Detailed syntax breakdown of Definition df-quot
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cquot 26333 | . 2
class 
quot | 
| 2 |  | vf | . . 3
setvar 𝑓 | 
| 3 |  | vg | . . 3
setvar 𝑔 | 
| 4 |  | cc 11154 | . . . 4
class
ℂ | 
| 5 |  | cply 26224 | . . . 4
class
Poly | 
| 6 | 4, 5 | cfv 6560 | . . 3
class
(Poly‘ℂ) | 
| 7 |  | c0p 25705 | . . . . 5
class
0𝑝 | 
| 8 | 7 | csn 4625 | . . . 4
class
{0𝑝} | 
| 9 | 6, 8 | cdif 3947 | . . 3
class
((Poly‘ℂ) ∖ {0𝑝}) | 
| 10 |  | vr | . . . . . . . 8
setvar 𝑟 | 
| 11 | 10 | cv 1538 | . . . . . . 7
class 𝑟 | 
| 12 | 11, 7 | wceq 1539 | . . . . . 6
wff 𝑟 =
0𝑝 | 
| 13 |  | cdgr 26227 | . . . . . . . 8
class
deg | 
| 14 | 11, 13 | cfv 6560 | . . . . . . 7
class
(deg‘𝑟) | 
| 15 | 3 | cv 1538 | . . . . . . . 8
class 𝑔 | 
| 16 | 15, 13 | cfv 6560 | . . . . . . 7
class
(deg‘𝑔) | 
| 17 |  | clt 11296 | . . . . . . 7
class 
< | 
| 18 | 14, 16, 17 | wbr 5142 | . . . . . 6
wff
(deg‘𝑟) <
(deg‘𝑔) | 
| 19 | 12, 18 | wo 847 | . . . . 5
wff (𝑟 = 0𝑝 ∨
(deg‘𝑟) <
(deg‘𝑔)) | 
| 20 | 2 | cv 1538 | . . . . . 6
class 𝑓 | 
| 21 |  | vq | . . . . . . . 8
setvar 𝑞 | 
| 22 | 21 | cv 1538 | . . . . . . 7
class 𝑞 | 
| 23 |  | cmul 11161 | . . . . . . . 8
class 
· | 
| 24 | 23 | cof 7696 | . . . . . . 7
class 
∘f · | 
| 25 | 15, 22, 24 | co 7432 | . . . . . 6
class (𝑔 ∘f ·
𝑞) | 
| 26 |  | cmin 11493 | . . . . . . 7
class 
− | 
| 27 | 26 | cof 7696 | . . . . . 6
class 
∘f − | 
| 28 | 20, 25, 27 | co 7432 | . . . . 5
class (𝑓 ∘f −
(𝑔 ∘f
· 𝑞)) | 
| 29 | 19, 10, 28 | wsbc 3787 | . . . 4
wff
[(𝑓
∘f − (𝑔 ∘f · 𝑞)) / 𝑟](𝑟 = 0𝑝 ∨
(deg‘𝑟) <
(deg‘𝑔)) | 
| 30 | 29, 21, 6 | crio 7388 | . . 3
class
(℩𝑞
∈ (Poly‘ℂ)[(𝑓 ∘f − (𝑔 ∘f ·
𝑞)) / 𝑟](𝑟 = 0𝑝 ∨
(deg‘𝑟) <
(deg‘𝑔))) | 
| 31 | 2, 3, 6, 9, 30 | cmpo 7434 | . 2
class (𝑓 ∈ (Poly‘ℂ),
𝑔 ∈
((Poly‘ℂ) ∖ {0𝑝}) ↦
(℩𝑞 ∈
(Poly‘ℂ)[(𝑓 ∘f − (𝑔 ∘f ·
𝑞)) / 𝑟](𝑟 = 0𝑝 ∨
(deg‘𝑟) <
(deg‘𝑔)))) | 
| 32 | 1, 31 | wceq 1539 | 1
wff  quot =
(𝑓 ∈
(Poly‘ℂ), 𝑔
∈ ((Poly‘ℂ) ∖ {0𝑝}) ↦
(℩𝑞 ∈
(Poly‘ℂ)[(𝑓 ∘f − (𝑔 ∘f ·
𝑞)) / 𝑟](𝑟 = 0𝑝 ∨
(deg‘𝑟) <
(deg‘𝑔)))) |