![]() |
Metamath
Proof Explorer Theorem List (p. 261 of 473) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-29860) |
![]() (29861-31383) |
![]() (31384-47242) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | logcnlem5 26001* | Lemma for logcn 26002. (Contributed by Mario Carneiro, 18-Feb-2015.) |
⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) ⇒ ⊢ (𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥))) ∈ (𝐷–cn→ℝ) | ||
Theorem | logcn 26002 | The logarithm function is continuous away from the branch cut at negative reals. (Contributed by Mario Carneiro, 25-Feb-2015.) |
⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) ⇒ ⊢ (log ↾ 𝐷) ∈ (𝐷–cn→ℂ) | ||
Theorem | dvloglem 26003 | Lemma for dvlog 26006. (Contributed by Mario Carneiro, 24-Feb-2015.) |
⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) ⇒ ⊢ (log “ 𝐷) ∈ (TopOpen‘ℂfld) | ||
Theorem | logdmopn 26004 | The "continuous domain" of log is an open set. (Contributed by Mario Carneiro, 7-Apr-2015.) |
⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) ⇒ ⊢ 𝐷 ∈ (TopOpen‘ℂfld) | ||
Theorem | logf1o2 26005 | The logarithm maps its continuous domain bijectively onto the set of numbers with imaginary part -π < ℑ(𝑧) < π. The negative reals are mapped to the numbers with imaginary part equal to π. (Contributed by Mario Carneiro, 2-May-2015.) |
⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) ⇒ ⊢ (log ↾ 𝐷):𝐷–1-1-onto→(◡ℑ “ (-π(,)π)) | ||
Theorem | dvlog 26006* | The derivative of the complex logarithm function. (Contributed by Mario Carneiro, 25-Feb-2015.) |
⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) ⇒ ⊢ (ℂ D (log ↾ 𝐷)) = (𝑥 ∈ 𝐷 ↦ (1 / 𝑥)) | ||
Theorem | dvlog2lem 26007 | Lemma for dvlog2 26008. (Contributed by Mario Carneiro, 1-Mar-2015.) |
⊢ 𝑆 = (1(ball‘(abs ∘ − ))1) ⇒ ⊢ 𝑆 ⊆ (ℂ ∖ (-∞(,]0)) | ||
Theorem | dvlog2 26008* | The derivative of the complex logarithm function on the open unit ball centered at 1, a sometimes easier region to work with than the ℂ ∖ (-∞, 0] of dvlog 26006. (Contributed by Mario Carneiro, 1-Mar-2015.) |
⊢ 𝑆 = (1(ball‘(abs ∘ − ))1) ⇒ ⊢ (ℂ D (log ↾ 𝑆)) = (𝑥 ∈ 𝑆 ↦ (1 / 𝑥)) | ||
Theorem | advlog 26009 | The antiderivative of the logarithm. (Contributed by Mario Carneiro, 21-May-2016.) |
⊢ (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) | ||
Theorem | advlogexp 26010* | The antiderivative of a power of the logarithm. (Set 𝐴 = 1 and multiply by (-1)↑𝑁 · 𝑁! to get the antiderivative of log(𝑥)↑𝑁 itself.) (Contributed by Mario Carneiro, 22-May-2016.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℕ0) → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘))))) = (𝑥 ∈ ℝ+ ↦ (((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁)))) | ||
Theorem | efopnlem1 26011 | Lemma for efopn 26013. (Contributed by Mario Carneiro, 23-Apr-2015.) (Revised by Mario Carneiro, 8-Sep-2015.) |
⊢ (((𝑅 ∈ ℝ+ ∧ 𝑅 < π) ∧ 𝐴 ∈ (0(ball‘(abs ∘ − ))𝑅)) → (abs‘(ℑ‘𝐴)) < π) | ||
Theorem | efopnlem2 26012 | Lemma for efopn 26013. (Contributed by Mario Carneiro, 2-May-2015.) |
⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ ((𝑅 ∈ ℝ+ ∧ 𝑅 < π) → (exp “ (0(ball‘(abs ∘ − ))𝑅)) ∈ 𝐽) | ||
Theorem | efopn 26013 | The exponential map is an open map. (Contributed by Mario Carneiro, 23-Apr-2015.) |
⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ (𝑆 ∈ 𝐽 → (exp “ 𝑆) ∈ 𝐽) | ||
