| Metamath
Proof Explorer Theorem List (p. 261 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | ftc2 26001* | The Fundamental Theorem of Calculus, part two. If 𝐹 is a function continuous on [𝐴, 𝐵] and continuously differentiable on (𝐴, 𝐵), then the integral of the derivative of 𝐹 is equal to 𝐹(𝐵) − 𝐹(𝐴). This is part of Metamath 100 proof #15. (Contributed by Mario Carneiro, 2-Sep-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → (ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ)) & ⊢ (𝜑 → (ℝ D 𝐹) ∈ 𝐿1) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) ⇒ ⊢ (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹‘𝐵) − (𝐹‘𝐴))) | ||
| Theorem | ftc2ditglem 26002* | Lemma for ftc2ditg 26003. (Contributed by Mario Carneiro, 3-Sep-2014.) |
| ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ (𝑋[,]𝑌)) & ⊢ (𝜑 → 𝐵 ∈ (𝑋[,]𝑌)) & ⊢ (𝜑 → (ℝ D 𝐹) ∈ ((𝑋(,)𝑌)–cn→ℂ)) & ⊢ (𝜑 → (ℝ D 𝐹) ∈ 𝐿1) & ⊢ (𝜑 → 𝐹 ∈ ((𝑋[,]𝑌)–cn→ℂ)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ⨜[𝐴 → 𝐵]((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹‘𝐵) − (𝐹‘𝐴))) | ||
| Theorem | ftc2ditg 26003* | Directed integral analogue of ftc2 26001. (Contributed by Mario Carneiro, 3-Sep-2014.) |
| ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ (𝑋[,]𝑌)) & ⊢ (𝜑 → 𝐵 ∈ (𝑋[,]𝑌)) & ⊢ (𝜑 → (ℝ D 𝐹) ∈ ((𝑋(,)𝑌)–cn→ℂ)) & ⊢ (𝜑 → (ℝ D 𝐹) ∈ 𝐿1) & ⊢ (𝜑 → 𝐹 ∈ ((𝑋[,]𝑌)–cn→ℂ)) ⇒ ⊢ (𝜑 → ⨜[𝐴 → 𝐵]((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹‘𝐵) − (𝐹‘𝐴))) | ||
| Theorem | itgparts 26004* | Integration by parts. If 𝐵(𝑥) is the derivative of 𝐴(𝑥) and 𝐷(𝑥) is the derivative of 𝐶(𝑥), and 𝐸 = (𝐴 · 𝐵)(𝑋) and 𝐹 = (𝐴 · 𝐵)(𝑌), then under suitable integrability and differentiability assumptions, the integral of 𝐴 · 𝐷 from 𝑋 to 𝑌 is equal to 𝐹 − 𝐸 minus the integral of 𝐵 · 𝐶. (Contributed by Mario Carneiro, 3-Sep-2014.) |
| ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→ℂ)) & ⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ∈ ((𝑋[,]𝑌)–cn→ℂ)) & ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ ((𝑋(,)𝑌)–cn→ℂ)) & ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ ((𝑋(,)𝑌)–cn→ℂ)) & ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐴 · 𝐷)) ∈ 𝐿1) & ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐵 · 𝐶)) ∈ 𝐿1) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵)) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷)) & ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐴 · 𝐶) = 𝐸) & ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → (𝐴 · 𝐶) = 𝐹) ⇒ ⊢ (𝜑 → ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥 = ((𝐹 − 𝐸) − ∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥)) | ||
| Theorem | itgsubstlem 26005* | Lemma for itgsubst 26006. (Contributed by Mario Carneiro, 12-Sep-2014.) |
| ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 𝑍 ∈ ℝ*) & ⊢ (𝜑 → 𝑊 ∈ ℝ*) & ⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊))) & ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1)) & ⊢ (𝜑 → (𝑢 ∈ (𝑍(,)𝑊) ↦ 𝐶) ∈ ((𝑍(,)𝑊)–cn→ℂ)) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵)) & ⊢ (𝑢 = 𝐴 → 𝐶 = 𝐸) & ⊢ (𝑥 = 𝑋 → 𝐴 = 𝐾) & ⊢ (𝑥 = 𝑌 → 𝐴 = 𝐿) & ⊢ (𝜑 → 𝑀 ∈ (𝑍(,)𝑊)) & ⊢ (𝜑 → 𝑁 ∈ (𝑍(,)𝑊)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋[,]𝑌)) → 𝐴 ∈ (𝑀(,)𝑁)) ⇒ ⊢ (𝜑 → ⨜[𝐾 → 𝐿]𝐶 d𝑢 = ⨜[𝑋 → 𝑌](𝐸 · 𝐵) d𝑥) | ||
| Theorem | itgsubst 26006* | Integration by 𝑢-substitution. If 𝐴(𝑥) is a continuous, differentiable function from [𝑋, 𝑌] to (𝑍, 𝑊), whose derivative is continuous and integrable, and 𝐶(𝑢) is a continuous function on (𝑍, 𝑊), then the integral of 𝐶(𝑢) from 𝐾 = 𝐴(𝑋) to 𝐿 = 𝐴(𝑌) is equal to the integral of 𝐶(𝐴(𝑥)) D 𝐴(𝑥) from 𝑋 to 𝑌. In this part of the proof we discharge the assumptions in itgsubstlem 26005, which use the fact that (𝑍, 𝑊) is open to shrink the interval a little to (𝑀, 𝑁) where 𝑍 < 𝑀 < 𝑁 < 𝑊- this is possible because 𝐴(𝑥) is a continuous function on a closed interval, so its range is in fact a closed interval, and we have some wiggle room on the edges. (Contributed by Mario Carneiro, 7-Sep-2014.) |
| ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 𝑍 ∈ ℝ*) & ⊢ (𝜑 → 𝑊 ∈ ℝ*) & ⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊))) & ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1)) & ⊢ (𝜑 → (𝑢 ∈ (𝑍(,)𝑊) ↦ 𝐶) ∈ ((𝑍(,)𝑊)–cn→ℂ)) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵)) & ⊢ (𝑢 = 𝐴 → 𝐶 = 𝐸) & ⊢ (𝑥 = 𝑋 → 𝐴 = 𝐾) & ⊢ (𝑥 = 𝑌 → 𝐴 = 𝐿) ⇒ ⊢ (𝜑 → ⨜[𝐾 → 𝐿]𝐶 d𝑢 = ⨜[𝑋 → 𝑌](𝐸 · 𝐵) d𝑥) | ||
| Theorem | itgpowd 26007* | The integral of a monomial on a closed bounded interval of the real line. Co-authors TA and MC. (Contributed by Jon Pennant, 31-May-2019.) (Revised by Thierry Arnoux, 14-Jun-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ∫(𝐴[,]𝐵)(𝑥↑𝑁) d𝑥 = (((𝐵↑(𝑁 + 1)) − (𝐴↑(𝑁 + 1))) / (𝑁 + 1))) | ||
| Syntax | cmdg 26008 | Multivariate polynomial degree. |
| class mDeg | ||
| Syntax | cdg1 26009 | Univariate polynomial degree. |
| class deg1 | ||
| Definition | df-mdeg 26010* | Define the degree of a polynomial. Note (SO): as an experiment I am using a definition which makes the degree of the zero polynomial -∞, contrary to the convention used in df-dgr 26146. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by AV, 25-Jun-2019.) |
| ⊢ mDeg = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ sup(ran (ℎ ∈ (𝑓 supp (0g‘𝑟)) ↦ (ℂfld Σg ℎ)), ℝ*, < ))) | ||
| Definition | df-deg1 26011 | Define the degree of a univariate polynomial. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| ⊢ deg1 = (𝑟 ∈ V ↦ (1o mDeg 𝑟)) | ||
| Theorem | reldmmdeg 26012 | Multivariate degree is a binary operation. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ Rel dom mDeg | ||
| Theorem | tdeglem1 26013* | Functionality of the total degree helper function. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) Remove sethood antecedent. (Revised by SN, 7-Aug-2024.) |
| ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} & ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) ⇒ ⊢ 𝐻:𝐴⟶ℕ0 | ||
| Theorem | tdeglem3 26014* | Additivity of the total degree helper function. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) Remove a sethood antecedent. (Revised by SN, 7-Aug-2024.) |
| ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} & ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) ⇒ ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝐻‘(𝑋 ∘f + 𝑌)) = ((𝐻‘𝑋) + (𝐻‘𝑌))) | ||
| Theorem | tdeglem4 26015* | There is only one multi-index with total degree 0. (Contributed by Stefan O'Rear, 29-Mar-2015.) Remove a sethood antecedent. (Revised by SN, 7-Aug-2024.) |
| ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} & ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) ⇒ ⊢ (𝑋 ∈ 𝐴 → ((𝐻‘𝑋) = 0 ↔ 𝑋 = (𝐼 × {0}))) | ||
| Theorem | tdeglem2 26016 | Simplification of total degree for the univariate case. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| ⊢ (ℎ ∈ (ℕ0 ↑m 1o) ↦ (ℎ‘∅)) = (ℎ ∈ (ℕ0 ↑m 1o) ↦ (ℂfld Σg ℎ)) | ||
| Theorem | mdegfval 26017* | Value of the multivariate degree function. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by AV, 25-Jun-2019.) |
| ⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} & ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) ⇒ ⊢ 𝐷 = (𝑓 ∈ 𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < )) | ||
| Theorem | mdegval 26018* | Value of the multivariate degree function at some particular polynomial. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by AV, 25-Jun-2019.) |
| ⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} & ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) ⇒ ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < )) | ||
