| Step | Hyp | Ref
| Expression |
| 1 | | plyssc 26162 |
. . 3
⊢
(Poly‘𝑆)
⊆ (Poly‘ℂ) |
| 2 | 1 | sseli 3959 |
. 2
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈
(Poly‘ℂ)) |
| 3 | 1 | sseli 3959 |
. . 3
⊢ (𝐺 ∈ (Poly‘𝑆) → 𝐺 ∈
(Poly‘ℂ)) |
| 4 | | eldifsn 4767 |
. . . . 5
⊢ (𝐺 ∈ ((Poly‘ℂ)
∖ {0𝑝}) ↔ (𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠
0𝑝)) |
| 5 | | oveq1 7417 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝐺 → (𝑔 ∘f · 𝑞) = (𝐺 ∘f · 𝑞)) |
| 6 | | oveq12 7419 |
. . . . . . . . . . 11
⊢ ((𝑓 = 𝐹 ∧ (𝑔 ∘f · 𝑞) = (𝐺 ∘f · 𝑞)) → (𝑓 ∘f − (𝑔 ∘f ·
𝑞)) = (𝐹 ∘f − (𝐺 ∘f ·
𝑞))) |
| 7 | 5, 6 | sylan2 593 |
. . . . . . . . . 10
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑓 ∘f − (𝑔 ∘f ·
𝑞)) = (𝐹 ∘f − (𝐺 ∘f ·
𝑞))) |
| 8 | | quotval.1 |
. . . . . . . . . 10
⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f ·
𝑞)) |
| 9 | 7, 8 | eqtr4di 2789 |
. . . . . . . . 9
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑓 ∘f − (𝑔 ∘f ·
𝑞)) = 𝑅) |
| 10 | 9 | sbceq1d 3775 |
. . . . . . . 8
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ([(𝑓 ∘f − (𝑔 ∘f ·
𝑞)) / 𝑟](𝑟 = 0𝑝 ∨
(deg‘𝑟) <
(deg‘𝑔)) ↔
[𝑅 / 𝑟](𝑟 = 0𝑝 ∨
(deg‘𝑟) <
(deg‘𝑔)))) |
| 11 | 8 | ovexi 7444 |
. . . . . . . . . 10
⊢ 𝑅 ∈ V |
| 12 | | eqeq1 2740 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → (𝑟 = 0𝑝 ↔ 𝑅 =
0𝑝)) |
| 13 | | fveq2 6881 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑅 → (deg‘𝑟) = (deg‘𝑅)) |
| 14 | 13 | breq1d 5134 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → ((deg‘𝑟) < (deg‘𝑔) ↔ (deg‘𝑅) < (deg‘𝑔))) |
| 15 | 12, 14 | orbi12d 918 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → ((𝑟 = 0𝑝 ∨
(deg‘𝑟) <
(deg‘𝑔)) ↔
(𝑅 = 0𝑝
∨ (deg‘𝑅) <
(deg‘𝑔)))) |
| 16 | 11, 15 | sbcie 3812 |
. . . . . . . . 9
⊢
([𝑅 / 𝑟](𝑟 = 0𝑝 ∨
(deg‘𝑟) <
(deg‘𝑔)) ↔
(𝑅 = 0𝑝
∨ (deg‘𝑅) <
(deg‘𝑔))) |
| 17 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → 𝑔 = 𝐺) |
| 18 | 17 | fveq2d 6885 |
. . . . . . . . . . 11
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (deg‘𝑔) = (deg‘𝐺)) |
| 19 | 18 | breq2d 5136 |
. . . . . . . . . 10
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((deg‘𝑅) < (deg‘𝑔) ↔ (deg‘𝑅) < (deg‘𝐺))) |
| 20 | 19 | orbi2d 915 |
. . . . . . . . 9
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝑔)) ↔
(𝑅 = 0𝑝
∨ (deg‘𝑅) <
(deg‘𝐺)))) |
| 21 | 16, 20 | bitrid 283 |
. . . . . . . 8
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ([𝑅 / 𝑟](𝑟 = 0𝑝 ∨
(deg‘𝑟) <
(deg‘𝑔)) ↔
(𝑅 = 0𝑝
∨ (deg‘𝑅) <
(deg‘𝐺)))) |
| 22 | 10, 21 | bitrd 279 |
. . . . . . 7
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ([(𝑓 ∘f − (𝑔 ∘f ·
𝑞)) / 𝑟](𝑟 = 0𝑝 ∨
(deg‘𝑟) <
(deg‘𝑔)) ↔
(𝑅 = 0𝑝
∨ (deg‘𝑅) <
(deg‘𝐺)))) |
| 23 | 22 | riotabidv 7369 |
. . . . . 6
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (℩𝑞 ∈ (Poly‘ℂ)[(𝑓 ∘f −
(𝑔 ∘f
· 𝑞)) / 𝑟](𝑟 = 0𝑝 ∨
(deg‘𝑟) <
(deg‘𝑔))) =
(℩𝑞 ∈
(Poly‘ℂ)(𝑅 =
0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))) |
| 24 | | df-quot 26256 |
. . . . . 6
⊢ quot =
(𝑓 ∈
(Poly‘ℂ), 𝑔
∈ ((Poly‘ℂ) ∖ {0𝑝}) ↦
(℩𝑞 ∈
(Poly‘ℂ)[(𝑓 ∘f − (𝑔 ∘f ·
𝑞)) / 𝑟](𝑟 = 0𝑝 ∨
(deg‘𝑟) <
(deg‘𝑔)))) |
| 25 | | riotaex 7371 |
. . . . . 6
⊢
(℩𝑞
∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺))) ∈
V |
| 26 | 23, 24, 25 | ovmpoa 7567 |
. . . . 5
⊢ ((𝐹 ∈ (Poly‘ℂ)
∧ 𝐺 ∈
((Poly‘ℂ) ∖ {0𝑝})) → (𝐹 quot 𝐺) = (℩𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)))) |
| 27 | 4, 26 | sylan2br 595 |
. . . 4
⊢ ((𝐹 ∈ (Poly‘ℂ)
∧ (𝐺 ∈
(Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝)) → (𝐹 quot 𝐺) = (℩𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)))) |
| 28 | 27 | 3impb 1114 |
. . 3
⊢ ((𝐹 ∈ (Poly‘ℂ)
∧ 𝐺 ∈
(Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) = (℩𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)))) |
| 29 | 3, 28 | syl3an2 1164 |
. 2
⊢ ((𝐹 ∈ (Poly‘ℂ)
∧ 𝐺 ∈
(Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)
→ (𝐹 quot 𝐺) = (℩𝑞 ∈
(Poly‘ℂ)(𝑅 =
0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))) |
| 30 | 2, 29 | syl3an1 1163 |
1
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) = (℩𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)))) |