Theorem | logtayllem 26014* | Lemma for logtayl 26015. (Contributed by Mario Carneiro, 1-Apr-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴↑𝑛)))) ∈ dom ⇝ ) | ||
Theorem | logtayl 26015* | The Taylor series for -log(1 − 𝐴). (Contributed by Mario Carneiro, 1-Apr-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑘 ∈ ℕ ↦ ((𝐴↑𝑘) / 𝑘))) ⇝ -(log‘(1 − 𝐴))) | ||
Theorem | logtaylsum 26016* | The Taylor series for -log(1 − 𝐴), as an infinite sum. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → Σ𝑘 ∈ ℕ ((𝐴↑𝑘) / 𝑘) = -(log‘(1 − 𝐴))) | ||
Theorem | logtayl2 26017* | Power series expression for the logarithm. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ 𝑆 = (1(ball‘(abs ∘ − ))1) ⇒ ⊢ (𝐴 ∈ 𝑆 → seq1( + , (𝑘 ∈ ℕ ↦ (((-1↑(𝑘 − 1)) / 𝑘) · ((𝐴 − 1)↑𝑘)))) ⇝ (log‘𝐴)) | ||
Theorem | logccv 26018 | The natural logarithm function on the reals is a strictly concave function. (Contributed by Mario Carneiro, 20-Jun-2015.) |
⊢ (((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵))) < (log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)))) | ||
Theorem | cxpval 26019 | Value of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) = if(𝐴 = 0, if(𝐵 = 0, 1, 0), (exp‘(𝐵 · (log‘𝐴))))) | ||
Theorem | cxpef 26020 | Value of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) | ||
Theorem | 0cxp 26021 | Value of the complex power function when the first argument is zero. (Contributed by Mario Carneiro, 2-Aug-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (0↑𝑐𝐴) = 0) | ||
Theorem | cxpexpz 26022 | Relate the complex power function to the integer power function. (Contributed by Mario Carneiro, 2-Aug-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℤ) → (𝐴↑𝑐𝐵) = (𝐴↑𝐵)) | ||
Theorem | cxpexp 26023 | Relate the complex power function to the integer power function. (Contributed by Mario Carneiro, 2-Aug-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0) → (𝐴↑𝑐𝐵) = (𝐴↑𝐵)) | ||
Theorem | logcxp 26024 | Logarithm of a complex power. (Contributed by Mario Carneiro, 2-Aug-2014.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → (log‘(𝐴↑𝑐𝐵)) = (𝐵 · (log‘𝐴))) | ||
Theorem | cxp0 26025 | Value of the complex power function when the second argument is zero. (Contributed by Mario Carneiro, 2-Aug-2014.) |
⊢ (𝐴 ∈ ℂ → (𝐴↑𝑐0) = 1) | ||
Theorem | cxp1 26026 | Value of the complex power function at one. (Contributed by Mario Carneiro, 2-Aug-2014.) |
⊢ (𝐴 ∈ ℂ → (𝐴↑𝑐1) = 𝐴) | ||
Theorem | 1cxp 26027 | Value of the complex power function at one. (Contributed by Mario Carneiro, 2-Aug-2014.) |
⊢ (𝐴 ∈ ℂ → (1↑𝑐𝐴) = 1) | ||
Theorem | ecxp 26028 | Write the exponential function as an exponent to the power e. (Contributed by Mario Carneiro, 2-Aug-2014.) |
⊢ (𝐴 ∈ ℂ → (e↑𝑐𝐴) = (exp‘𝐴)) | ||
Theorem | cxpcl 26029 | Closure of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) ∈ ℂ) | ||
Theorem | recxpcl 26030 | Real closure of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ) → (𝐴↑𝑐𝐵) ∈ ℝ) | ||
Theorem | rpcxpcl 26031 | Positive real closure of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → (𝐴↑𝑐𝐵) ∈ ℝ+) | ||
Theorem | cxpne0 26032 | Complex exponentiation is nonzero if its base is nonzero. (Contributed by Mario Carneiro, 2-Aug-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) ≠ 0) | ||
Theorem | cxpeq0 26033 | Complex exponentiation is zero iff the base is zero and the exponent is nonzero. (Contributed by Mario Carneiro, 23-Apr-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑𝑐𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 ≠ 0))) | ||