| Theorem | mdegleb 26019* | Property of being of limited degree. (Contributed by Stefan O'Rear, 19-Mar-2015.) |
| ⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} & ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) ⇒ ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → ((𝐷‘𝐹) ≤ 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐺 < (𝐻‘𝑥) → (𝐹‘𝑥) = 0 ))) | ||
| Theorem | mdeglt 26020* | If there is an upper limit on the degree of a polynomial that is lower than the degree of some exponent bag, then that exponent bag is unrepresented in the polynomial. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
| ⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} & ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → (𝐷‘𝐹) < (𝐻‘𝑋)) ⇒ ⊢ (𝜑 → (𝐹‘𝑋) = 0 ) | ||
| Theorem | mdegldg 26021* | A nonzero polynomial has some coefficient which witnesses its degree. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| ⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} & ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) & ⊢ 𝑌 = (0g‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 𝑌) → ∃𝑥 ∈ 𝐴 ((𝐹‘𝑥) ≠ 0 ∧ (𝐻‘𝑥) = (𝐷‘𝐹))) | ||
| Theorem | mdegxrcl 26022 | Closure of polynomial degree in the extended reals. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
| ⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) ∈ ℝ*) | ||
| Theorem | mdegxrf 26023 | Functionality of polynomial degree in the extended reals. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
| ⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ 𝐷:𝐵⟶ℝ* | ||
| Theorem | mdegcl 26024 | Sharp closure for multivariate polynomials. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| ⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) ∈ (ℕ0 ∪ {-∞})) | ||
| Theorem | mdeg0 26025 | Degree of the zero polynomial. (Contributed by Stefan O'Rear, 20-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
| ⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 0 = (0g‘𝑃) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → (𝐷‘ 0 ) = -∞) | ||
| Theorem | mdegnn0cl 26026 | Degree of a nonzero polynomial. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| ⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐷‘𝐹) ∈ ℕ0) | ||
| Theorem | degltlem1 26027 | Theorem on arithmetic of extended reals useful for degrees. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| ⊢ ((𝑋 ∈ (ℕ0 ∪ {-∞}) ∧ 𝑌 ∈ ℤ) → (𝑋 < 𝑌 ↔ 𝑋 ≤ (𝑌 − 1))) | ||
| Theorem | degltp1le 26028 | Theorem on arithmetic of extended reals useful for degrees. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
| ⊢ ((𝑋 ∈ (ℕ0 ∪ {-∞}) ∧ 𝑌 ∈ ℤ) → (𝑋 < (𝑌 + 1) ↔ 𝑋 ≤ 𝑌)) | ||
| Theorem | mdegaddle 26029 | The degree of a sum is at most the maximum of the degrees of the factors. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
| ⊢ 𝑌 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ + = (+g‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 + 𝐺)) ≤ if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹))) | ||
| Theorem | mdegvscale 26030 | The degree of a scalar multiple of a polynomial is at most the degree of the original polynomial. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
| ⊢ 𝑌 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐷‘𝐺)) | ||
| Theorem | mdegvsca 26031 | The degree of a scalar multiple of a polynomial is exactly the degree of the original polynomial when the multiple is a nonzero-divisor. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
| ⊢ 𝑌 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐸) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) = (𝐷‘𝐺)) | ||
