝑅 → (/r‘𝑓) = / ) |
| 11 | 4 | fveq1d 6883 | . . . . . 6 ⊢ (𝑓 = 𝑅 → ((ℤRHom‘𝑓)‘𝑥) = (𝐿‘𝑥)) |
| 12 | 4 | fveq1d 6883 | . . . . . 6 ⊢ (𝑓 = 𝑅 → ((ℤRHom‘𝑓)‘𝑦) = (𝐿‘𝑦)) |
| 13 | 10, 11, 12 | oveq123d 7431 | . . . . 5 ⊢ (𝑓 = 𝑅 → (((ℤRHom‘𝑓)‘𝑥)(/r‘𝑓)((ℤRHom‘𝑓)‘𝑦)) = ((𝐿‘𝑥) / (𝐿‘𝑦))) |
| 14 | 13 | opeq2d 4861 | . . . 4 ⊢ (𝑓 = 𝑅 → 〈(𝑥 / 𝑦), (((ℤRHom‘𝑓)‘𝑥)(/r‘𝑓)((ℤRHom‘𝑓)‘𝑦))〉 = 〈(𝑥 / 𝑦), ((𝐿‘𝑥) / (𝐿‘𝑦))〉) |
| 15 | 1, 7, 14 | mpoeq123dv 7487 | . . 3 ⊢ (𝑓 = 𝑅 → (𝑥 ∈ ℤ, 𝑦 ∈ (◡(ℤRHom‘𝑓) “ (Unit‘𝑓)) ↦ 〈(𝑥 / 𝑦), (((ℤRHom‘𝑓)‘𝑥)(/r‘𝑓)((ℤRHom‘𝑓)‘𝑦))〉) = (𝑥 ∈ ℤ, 𝑦 ∈ (◡𝐿 “ (Unit‘𝑅)) ↦ 〈(𝑥 / 𝑦), ((𝐿‘𝑥) / (𝐿‘𝑦))〉)) |
| 16 | 15 | rneqd 5923 | . 2 ⊢ (𝑓 = 𝑅 → ran (𝑥 ∈ ℤ, 𝑦 ∈ (◡(ℤRHom‘𝑓) “ (Unit‘𝑓)) ↦ 〈(𝑥 / 𝑦), (((ℤRHom‘𝑓)‘𝑥)(/r‘𝑓)((ℤRHom‘𝑓)‘𝑦))〉) = ran (𝑥 ∈ ℤ, 𝑦 ∈ (◡𝐿 “ (Unit‘𝑅)) ↦ 〈(𝑥 / 𝑦), ((𝐿‘𝑥) / (𝐿‘𝑦))〉)) |
| 17 | df-qqh 34007 | . 2 ⊢ ℚHom = (𝑓 ∈ V ↦ ran (𝑥 ∈ ℤ, 𝑦 ∈ (◡(ℤRHom‘𝑓) “ (Unit‘𝑓)) ↦ 〈(𝑥 / 𝑦), (((ℤRHom‘𝑓)‘𝑥)(/r‘𝑓)((ℤRHom‘𝑓)‘𝑦))〉)) | |
| 18 | zex 12602 | . . . 4 ⊢ ℤ ∈ V | |
| 19 | 3 | fvexi 6895 | . . . . . 6 ⊢ 𝐿 ∈ V |
| 20 | 19 | cnvex 7926 | . . . . 5 ⊢ ◡𝐿 ∈ V |
| 21 | imaexg 7914 | . . . . 5 ⊢ (◡𝐿 ∈ V → (◡𝐿 “ (Unit‘𝑅)) ∈ V) | |
| 22 | 20, 21 | ax-mp 5 | . . . 4 ⊢ (◡𝐿 “ (Unit‘𝑅)) ∈ V |
| 23 | 18, 22 | mpoex 8083 | . . 3 ⊢ (𝑥 ∈ ℤ, 𝑦 ∈ (◡𝐿 “ (Unit‘𝑅)) ↦ 〈(𝑥 / 𝑦), ((𝐿‘𝑥) / (𝐿‘𝑦))〉) ∈ V |
| 24 | 23 | rnex 7911 | . 2 ⊢ ran (𝑥 ∈ ℤ, 𝑦 ∈ (◡𝐿 “ (Unit‘𝑅)) ↦ 〈(𝑥 / 𝑦), ((𝐿‘𝑥) / (𝐿‘𝑦))〉) ∈ V |
| 25 | 16, 17, 24 | fvmpt 6991 | 1 ⊢ (𝑅 ∈ V → (ℚHom‘𝑅) = ran (𝑥 ∈ ℤ, 𝑦 ∈ (◡𝐿 “ (Unit‘𝑅)) ↦ 〈(𝑥 / 𝑦), ((𝐿‘𝑥) / (𝐿‘𝑦))〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3464 〈cop 4612 ◡ccnv 5658 ran crn 5660 “ cima 5662 ‘cfv 6536 (class class class)co 7410 ∈ cmpo 7412 / cdiv 11899 ℤcz 12593 1rcur 20146 Unitcui 20320 /rcdvr 20365 ℤRHomczrh 21465 ℚHomcqqh 34006 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-neg 11474 df-z 12594 df-qqh 34007 |
| This theorem is referenced by: qqhval2 34018 |
| Copyright terms: Public domain | W3C validator |