Theorem | cxpadd 26034 | Sum of exponents law for complex exponentiation. Proposition 10-4.2(a) of [Gleason] p. 135. (Contributed by Mario Carneiro, 2-Aug-2014.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐(𝐵 + 𝐶)) = ((𝐴↑𝑐𝐵) · (𝐴↑𝑐𝐶))) | ||
Theorem | cxpp1 26035 | Value of a nonzero complex number raised to a complex power plus one. (Contributed by Mario Carneiro, 2-Aug-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐(𝐵 + 1)) = ((𝐴↑𝑐𝐵) · 𝐴)) | ||
Theorem | cxpneg 26036 | Value of a complex number raised to a negative power. (Contributed by Mario Carneiro, 2-Aug-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐-𝐵) = (1 / (𝐴↑𝑐𝐵))) | ||
Theorem | cxpsub 26037 | Exponent subtraction law for complex exponentiation. (Contributed by Mario Carneiro, 22-Sep-2014.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐(𝐵 − 𝐶)) = ((𝐴↑𝑐𝐵) / (𝐴↑𝑐𝐶))) | ||
Theorem | cxpge0 26038 | Nonnegative exponentiation with a real exponent is nonnegative. (Contributed by Mario Carneiro, 2-Aug-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ) → 0 ≤ (𝐴↑𝑐𝐵)) | ||
Theorem | mulcxplem 26039 | Lemma for mulcxp 26040. (Contributed by Mario Carneiro, 2-Aug-2014.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (0↑𝑐𝐶) = ((𝐴↑𝑐𝐶) · (0↑𝑐𝐶))) | ||
Theorem | mulcxp 26040 | Complex exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135. (Contributed by Mario Carneiro, 2-Aug-2014.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑐𝐶) = ((𝐴↑𝑐𝐶) · (𝐵↑𝑐𝐶))) | ||
Theorem | cxprec 26041 | Complex exponentiation of a reciprocal. (Contributed by Mario Carneiro, 2-Aug-2014.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ) → ((1 / 𝐴)↑𝑐𝐵) = (1 / (𝐴↑𝑐𝐵))) | ||
Theorem | divcxp 26042 | Complex exponentiation of a quotient. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ) → ((𝐴 / 𝐵)↑𝑐𝐶) = ((𝐴↑𝑐𝐶) / (𝐵↑𝑐𝐶))) | ||
Theorem | cxpmul 26043 | Product of exponents law for complex exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135. (Contributed by Mario Carneiro, 2-Aug-2014.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐(𝐵 · 𝐶)) = ((𝐴↑𝑐𝐵)↑𝑐𝐶)) | ||
Theorem | cxpmul2 26044 | Product of exponents law for complex exponentiation. Variation on cxpmul 26043 with more general conditions on 𝐴 and 𝐵 when 𝐶 is an integer. (Contributed by Mario Carneiro, 9-Aug-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℕ0) → (𝐴↑𝑐(𝐵 · 𝐶)) = ((𝐴↑𝑐𝐵)↑𝐶)) | ||
Theorem | cxproot 26045 | The complex power function allows to write n-th roots via the idiom 𝐴↑𝑐(1 / 𝑁). (Contributed by Mario Carneiro, 6-May-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴↑𝑐(1 / 𝑁))↑𝑁) = 𝐴) | ||
Theorem | cxpmul2z 26046 | Generalize cxpmul2 26044 to negative integers. (Contributed by Mario Carneiro, 23-Apr-2015.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℤ)) → (𝐴↑𝑐(𝐵 · 𝐶)) = ((𝐴↑𝑐𝐵)↑𝐶)) | ||
Theorem | abscxp 26047 | Absolute value of a power, when the base is real. (Contributed by Mario Carneiro, 15-Sep-2014.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴↑𝑐𝐵)) = (𝐴↑𝑐(ℜ‘𝐵))) | ||
Theorem | abscxp2 26048 | Absolute value of a power, when the exponent is real. (Contributed by Mario Carneiro, 15-Sep-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) → (abs‘(𝐴↑𝑐𝐵)) = ((abs‘𝐴)↑𝑐𝐵)) | ||
Theorem | cxplt 26049 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-Aug-2014.) |
⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 < 𝐶 ↔ (𝐴↑𝑐𝐵) < (𝐴↑𝑐𝐶))) | ||
Theorem | cxple 26050 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-Aug-2014.) |
⊢ (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 ≤ 𝐶 ↔ (𝐴↑𝑐𝐵) ≤ (𝐴↑𝑐𝐶))) | ||
Theorem | cxplea 26051 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 10-Sep-2014.) |
⊢ (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ≤ 𝐶) → (𝐴↑𝑐𝐵) ≤ (𝐴↑𝑐𝐶)) | ||
Theorem | cxple2 26052 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴 ≤ 𝐵 ↔ (𝐴↑𝑐𝐶) ≤ (𝐵↑𝑐𝐶))) | ||
Theorem | cxplt2 26053 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 15-Sep-2014.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (𝐴↑𝑐𝐶) < (𝐵↑𝑐𝐶))) | ||
Theorem | cxple2a 26054 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 15-Sep-2014.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐶) ∧ 𝐴 ≤ 𝐵) → (𝐴↑𝑐𝐶) ≤ (𝐵↑𝑐𝐶)) | ||
Theorem | cxplt3 26055 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-May-2016.) |
⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 < 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 < 𝐶 ↔ (𝐴↑𝑐𝐶) < (𝐴↑𝑐𝐵))) | ||
Theorem | cxple3 26056 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-May-2016.) |
⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 < 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 ≤ 𝐶 ↔ (𝐴↑𝑐𝐶) ≤ (𝐴↑𝑐𝐵))) | ||
Theorem | cxpsqrtlem 26057 | Lemma for cxpsqrt 26058. (Contributed by Mario Carneiro, 2-Aug-2014.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 / 2)) = -(√‘𝐴)) → (i · (√‘𝐴)) ∈ ℝ) | ||
Theorem | cxpsqrt 26058 | The complex exponential function with exponent 1 / 2 exactly matches the complex square root function (the branch cut is in the same place for both functions), and thus serves as a suitable generalization to other 𝑛-th roots and irrational roots. (Contributed by Mario Carneiro, 2-Aug-2014.) |
⊢ (𝐴 ∈ ℂ → (𝐴↑𝑐(1 / 2)) = (√‘𝐴)) | ||
Theorem | logsqrt 26059 | Logarithm of a square root. (Contributed by Mario Carneiro, 5-May-2016.) |
⊢ (𝐴 ∈ ℝ+ → (log‘(√‘𝐴)) = ((log‘𝐴) / 2)) | ||
Theorem | cxp0d 26060 | Value of the complex power function when the second argument is zero. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴↑𝑐0) = 1) | ||
Theorem | cxp1d 26061 | Value of the complex power function at one. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴↑𝑐1) = 𝐴) | ||
Theorem | 1cxpd 26062 | Value of the complex power function at one. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (1↑𝑐𝐴) = 1) | ||
Theorem | cxpcld 26063 | Closure of the complex power function. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴↑𝑐𝐵) ∈ ℂ) | ||
Theorem | cxpmul2d 26064 | Product of exponents law for complex exponentiation. Variation on cxpmul 26043 with more general conditions on 𝐴 and 𝐵 when 𝐶 is an integer. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴↑𝑐(𝐵 · 𝐶)) = ((𝐴↑𝑐𝐵)↑𝐶)) | ||
Theorem | 0cxpd 26065 | Value of the complex power function when the first argument is zero. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (0↑𝑐𝐴) = 0) | ||
Theorem | cxpexpzd 26066 | Relate the complex power function to the integer power function. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴↑𝑐𝐵) = (𝐴↑𝐵)) | ||
Theorem | cxpefd 26067 | Value of the complex power function. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) | ||