| Theorem | mdegle0 26032 | A polynomial has nonpositive degree iff it is a constant. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| ⊢ 𝑌 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐴 = (algSc‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝐷‘𝐹) ≤ 0 ↔ 𝐹 = (𝐴‘(𝐹‘(𝐼 × {0}))))) | ||
| Theorem | mdegmullem 26033* | Lemma for mdegmulle2 26034. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
| ⊢ 𝑌 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ · = (.r‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ (𝜑 → (𝐷‘𝐹) ≤ 𝐽) & ⊢ (𝜑 → (𝐷‘𝐺) ≤ 𝐾) & ⊢ 𝐴 = {𝑎 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} & ⊢ 𝐻 = (𝑏 ∈ 𝐴 ↦ (ℂfld Σg 𝑏)) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾)) | ||
| Theorem | mdegmulle2 26034 | The multivariate degree of a product of polynomials is at most the sum of the degrees of the polynomials. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
| ⊢ 𝑌 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ · = (.r‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ (𝜑 → (𝐷‘𝐹) ≤ 𝐽) & ⊢ (𝜑 → (𝐷‘𝐺) ≤ 𝐾) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾)) | ||
| Theorem | deg1fval 26035 | Relate univariate polynomial degree to multivariate. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) ⇒ ⊢ 𝐷 = (1o mDeg 𝑅) | ||
| Theorem | deg1xrf 26036 | Functionality of univariate polynomial degree, weak range. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ 𝐷:𝐵⟶ℝ* | ||
| Theorem | deg1xrcl 26037 | Closure of univariate polynomial degree in extended reals. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) ∈ ℝ*) | ||
| Theorem | deg1cl 26038 | Sharp closure of univariate polynomial degree. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) ∈ (ℕ0 ∪ {-∞})) | ||
| Theorem | mdegpropd 26039* | Property deduction for polynomial degree. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐵 = (Base‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑆)𝑦)) ⇒ ⊢ (𝜑 → (𝐼 mDeg 𝑅) = (𝐼 mDeg 𝑆)) | ||
| Theorem | deg1fvi 26040 | Univariate polynomial degree respects protection. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ (deg1‘𝑅) = (deg1‘( I ‘𝑅)) | ||
| Theorem | deg1propd 26041* | Property deduction for polynomial degree. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐵 = (Base‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑆)𝑦)) ⇒ ⊢ (𝜑 → (deg1‘𝑅) = (deg1‘𝑆)) | ||
| Theorem | deg1z 26042 | Degree of the zero univariate polynomial. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑃) ⇒ ⊢ (𝑅 ∈ Ring → (𝐷‘ 0 ) = -∞) | ||
| Theorem | deg1nn0cl 26043 | Degree of a nonzero univariate polynomial. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐷‘𝐹) ∈ ℕ0) | ||
| Theorem | deg1n0ima 26044 | Degree image of a set of polynomials which does not include zero. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ (𝑅 ∈ Ring → (𝐷 “ (𝐵 ∖ { 0 })) ⊆ ℕ0) | ||
| Theorem | deg1nn0clb 26045 | A polynomial is nonzero iff it has definite degree. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → (𝐹 ≠ 0 ↔ (𝐷‘𝐹) ∈ ℕ0)) | ||
| Theorem | deg1lt0 26046 | A polynomial is zero iff it has negative degree. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → ((𝐷‘𝐹) < 0 ↔ 𝐹 = 0 )) | ||
| Theorem | deg1ldg 26047 | A nonzero univariate polynomial always has a nonzero leading coefficient. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑌 = (0g‘𝑅) & ⊢ 𝐴 = (coe1‘𝐹) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐴‘(𝐷‘𝐹)) ≠ 𝑌) | ||
| Theorem | deg1ldgn 26048 | An index at which a polynomial is zero, cannot be its degree. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑌 = (0g‘𝑅) & ⊢ 𝐴 = (coe1‘𝐹) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ ℕ0) & ⊢ (𝜑 → (𝐴‘𝑋) = 𝑌) ⇒ ⊢ (𝜑 → (𝐷‘𝐹) ≠ 𝑋) | ||
