Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  quotval Structured version   Visualization version   GIF version

Theorem quotval 24484
 Description: Value of the quotient function. (Contributed by Mario Carneiro, 23-Jul-2014.)
Hypothesis
Ref Expression
quotval.1 𝑅 = (𝐹𝑓 − (𝐺𝑓 · 𝑞))
Assertion
Ref Expression
quotval ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
Distinct variable groups:   𝐹,𝑞   𝐺,𝑞
Allowed substitution hints:   𝑅(𝑞)   𝑆(𝑞)

Proof of Theorem quotval
Dummy variables 𝑓 𝑔 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyssc 24393 . . 3 (Poly‘𝑆) ⊆ (Poly‘ℂ)
21sseli 3817 . 2 (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ))
31sseli 3817 . . 3 (𝐺 ∈ (Poly‘𝑆) → 𝐺 ∈ (Poly‘ℂ))
4 eldifsn 4550 . . . . 5 (𝐺 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ↔ (𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝))
5 oveq1 6929 . . . . . . . . . . 11 (𝑔 = 𝐺 → (𝑔𝑓 · 𝑞) = (𝐺𝑓 · 𝑞))
6 oveq12 6931 . . . . . . . . . . 11 ((𝑓 = 𝐹 ∧ (𝑔𝑓 · 𝑞) = (𝐺𝑓 · 𝑞)) → (𝑓𝑓 − (𝑔𝑓 · 𝑞)) = (𝐹𝑓 − (𝐺𝑓 · 𝑞)))
75, 6sylan2 586 . . . . . . . . . 10 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓𝑓 − (𝑔𝑓 · 𝑞)) = (𝐹𝑓 − (𝐺𝑓 · 𝑞)))
8 quotval.1 . . . . . . . . . 10 𝑅 = (𝐹𝑓 − (𝐺𝑓 · 𝑞))
97, 8syl6eqr 2832 . . . . . . . . 9 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓𝑓 − (𝑔𝑓 · 𝑞)) = 𝑅)
109sbceq1d 3657 . . . . . . . 8 ((𝑓 = 𝐹𝑔 = 𝐺) → ([(𝑓𝑓 − (𝑔𝑓 · 𝑞)) / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔)) ↔ [𝑅 / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔))))
11 ovex 6954 . . . . . . . . . . 11 (𝐹𝑓 − (𝐺𝑓 · 𝑞)) ∈ V
128, 11eqeltri 2855 . . . . . . . . . 10 𝑅 ∈ V
13 eqeq1 2782 . . . . . . . . . . 11 (𝑟 = 𝑅 → (𝑟 = 0𝑝𝑅 = 0𝑝))
14 fveq2 6446 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (deg‘𝑟) = (deg‘𝑅))
1514breq1d 4896 . . . . . . . . . . 11 (𝑟 = 𝑅 → ((deg‘𝑟) < (deg‘𝑔) ↔ (deg‘𝑅) < (deg‘𝑔)))
1613, 15orbi12d 905 . . . . . . . . . 10 (𝑟 = 𝑅 → ((𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔)) ↔ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝑔))))
1712, 16sbcie 3687 . . . . . . . . 9 ([𝑅 / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔)) ↔ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝑔)))
18 simpr 479 . . . . . . . . . . . 12 ((𝑓 = 𝐹𝑔 = 𝐺) → 𝑔 = 𝐺)
1918fveq2d 6450 . . . . . . . . . . 11 ((𝑓 = 𝐹𝑔 = 𝐺) → (deg‘𝑔) = (deg‘𝐺))
2019breq2d 4898 . . . . . . . . . 10 ((𝑓 = 𝐹𝑔 = 𝐺) → ((deg‘𝑅) < (deg‘𝑔) ↔ (deg‘𝑅) < (deg‘𝐺)))
2120orbi2d 902 . . . . . . . . 9 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝑔)) ↔ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
2217, 21syl5bb 275 . . . . . . . 8 ((𝑓 = 𝐹𝑔 = 𝐺) → ([𝑅 / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔)) ↔ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
2310, 22bitrd 271 . . . . . . 7 ((𝑓 = 𝐹𝑔 = 𝐺) → ([(𝑓𝑓 − (𝑔𝑓 · 𝑞)) / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔)) ↔ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
2423riotabidv 6885 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑞 ∈ (Poly‘ℂ)[(𝑓𝑓 − (𝑔𝑓 · 𝑞)) / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔))) = (𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
25 df-quot 24483 . . . . . 6 quot = (𝑓 ∈ (Poly‘ℂ), 𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ↦ (𝑞 ∈ (Poly‘ℂ)[(𝑓𝑓 − (𝑔𝑓 · 𝑞)) / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔))))
26 riotaex 6887 . . . . . 6 (𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))) ∈ V
2724, 25, 26ovmpt2a 7068 . . . . 5 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ ((Poly‘ℂ) ∖ {0𝑝})) → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
284, 27sylan2br 588 . . . 4 ((𝐹 ∈ (Poly‘ℂ) ∧ (𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝)) → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
29283impb 1104 . . 3 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
303, 29syl3an2 1164 . 2 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
312, 30syl3an1 1163 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   ∨ wo 836   ∧ w3a 1071   = wceq 1601   ∈ wcel 2107   ≠ wne 2969  Vcvv 3398  [wsbc 3652   ∖ cdif 3789  {csn 4398   class class class wbr 4886  ‘cfv 6135  ℩crio 6882  (class class class)co 6922   ∘𝑓 cof 7172  ℂcc 10270   · cmul 10277   < clt 10411   − cmin 10606  0𝑝c0p 23873  Polycply 24377  degcdgr 24380   quot cquot 24482 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-1cn 10330  ax-addcl 10332 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-map 8142  df-nn 11375  df-n0 11643  df-ply 24381  df-quot 24483 This theorem is referenced by:  quotlem  24492
 Copyright terms: Public domain W3C validator