MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quotval Structured version   Visualization version   GIF version

Theorem quotval 26257
Description: Value of the quotient function. (Contributed by Mario Carneiro, 23-Jul-2014.)
Hypothesis
Ref Expression
quotval.1 𝑅 = (𝐹f − (𝐺f · 𝑞))
Assertion
Ref Expression
quotval ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
Distinct variable groups:   𝐹,𝑞   𝐺,𝑞
Allowed substitution hints:   𝑅(𝑞)   𝑆(𝑞)

Proof of Theorem quotval
Dummy variables 𝑓 𝑔 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyssc 26162 . . 3 (Poly‘𝑆) ⊆ (Poly‘ℂ)
21sseli 3959 . 2 (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ))
31sseli 3959 . . 3 (𝐺 ∈ (Poly‘𝑆) → 𝐺 ∈ (Poly‘ℂ))
4 eldifsn 4767 . . . . 5 (𝐺 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ↔ (𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝))
5 oveq1 7417 . . . . . . . . . . 11 (𝑔 = 𝐺 → (𝑔f · 𝑞) = (𝐺f · 𝑞))
6 oveq12 7419 . . . . . . . . . . 11 ((𝑓 = 𝐹 ∧ (𝑔f · 𝑞) = (𝐺f · 𝑞)) → (𝑓f − (𝑔f · 𝑞)) = (𝐹f − (𝐺f · 𝑞)))
75, 6sylan2 593 . . . . . . . . . 10 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓f − (𝑔f · 𝑞)) = (𝐹f − (𝐺f · 𝑞)))
8 quotval.1 . . . . . . . . . 10 𝑅 = (𝐹f − (𝐺f · 𝑞))
97, 8eqtr4di 2789 . . . . . . . . 9 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓f − (𝑔f · 𝑞)) = 𝑅)
109sbceq1d 3775 . . . . . . . 8 ((𝑓 = 𝐹𝑔 = 𝐺) → ([(𝑓f − (𝑔f · 𝑞)) / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔)) ↔ [𝑅 / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔))))
118ovexi 7444 . . . . . . . . . 10 𝑅 ∈ V
12 eqeq1 2740 . . . . . . . . . . 11 (𝑟 = 𝑅 → (𝑟 = 0𝑝𝑅 = 0𝑝))
13 fveq2 6881 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (deg‘𝑟) = (deg‘𝑅))
1413breq1d 5134 . . . . . . . . . . 11 (𝑟 = 𝑅 → ((deg‘𝑟) < (deg‘𝑔) ↔ (deg‘𝑅) < (deg‘𝑔)))
1512, 14orbi12d 918 . . . . . . . . . 10 (𝑟 = 𝑅 → ((𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔)) ↔ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝑔))))
1611, 15sbcie 3812 . . . . . . . . 9 ([𝑅 / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔)) ↔ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝑔)))
17 simpr 484 . . . . . . . . . . . 12 ((𝑓 = 𝐹𝑔 = 𝐺) → 𝑔 = 𝐺)
1817fveq2d 6885 . . . . . . . . . . 11 ((𝑓 = 𝐹𝑔 = 𝐺) → (deg‘𝑔) = (deg‘𝐺))
1918breq2d 5136 . . . . . . . . . 10 ((𝑓 = 𝐹𝑔 = 𝐺) → ((deg‘𝑅) < (deg‘𝑔) ↔ (deg‘𝑅) < (deg‘𝐺)))
2019orbi2d 915 . . . . . . . . 9 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝑔)) ↔ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
2116, 20bitrid 283 . . . . . . . 8 ((𝑓 = 𝐹𝑔 = 𝐺) → ([𝑅 / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔)) ↔ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
2210, 21bitrd 279 . . . . . . 7 ((𝑓 = 𝐹𝑔 = 𝐺) → ([(𝑓f − (𝑔f · 𝑞)) / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔)) ↔ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
2322riotabidv 7369 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑞 ∈ (Poly‘ℂ)[(𝑓f − (𝑔f · 𝑞)) / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔))) = (𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
24 df-quot 26256 . . . . . 6 quot = (𝑓 ∈ (Poly‘ℂ), 𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ↦ (𝑞 ∈ (Poly‘ℂ)[(𝑓f − (𝑔f · 𝑞)) / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔))))
25 riotaex 7371 . . . . . 6 (𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))) ∈ V
2623, 24, 25ovmpoa 7567 . . . . 5 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ ((Poly‘ℂ) ∖ {0𝑝})) → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
274, 26sylan2br 595 . . . 4 ((𝐹 ∈ (Poly‘ℂ) ∧ (𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝)) → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
28273impb 1114 . . 3 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
293, 28syl3an2 1164 . 2 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
302, 29syl3an1 1163 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2933  [wsbc 3770  cdif 3928  {csn 4606   class class class wbr 5124  cfv 6536  crio 7366  (class class class)co 7410  f cof 7674  cc 11132   · cmul 11139   < clt 11274  cmin 11471  0𝑝c0p 25627  Polycply 26146  degcdgr 26149   quot cquot 26255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-1cn 11192  ax-addcl 11194
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-map 8847  df-nn 12246  df-n0 12507  df-ply 26150  df-quot 26256
This theorem is referenced by:  quotlem  26265
  Copyright terms: Public domain W3C validator