| Theorem | deg1ldgdomn 26049 | A nonzero univariate polynomial over a domain always has a nonzero-divisor leading coefficient. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 𝐴 = (coe1‘𝐹) ⇒ ⊢ ((𝑅 ∈ Domn ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐴‘(𝐷‘𝐹)) ∈ 𝐸) | ||
| Theorem | deg1leb 26050* | Property of being of limited degree. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = (coe1‘𝐹) ⇒ ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → ((𝐷‘𝐹) ≤ 𝐺 ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴‘𝑥) = 0 ))) | ||
| Theorem | deg1val 26051 | Value of the univariate degree as a supremum. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Jul-2019.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = (coe1‘𝐹) ⇒ ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) = sup((𝐴 supp 0 ), ℝ*, < )) | ||
| Theorem | deg1lt 26052 | If the degree of a univariate polynomial is less than some index, then that coefficient must be zero. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = (coe1‘𝐹) ⇒ ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℕ0 ∧ (𝐷‘𝐹) < 𝐺) → (𝐴‘𝐺) = 0 ) | ||
| Theorem | deg1ge 26053 | Conversely, a nonzero coefficient sets a lower bound on the degree. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = (coe1‘𝐹) ⇒ ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℕ0 ∧ (𝐴‘𝐺) ≠ 0 ) → 𝐺 ≤ (𝐷‘𝐹)) | ||
| Theorem | coe1mul3 26054 | The coefficient vector of multiplication in the univariate polynomial ring, at indices high enough that at most one component can be active in the sum. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
| ⊢ 𝑌 = (Poly1‘𝑅) & ⊢ ∙ = (.r‘𝑌) & ⊢ · = (.r‘𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐼 ∈ ℕ0) & ⊢ (𝜑 → (𝐷‘𝐹) ≤ 𝐼) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → (𝐷‘𝐺) ≤ 𝐽) ⇒ ⊢ (𝜑 → ((coe1‘(𝐹 ∙ 𝐺))‘(𝐼 + 𝐽)) = (((coe1‘𝐹)‘𝐼) · ((coe1‘𝐺)‘𝐽))) | ||
| Theorem | coe1mul4 26055 | Value of the "leading" coefficient of a product of two nonzero polynomials. This will fail to actually be the leading coefficient only if it is zero (requiring the basic ring to contain zero divisors). (Contributed by Stefan O'Rear, 25-Mar-2015.) |
| ⊢ 𝑌 = (Poly1‘𝑅) & ⊢ ∙ = (.r‘𝑌) & ⊢ · = (.r‘𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 0 = (0g‘𝑌) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ≠ 0 ) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ≠ 0 ) ⇒ ⊢ (𝜑 → ((coe1‘(𝐹 ∙ 𝐺))‘((𝐷‘𝐹) + (𝐷‘𝐺))) = (((coe1‘𝐹)‘(𝐷‘𝐹)) · ((coe1‘𝐺)‘(𝐷‘𝐺)))) | ||
| Theorem | deg1addle 26056 | The degree of a sum is at most the maximum of the degrees of the factors. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
| ⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ + = (+g‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 + 𝐺)) ≤ if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹))) | ||
| Theorem | deg1addle2 26057 | If both factors have degree bounded by 𝐿, then the sum of the polynomials also has degree bounded by 𝐿. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
| ⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ + = (+g‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → 𝐿 ∈ ℝ*) & ⊢ (𝜑 → (𝐷‘𝐹) ≤ 𝐿) & ⊢ (𝜑 → (𝐷‘𝐺) ≤ 𝐿) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 + 𝐺)) ≤ 𝐿) | ||
| Theorem | deg1add 26058 | Exact degree of a sum of two polynomials of unequal degree. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ + = (+g‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → (𝐷‘𝐺) < (𝐷‘𝐹)) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 + 𝐺)) = (𝐷‘𝐹)) | ||
| Theorem | deg1vscale 26059 | The degree of a scalar times a polynomial is at most the degree of the original polynomial. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
| ⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐷‘𝐺)) | ||
| Theorem | deg1vsca 26060 | The degree of a scalar times a polynomial is exactly the degree of the original polynomial when the scalar is not a zero divisor. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐸) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) = (𝐷‘𝐺)) | ||
| Theorem | deg1invg 26061 | The degree of the negated polynomial is the same as the original. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑁 = (invg‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐷‘(𝑁‘𝐹)) = (𝐷‘𝐹)) | ||
| Theorem | deg1suble 26062 | The degree of a difference of polynomials is bounded by the maximum of degrees. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
| ⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) ≤ if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹))) | ||
| Theorem | deg1sub 26063 | Exact degree of a difference of two polynomials of unequal degree. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → (𝐷‘𝐺) < (𝐷‘𝐹)) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) = (𝐷‘𝐹)) | ||
| Theorem | deg1mulle2 26064 | Produce a bound on the product of two univariate polynomials given bounds on the factors. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
| ⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ · = (.r‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ (𝜑 → (𝐷‘𝐹) ≤ 𝐽) & ⊢ (𝜑 → (𝐷‘𝐺) ≤ 𝐾) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾)) | ||
| Theorem | deg1sublt 26065 | Subtraction of two polynomials limited to the same degree with the same leading coefficient gives a polynomial with a smaller degree. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ − = (-g‘𝑃) & ⊢ (𝜑 → 𝐿 ∈ ℕ0) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → (𝐷‘𝐹) ≤ 𝐿) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → (𝐷‘𝐺) ≤ 𝐿) & ⊢ 𝐴 = (coe1‘𝐹) & ⊢ 𝐶 = (coe1‘𝐺) & ⊢ (𝜑 → ((coe1‘𝐹)‘𝐿) = ((coe1‘𝐺)‘𝐿)) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) < 𝐿) | ||
| Theorem | deg1le0 26066 | A polynomial has nonpositive degree iff it is a constant. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐴 = (algSc‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → ((𝐷‘𝐹) ≤ 0 ↔ 𝐹 = (𝐴‘((coe1‘𝐹)‘0)))) | ||
| Theorem | deg1sclle 26067 | A scalar polynomial has nonpositive degree. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾) → (𝐷‘(𝐴‘𝐹)) ≤ 0) | ||
| Theorem | deg1scl 26068 | A nonzero scalar polynomial has zero degree. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐹 ≠ 0 ) → (𝐷‘(𝐴‘𝐹)) = 0) | ||
| Theorem | deg1mul2 26069 | Degree of multiplication of two nonzero polynomials when the first leads with a nonzero-divisor coefficient. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ · = (.r‘𝑃) & ⊢ 0 = (0g‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ≠ 0 ) & ⊢ (𝜑 → ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝐸) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) = ((𝐷‘𝐹) + (𝐷‘𝐺))) | ||
| Theorem | deg1mul 26070 | Degree of multiplication of two nonzero polynomials in a domain. (Contributed by metakunt, 6-May-2025.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ · = (.r‘𝑃) & ⊢ 0 = (0g‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Domn) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ≠ 0 ) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) = ((𝐷‘𝐹) + (𝐷‘𝐺))) | ||
| Theorem | deg1mul3 26071 | Degree of multiplication of a polynomial on the left by a nonzero-dividing scalar. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Proof shortened by AV, 25-Jul-2019.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ · = (.r‘𝑃) & ⊢ 𝐴 = (algSc‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → (𝐷‘((𝐴‘𝐹) · 𝐺)) = (𝐷‘𝐺)) | ||
| Theorem | deg1mul3le 26072 | Degree of multiplication of a polynomial on the left by a scalar. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ · = (.r‘𝑃) & ⊢ 𝐴 = (algSc‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐵) → (𝐷‘((𝐴‘𝐹) · 𝐺)) ≤ (𝐷‘𝐺)) | ||