Theorem | cxpne0d 26068 | Complex exponentiation is nonzero if its base is nonzero. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴↑𝑐𝐵) ≠ 0) | ||
Theorem | cxpp1d 26069 | Value of a nonzero complex number raised to a complex power plus one. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴↑𝑐(𝐵 + 1)) = ((𝐴↑𝑐𝐵) · 𝐴)) | ||
Theorem | cxpnegd 26070 | Value of a complex number raised to a negative power. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴↑𝑐-𝐵) = (1 / (𝐴↑𝑐𝐵))) | ||
Theorem | cxpmul2zd 26071 | Generalize cxpmul2 26044 to negative integers. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴↑𝑐(𝐵 · 𝐶)) = ((𝐴↑𝑐𝐵)↑𝐶)) | ||
Theorem | cxpaddd 26072 | Sum of exponents law for complex exponentiation. Proposition 10-4.2(a) of [Gleason] p. 135. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴↑𝑐(𝐵 + 𝐶)) = ((𝐴↑𝑐𝐵) · (𝐴↑𝑐𝐶))) | ||
Theorem | cxpsubd 26073 | Exponent subtraction law for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴↑𝑐(𝐵 − 𝐶)) = ((𝐴↑𝑐𝐵) / (𝐴↑𝑐𝐶))) | ||
Theorem | cxpltd 26074 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 1 < 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐵 < 𝐶 ↔ (𝐴↑𝑐𝐵) < (𝐴↑𝑐𝐶))) | ||
Theorem | cxpled 26075 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 1 < 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐵 ≤ 𝐶 ↔ (𝐴↑𝑐𝐵) ≤ (𝐴↑𝑐𝐶))) | ||
Theorem | cxplead 26076 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 1 ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → (𝐴↑𝑐𝐵) ≤ (𝐴↑𝑐𝐶)) | ||
Theorem | divcxpd 26077 | Complex exponentiation of a quotient. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵)↑𝑐𝐶) = ((𝐴↑𝑐𝐶) / (𝐵↑𝑐𝐶))) | ||
Theorem | recxpcld 26078 | Positive real closure of the complex power function. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴↑𝑐𝐵) ∈ ℝ) | ||
Theorem | cxpge0d 26079 | Nonnegative exponentiation with a real exponent is nonnegative. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → 0 ≤ (𝐴↑𝑐𝐵)) | ||
Theorem | cxple2ad 26080 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐶) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴↑𝑐𝐶) ≤ (𝐵↑𝑐𝐶)) | ||
Theorem | cxplt2d 26081 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐴↑𝑐𝐶) < (𝐵↑𝑐𝐶))) | ||
Theorem | cxple2d 26082 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐴↑𝑐𝐶) ≤ (𝐵↑𝑐𝐶))) | ||
Theorem | mulcxpd 26083 | Complex exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵)↑𝑐𝐶) = ((𝐴↑𝑐𝐶) · (𝐵↑𝑐𝐶))) | ||
Theorem | cxpsqrtth 26084 | Square root theorem over the complex numbers for the complex power function. Theorem I.35 of [Apostol] p. 29. Compare with sqrtth 15249. (Contributed by AV, 23-Dec-2022.) |
⊢ (𝐴 ∈ ℂ → ((√‘𝐴)↑𝑐2) = 𝐴) | ||
Theorem | 2irrexpq 26085* | There exist irrational numbers 𝑎 and 𝑏 such that (𝑎↑𝑐𝑏) is rational. Statement in the Metamath book, section 1.1.5, footnote 27 on page 17, and the "classical proof" for theorem 1.2 of [Bauer], p. 483. This proof is not acceptable in intuitionistic logic, since it is based on the law of excluded middle: Either ((√‘2)↑𝑐(√‘2)) is rational, in which case (√‘2), being irrational (see sqrt2irr 16131), can be chosen for both 𝑎 and 𝑏, or ((√‘2)↑𝑐(√‘2)) is irrational, in which case ((√‘2)↑𝑐(√‘2)) can be chosen for 𝑎 and (√‘2) for 𝑏, since (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) = 2 is rational. For an alternate proof, which can be used in intuitionistic logic, see 2irrexpqALT 26150. (Contributed by AV, 23-Dec-2022.) |
⊢ ∃𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎↑𝑐𝑏) ∈ ℚ | ||
Theorem | cxprecd 26086 | Complex exponentiation of a reciprocal. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((1 / 𝐴)↑𝑐𝐵) = (1 / (𝐴↑𝑐𝐵))) | ||
Theorem | rpcxpcld 26087 | Positive real closure of the complex power function. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴↑𝑐𝐵) ∈ ℝ+) | ||
Theorem | logcxpd 26088 | Logarithm of a complex power. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (log‘(𝐴↑𝑐𝐵)) = (𝐵 · (log‘𝐴))) | ||
Theorem | cxplt3d 26089 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐵 < 𝐶 ↔ (𝐴↑𝑐𝐶) < (𝐴↑𝑐𝐵))) | ||
Theorem | cxple3d 26090 | Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐵 ≤ 𝐶 ↔ (𝐴↑𝑐𝐶) ≤ (𝐴↑𝑐𝐵))) | ||
Theorem | cxpmuld 26091 | Product of exponents law for complex exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴↑𝑐(𝐵 · 𝐶)) = ((𝐴↑𝑐𝐵)↑𝑐𝐶)) | ||
Theorem | cxpcom 26092 | Commutative law for real exponentiation. (Contributed by AV, 29-Dec-2022.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴↑𝑐𝐵)↑𝑐𝐶) = ((𝐴↑𝑐𝐶)↑𝑐𝐵)) | ||
Theorem | dvcxp1 26093* | The derivative of a complex power with respect to the first argument. (Contributed by Mario Carneiro, 24-Feb-2015.) |
⊢ (𝐴 ∈ ℂ → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥↑𝑐𝐴))) = (𝑥 ∈ ℝ+ ↦ (𝐴 · (𝑥↑𝑐(𝐴 − 1))))) | ||
Theorem | dvcxp2 26094* | The derivative of a complex power with respect to the second argument. (Contributed by Mario Carneiro, 24-Feb-2015.) |
⊢ (𝐴 ∈ ℝ+ → (ℂ D (𝑥 ∈ ℂ ↦ (𝐴↑𝑐𝑥))) = (𝑥 ∈ ℂ ↦ ((log‘𝐴) · (𝐴↑𝑐𝑥)))) | ||
Theorem | dvsqrt 26095 | The derivative of the real square root function. (Contributed by Mario Carneiro, 1-May-2016.) |
⊢ (ℝ D (𝑥 ∈ ℝ+ ↦ (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / (2 · (√‘𝑥)))) | ||
Theorem | dvcncxp1 26096* | Derivative of complex power with respect to first argument on the complex plane. (Contributed by Brendan Leahy, 18-Dec-2018.) |
⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) ⇒ ⊢ (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ 𝐷 ↦ (𝑥↑𝑐𝐴))) = (𝑥 ∈ 𝐷 ↦ (𝐴 · (𝑥↑𝑐(𝐴 − 1))))) | ||
Theorem | dvcnsqrt 26097* | Derivative of square root function. (Contributed by Brendan Leahy, 18-Dec-2018.) |
⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) ⇒ ⊢ (ℂ D (𝑥 ∈ 𝐷 ↦ (√‘𝑥))) = (𝑥 ∈ 𝐷 ↦ (1 / (2 · (√‘𝑥)))) | ||
Theorem | cxpcn 26098* | Domain of continuity of the complex power function. (Contributed by Mario Carneiro, 1-May-2016.) |
⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) & ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐾 = (𝐽 ↾t 𝐷) ⇒ ⊢ (𝑥 ∈ 𝐷, 𝑦 ∈ ℂ ↦ (𝑥↑𝑐𝑦)) ∈ ((𝐾 ×t 𝐽) Cn 𝐽) | ||
Theorem | cxpcn2 26099* | Continuity of the complex power function, when the base is real. (Contributed by Mario Carneiro, 1-May-2016.) |
⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐾 = (𝐽 ↾t ℝ+) ⇒ ⊢ (𝑥 ∈ ℝ+, 𝑦 ∈ ℂ ↦ (𝑥↑𝑐𝑦)) ∈ ((𝐾 ×t 𝐽) Cn 𝐽) | ||
Theorem | cxpcn3lem 26100* | Lemma for cxpcn3 26101. (Contributed by Mario Carneiro, 2-May-2016.) |
⊢ 𝐷 = (◡ℜ “ ℝ+) & ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐾 = (𝐽 ↾t (0[,)+∞)) & ⊢ 𝐿 = (𝐽 ↾t 𝐷) & ⊢ 𝑈 = (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2) & ⊢ 𝑇 = if(𝑈 ≤ (𝐸↑𝑐(1 / 𝑈)), 𝑈, (𝐸↑𝑐(1 / 𝑈))) ⇒ ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐸 ∈ ℝ+) → ∃𝑑 ∈ ℝ+ ∀𝑎 ∈ (0[,)+∞)∀𝑏 ∈ 𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝐴 − 𝑏)) < 𝑑) → (abs‘(𝑎↑𝑐𝑏)) < 𝐸)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |