MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quotval Structured version   Visualization version   GIF version

Theorem quotval 26228
Description: Value of the quotient function. (Contributed by Mario Carneiro, 23-Jul-2014.)
Hypothesis
Ref Expression
quotval.1 𝑅 = (𝐹f − (𝐺f · 𝑞))
Assertion
Ref Expression
quotval ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
Distinct variable groups:   𝐹,𝑞   𝐺,𝑞
Allowed substitution hints:   𝑅(𝑞)   𝑆(𝑞)

Proof of Theorem quotval
Dummy variables 𝑓 𝑔 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyssc 26133 . . 3 (Poly‘𝑆) ⊆ (Poly‘ℂ)
21sseli 3926 . 2 (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ))
31sseli 3926 . . 3 (𝐺 ∈ (Poly‘𝑆) → 𝐺 ∈ (Poly‘ℂ))
4 eldifsn 4737 . . . . 5 (𝐺 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ↔ (𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝))
5 oveq1 7359 . . . . . . . . . . 11 (𝑔 = 𝐺 → (𝑔f · 𝑞) = (𝐺f · 𝑞))
6 oveq12 7361 . . . . . . . . . . 11 ((𝑓 = 𝐹 ∧ (𝑔f · 𝑞) = (𝐺f · 𝑞)) → (𝑓f − (𝑔f · 𝑞)) = (𝐹f − (𝐺f · 𝑞)))
75, 6sylan2 593 . . . . . . . . . 10 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓f − (𝑔f · 𝑞)) = (𝐹f − (𝐺f · 𝑞)))
8 quotval.1 . . . . . . . . . 10 𝑅 = (𝐹f − (𝐺f · 𝑞))
97, 8eqtr4di 2786 . . . . . . . . 9 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓f − (𝑔f · 𝑞)) = 𝑅)
109sbceq1d 3742 . . . . . . . 8 ((𝑓 = 𝐹𝑔 = 𝐺) → ([(𝑓f − (𝑔f · 𝑞)) / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔)) ↔ [𝑅 / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔))))
118ovexi 7386 . . . . . . . . . 10 𝑅 ∈ V
12 eqeq1 2737 . . . . . . . . . . 11 (𝑟 = 𝑅 → (𝑟 = 0𝑝𝑅 = 0𝑝))
13 fveq2 6828 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (deg‘𝑟) = (deg‘𝑅))
1413breq1d 5103 . . . . . . . . . . 11 (𝑟 = 𝑅 → ((deg‘𝑟) < (deg‘𝑔) ↔ (deg‘𝑅) < (deg‘𝑔)))
1512, 14orbi12d 918 . . . . . . . . . 10 (𝑟 = 𝑅 → ((𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔)) ↔ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝑔))))
1611, 15sbcie 3779 . . . . . . . . 9 ([𝑅 / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔)) ↔ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝑔)))
17 simpr 484 . . . . . . . . . . . 12 ((𝑓 = 𝐹𝑔 = 𝐺) → 𝑔 = 𝐺)
1817fveq2d 6832 . . . . . . . . . . 11 ((𝑓 = 𝐹𝑔 = 𝐺) → (deg‘𝑔) = (deg‘𝐺))
1918breq2d 5105 . . . . . . . . . 10 ((𝑓 = 𝐹𝑔 = 𝐺) → ((deg‘𝑅) < (deg‘𝑔) ↔ (deg‘𝑅) < (deg‘𝐺)))
2019orbi2d 915 . . . . . . . . 9 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝑔)) ↔ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
2116, 20bitrid 283 . . . . . . . 8 ((𝑓 = 𝐹𝑔 = 𝐺) → ([𝑅 / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔)) ↔ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
2210, 21bitrd 279 . . . . . . 7 ((𝑓 = 𝐹𝑔 = 𝐺) → ([(𝑓f − (𝑔f · 𝑞)) / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔)) ↔ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
2322riotabidv 7311 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑞 ∈ (Poly‘ℂ)[(𝑓f − (𝑔f · 𝑞)) / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔))) = (𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
24 df-quot 26227 . . . . . 6 quot = (𝑓 ∈ (Poly‘ℂ), 𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ↦ (𝑞 ∈ (Poly‘ℂ)[(𝑓f − (𝑔f · 𝑞)) / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔))))
25 riotaex 7313 . . . . . 6 (𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))) ∈ V
2623, 24, 25ovmpoa 7507 . . . . 5 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ ((Poly‘ℂ) ∖ {0𝑝})) → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
274, 26sylan2br 595 . . . 4 ((𝐹 ∈ (Poly‘ℂ) ∧ (𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝)) → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
28273impb 1114 . . 3 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
293, 28syl3an2 1164 . 2 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
302, 29syl3an1 1163 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  wne 2929  [wsbc 3737  cdif 3895  {csn 4575   class class class wbr 5093  cfv 6486  crio 7308  (class class class)co 7352  f cof 7614  cc 11011   · cmul 11018   < clt 11153  cmin 11351  0𝑝c0p 25598  Polycply 26117  degcdgr 26120   quot cquot 26226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-1cn 11071  ax-addcl 11073
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-map 8758  df-nn 12133  df-n0 12389  df-ply 26121  df-quot 26227
This theorem is referenced by:  quotlem  26236
  Copyright terms: Public domain W3C validator