| Theorem | deg1tmle 26073 | Limiting degree of a polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0) → (𝐷‘(𝐶 · (𝐹 ↑ 𝑋))) ≤ 𝐹) | ||
| Theorem | deg1tm 26074 | Exact degree of a polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝐶 ∈ 𝐾 ∧ 𝐶 ≠ 0 ) ∧ 𝐹 ∈ ℕ0) → (𝐷‘(𝐶 · (𝐹 ↑ 𝑋))) = 𝐹) | ||
| Theorem | deg1pwle 26075 | Limiting degree of a variable power. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ ℕ0) → (𝐷‘(𝐹 ↑ 𝑋)) ≤ 𝐹) | ||
| Theorem | deg1pw 26076 | Exact degree of a variable power over a nontrivial ring. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) ⇒ ⊢ ((𝑅 ∈ NzRing ∧ 𝐹 ∈ ℕ0) → (𝐷‘(𝐹 ↑ 𝑋)) = 𝐹) | ||
| Theorem | ply1nz 26077 | Univariate polynomials over a nonzero ring are a nonzero ring. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (𝑅 ∈ NzRing → 𝑃 ∈ NzRing) | ||
| Theorem | ply1nzb 26078 | Univariate polynomials are nonzero iff the base is nonzero. Or in contraposition, the univariate polynomials over the zero ring are also zero. (Contributed by Mario Carneiro, 13-Jun-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝑅 ∈ NzRing ↔ 𝑃 ∈ NzRing)) | ||
| Theorem | ply1domn 26079 | Corollary of deg1mul2 26069: the univariate polynomials over a domain are a domain. This is true for multivariate but with a much more complicated proof. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (𝑅 ∈ Domn → 𝑃 ∈ Domn) | ||
| Theorem | ply1idom 26080 | The ring of univariate polynomials over an integral domain is itself an integral domain. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (𝑅 ∈ IDomn → 𝑃 ∈ IDomn) | ||
| Syntax | cmn1 26081 | Monic polynomials. |
| class Monic1p | ||
| Syntax | cuc1p 26082 | Unitic polynomials. |
| class Unic1p | ||
| Syntax | cq1p 26083 | Univariate polynomial quotient. |
| class quot1p | ||
| Syntax | cr1p 26084 | Univariate polynomial remainder. |
| class rem1p | ||
| Syntax | cig1p 26085 | Univariate polynomial ideal generator. |
| class idlGen1p | ||
| Definition | df-mon1 26086* | Define the set of monic univariate polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ Monic1p = (𝑟 ∈ V ↦ {𝑓 ∈ (Base‘(Poly1‘𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1‘𝑟)) ∧ ((coe1‘𝑓)‘((deg1‘𝑟)‘𝑓)) = (1r‘𝑟))}) | ||
| Definition | df-uc1p 26087* | Define the set of unitic univariate polynomials, as the polynomials with an invertible leading coefficient. This is not a standard concept but is useful to us as the set of polynomials which can be used as the divisor in the polynomial division theorem ply1divalg 26093. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ Unic1p = (𝑟 ∈ V ↦ {𝑓 ∈ (Base‘(Poly1‘𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1‘𝑟)) ∧ ((coe1‘𝑓)‘((deg1‘𝑟)‘𝑓)) ∈ (Unit‘𝑟))}) | ||
| Definition | df-q1p 26088* | Define the quotient of two univariate polynomials, which is guaranteed to exist and be unique by ply1divalg 26093. We actually use the reversed version for better harmony with our divisibility df-dvdsr 20315. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ quot1p = (𝑟 ∈ V ↦ ⦋(Poly1‘𝑟) / 𝑝⦌⦋(Base‘𝑝) / 𝑏⦌(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (℩𝑞 ∈ 𝑏 ((deg1‘𝑟)‘(𝑓(-g‘𝑝)(𝑞(.r‘𝑝)𝑔))) < ((deg1‘𝑟)‘𝑔)))) | ||
| Definition | df-r1p 26089* | Define the remainder after dividing two univariate polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ rem1p = (𝑟 ∈ V ↦ ⦋(Base‘(Poly1‘𝑟)) / 𝑏⦌(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓(-g‘(Poly1‘𝑟))((𝑓(quot1p‘𝑟)𝑔)(.r‘(Poly1‘𝑟))𝑔)))) | ||
| Definition | df-ig1p 26090* | Define a choice function for generators of ideals over a division ring; this is the unique monic polynomial of minimal degree in the ideal. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Sep-2020.) |
| ⊢ idlGen1p = (𝑟 ∈ V ↦ (𝑖 ∈ (LIdeal‘(Poly1‘𝑟)) ↦ if(𝑖 = {(0g‘(Poly1‘𝑟))}, (0g‘(Poly1‘𝑟)), (℩𝑔 ∈ (𝑖 ∩ (Monic1p‘𝑟))((deg1‘𝑟)‘𝑔) = inf(((deg1‘𝑟) “ (𝑖 ∖ {(0g‘(Poly1‘𝑟))})), ℝ, < ))))) | ||
| Theorem | ply1divmo 26091* | Uniqueness of a quotient in a polynomial division. For polynomials 𝐹, 𝐺 such that 𝐺 ≠ 0 and the leading coefficient of 𝐺 is not a zero divisor, there is at most one polynomial 𝑞 which satisfies 𝐹 = (𝐺 · 𝑞) + 𝑟 where the degree of 𝑟 is less than the degree of 𝐺. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Revised by NM, 17-Jun-2017.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ − = (-g‘𝑃) & ⊢ 0 = (0g‘𝑃) & ⊢ ∙ = (.r‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ≠ 0 ) & ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ 𝐸) & ⊢ 𝐸 = (RLReg‘𝑅) ⇒ ⊢ (𝜑 → ∃*𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝐺 ∙ 𝑞))) < (𝐷‘𝐺)) | ||
| Theorem | ply1divex 26092* | Lemma for ply1divalg 26093: existence part. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ − = (-g‘𝑃) & ⊢ 0 = (0g‘𝑃) & ⊢ ∙ = (.r‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ≠ 0 ) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝐾) & ⊢ (𝜑 → (((coe1‘𝐺)‘(𝐷‘𝐺)) · 𝐼) = 1 ) ⇒ ⊢ (𝜑 → ∃𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝐺 ∙ 𝑞))) < (𝐷‘𝐺)) | ||
| Theorem | ply1divalg 26093* | The division algorithm for univariate polynomials over a ring. For polynomials 𝐹, 𝐺 such that 𝐺 ≠ 0 and the leading coefficient of 𝐺 is a unit, there are unique polynomials 𝑞 and 𝑟 = 𝐹 − (𝐺 · 𝑞) such that the degree of 𝑟 is less than the degree of 𝐺. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ − = (-g‘𝑃) & ⊢ 0 = (0g‘𝑃) & ⊢ ∙ = (.r‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ≠ 0 ) & ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ 𝑈) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝜑 → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝐺 ∙ 𝑞))) < (𝐷‘𝐺)) | ||
| Theorem | ply1divalg2 26094* | Reverse the order of multiplication in ply1divalg 26093 via the opposite ring. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ − = (-g‘𝑃) & ⊢ 0 = (0g‘𝑃) & ⊢ ∙ = (.r‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ≠ 0 ) & ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ 𝑈) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝜑 → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 ∙ 𝐺))) < (𝐷‘𝐺)) | ||
| Theorem | uc1pval 26095* | Value of the set of unitic polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝐶 = (Unic1p‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ 𝐶 = {𝑓 ∈ 𝐵 ∣ (𝑓 ≠ 0 ∧ ((coe1‘𝑓)‘(𝐷‘𝑓)) ∈ 𝑈)} | ||
| Theorem | isuc1p 26096 | Being a unitic polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝐶 = (Unic1p‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝐶 ↔ (𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝑈)) | ||
| Theorem | mon1pval 26097* | Value of the set of monic polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑀 = (Monic1p‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ 𝑀 = {𝑓 ∈ 𝐵 ∣ (𝑓 ≠ 0 ∧ ((coe1‘𝑓)‘(𝐷‘𝑓)) = 1 )} | ||
| Theorem | ismon1p 26098 | Being a monic polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑀 = (Monic1p‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝑀 ↔ (𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 )) | ||
| Theorem | uc1pcl 26099 | Unitic polynomials are polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐶 = (Unic1p‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝐶 → 𝐹 ∈ 𝐵) | ||
| Theorem | mon1pcl 26100 | Monic polynomials are polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑀 = (Monic1p‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝑀 → 𝐹 ∈ 𝐵) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |