Home | Metamath
Proof Explorer Theorem List (p. 261 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | log2ublem1 26001 | Lemma for log2ub 26004. The proof of log2ub 26004, which is simply the evaluation of log2tlbnd 26000 for 𝑁 = 4, takes the form of the addition of five fractions and showing this is less than another fraction. We could just perform exact arithmetic on these fractions, get a large rational number, and just multiply everything to verify the claim, but as anyone who uses decimal numbers for this task knows, it is often better to pick a common denominator 𝑑 (usually a large power of 10) and work with the closest approximations of the form 𝑛 / 𝑑 for some integer 𝑛 instead. It turns out that for our purposes it is sufficient to take 𝑑 = (3↑7) · 5 · 7, which is also nice because it shares many factors in common with the fractions in question. (Contributed by Mario Carneiro, 17-Apr-2015.) |
⊢ (((3↑7) · (5 · 7)) · 𝐴) ≤ 𝐵 & ⊢ 𝐴 ∈ ℝ & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐹 ∈ ℕ0 & ⊢ 𝐶 = (𝐴 + (𝐷 / 𝐸)) & ⊢ (𝐵 + 𝐹) = 𝐺 & ⊢ (((3↑7) · (5 · 7)) · 𝐷) ≤ (𝐸 · 𝐹) ⇒ ⊢ (((3↑7) · (5 · 7)) · 𝐶) ≤ 𝐺 | ||
Theorem | log2ublem2 26002* | Lemma for log2ub 26004. (Contributed by Mario Carneiro, 17-Apr-2015.) |
⊢ (((3↑7) · (5 · 7)) · Σ𝑛 ∈ (0...𝐾)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ≤ (2 · 𝐵) & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐹 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 & ⊢ (𝑁 − 1) = 𝐾 & ⊢ (𝐵 + 𝐹) = 𝐺 & ⊢ 𝑀 ∈ ℕ0 & ⊢ (𝑀 + 𝑁) = 3 & ⊢ ((5 · 7) · (9↑𝑀)) = (((2 · 𝑁) + 1) · 𝐹) ⇒ ⊢ (((3↑7) · (5 · 7)) · Σ𝑛 ∈ (0...𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ≤ (2 · 𝐺) | ||
Theorem | log2ublem3 26003 | Lemma for log2ub 26004. In decimal, this is a proof that the first four terms of the series for log2 is less than 53056 / 76545. (Contributed by Mario Carneiro, 17-Apr-2015.) (Proof shortened by AV, 15-Sep-2021.) |
⊢ (((3↑7) · (5 · 7)) · Σ𝑛 ∈ (0...3)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ≤ ;;;;53056 | ||
Theorem | log2ub 26004 | log2 is less than 253 / 365. If written in decimal, this is because log2 = 0.693147... is less than 253/365 = 0.693151... , so this is a very tight bound, at five decimal places. (Contributed by Mario Carneiro, 7-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
⊢ (log‘2) < (;;253 / ;;365) | ||
Theorem | log2le1 26005 | log2 is less than 1. This is just a weaker form of log2ub 26004 when no tight upper bound is required. (Contributed by Thierry Arnoux, 27-Sep-2017.) |
⊢ (log‘2) < 1 | ||
Theorem | birthdaylem1 26006* | Lemma for birthday 26009. (Contributed by Mario Carneiro, 17-Apr-2015.) |
⊢ 𝑆 = {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} & ⊢ 𝑇 = {𝑓 ∣ 𝑓:(1...𝐾)–1-1→(1...𝑁)} ⇒ ⊢ (𝑇 ⊆ 𝑆 ∧ 𝑆 ∈ Fin ∧ (𝑁 ∈ ℕ → 𝑆 ≠ ∅)) | ||
Theorem | birthdaylem2 26007* | For general 𝑁 and 𝐾, count the fraction of injective functions from 1...𝐾 to 1...𝑁. (Contributed by Mario Carneiro, 7-May-2015.) |
⊢ 𝑆 = {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} & ⊢ 𝑇 = {𝑓 ∣ 𝑓:(1...𝐾)–1-1→(1...𝑁)} ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((♯‘𝑇) / (♯‘𝑆)) = (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))))) | ||
Theorem | birthdaylem3 26008* | For general 𝑁 and 𝐾, upper-bound the fraction of injective functions from 1...𝐾 to 1...𝑁. (Contributed by Mario Carneiro, 17-Apr-2015.) |
⊢ 𝑆 = {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} & ⊢ 𝑇 = {𝑓 ∣ 𝑓:(1...𝐾)–1-1→(1...𝑁)} ⇒ ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → ((♯‘𝑇) / (♯‘𝑆)) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁))) | ||
Theorem | birthday 26009* | The Birthday Problem. There is a more than even chance that out of 23 people in a room, at least two of them have the same birthday. Mathematically, this is asserting that for 𝐾 = 23 and 𝑁 = 365, fewer than half of the set of all functions from 1...𝐾 to 1...𝑁 are injective. This is Metamath 100 proof #93. (Contributed by Mario Carneiro, 17-Apr-2015.) |
⊢ 𝑆 = {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} & ⊢ 𝑇 = {𝑓 ∣ 𝑓:(1...𝐾)–1-1→(1...𝑁)} & ⊢ 𝐾 = ;23 & ⊢ 𝑁 = ;;365 ⇒ ⊢ ((♯‘𝑇) / (♯‘𝑆)) < (1 / 2) | ||
Syntax | carea 26010 | Area of regions in the complex plane. |
class area | ||
Definition | df-area 26011* | Define the area of a subset of ℝ × ℝ. (Contributed by Mario Carneiro, 21-Jun-2015.) |
⊢ area = (𝑠 ∈ {𝑡 ∈ 𝒫 (ℝ × ℝ) ∣ (∀𝑥 ∈ ℝ (𝑡 “ {𝑥}) ∈ (◡vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑡 “ {𝑥}))) ∈ 𝐿1)} ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥) | ||
Theorem | dmarea 26012* | The domain of the area function is the set of finitely measurable subsets of ℝ × ℝ. (Contributed by Mario Carneiro, 21-Jun-2015.) |
⊢ (𝐴 ∈ dom area ↔ (𝐴 ⊆ (ℝ × ℝ) ∧ ∀𝑥 ∈ ℝ (𝐴 “ {𝑥}) ∈ (◡vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝐴 “ {𝑥}))) ∈ 𝐿1)) | ||
Theorem | areambl 26013 | The fibers of a measurable region are finitely measurable subsets of ℝ. (Contributed by Mario Carneiro, 21-Jun-2015.) |
⊢ ((𝑆 ∈ dom area ∧ 𝐴 ∈ ℝ) → ((𝑆 “ {𝐴}) ∈ dom vol ∧ (vol‘(𝑆 “ {𝐴})) ∈ ℝ)) | ||
Theorem | areass 26014 | A measurable region is a subset of ℝ × ℝ. (Contributed by Mario Carneiro, 21-Jun-2015.) |
⊢ (𝑆 ∈ dom area → 𝑆 ⊆ (ℝ × ℝ)) | ||
Theorem | dfarea 26015* | Rewrite df-area 26011 self-referentially. (Contributed by Mario Carneiro, 21-Jun-2015.) |
⊢ area = (𝑠 ∈ dom area ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥) | ||
Theorem | areaf 26016 | Area measurement is a function whose values are nonnegative reals. (Contributed by Mario Carneiro, 21-Jun-2015.) |
⊢ area:dom area⟶(0[,)+∞) | ||
Theorem | areacl 26017 | The area of a measurable region is a real number. (Contributed by Mario Carneiro, 21-Jun-2015.) |
⊢ (𝑆 ∈ dom area → (area‘𝑆) ∈ ℝ) | ||
Theorem | areage0 26018 | The area of a measurable region is greater than or equal to zero. (Contributed by Mario Carneiro, 21-Jun-2015.) |
⊢ (𝑆 ∈ dom area → 0 ≤ (area‘𝑆)) | ||
Theorem | areaval 26019* | The area of a measurable region is greater than or equal to zero. (Contributed by Mario Carneiro, 21-Jun-2015.) |
⊢ (𝑆 ∈ dom area → (area‘𝑆) = ∫ℝ(vol‘(𝑆 “ {𝑥})) d𝑥) | ||
Theorem | rlimcnp 26020* | Relate a limit of a real-valued sequence at infinity to the continuity of the function 𝑆(𝑦) = 𝑅(1 / 𝑦) at zero. (Contributed by Mario Carneiro, 1-Mar-2015.) |
⊢ (𝜑 → 𝐴 ⊆ (0[,)+∞)) & ⊢ (𝜑 → 0 ∈ 𝐴) & ⊢ (𝜑 → 𝐵 ⊆ ℝ+) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥 ∈ 𝐴 ↔ (1 / 𝑥) ∈ 𝐵)) & ⊢ (𝑥 = 0 → 𝑅 = 𝐶) & ⊢ (𝑥 = (1 / 𝑦) → 𝑅 = 𝑆) & ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐾 = (𝐽 ↾t 𝐴) ⇒ ⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ 𝑆) ⇝𝑟 𝐶 ↔ (𝑥 ∈ 𝐴 ↦ 𝑅) ∈ ((𝐾 CnP 𝐽)‘0))) | ||
Theorem | rlimcnp2 26021* | Relate a limit of a real-valued sequence at infinity to the continuity of the function 𝑆(𝑦) = 𝑅(1 / 𝑦) at zero. (Contributed by Mario Carneiro, 1-Mar-2015.) |
⊢ (𝜑 → 𝐴 ⊆ (0[,)+∞)) & ⊢ (𝜑 → 0 ∈ 𝐴) & ⊢ (𝜑 → 𝐵 ⊆ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑆 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (𝑦 ∈ 𝐵 ↔ (1 / 𝑦) ∈ 𝐴)) & ⊢ (𝑦 = (1 / 𝑥) → 𝑆 = 𝑅) & ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐾 = (𝐽 ↾t 𝐴) ⇒ ⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ 𝑆) ⇝𝑟 𝐶 ↔ (𝑥 ∈ 𝐴 ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0))) | ||
Theorem | rlimcnp3 26022* | Relate a limit of a real-valued sequence at infinity to the continuity of the function 𝑆(𝑦) = 𝑅(1 / 𝑦) at zero. (Contributed by Mario Carneiro, 1-Mar-2015.) |
⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 𝑆 ∈ ℂ) & ⊢ (𝑦 = (1 / 𝑥) → 𝑆 = 𝑅) & ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐾 = (𝐽 ↾t (0[,)+∞)) ⇒ ⊢ (𝜑 → ((𝑦 ∈ ℝ+ ↦ 𝑆) ⇝𝑟 𝐶 ↔ (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0))) | ||
Theorem | xrlimcnp 26023* | Relate a limit of a real-valued sequence at infinity to the continuity of the corresponding extended real function at +∞. Since any ⇝𝑟 limit can be written in the form on the left side of the implication, this shows that real limits are a special case of topological continuity at a point. (Contributed by Mario Carneiro, 8-Sep-2015.) |
⊢ (𝜑 → 𝐴 = (𝐵 ∪ {+∞})) & ⊢ (𝜑 → 𝐵 ⊆ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ ℂ) & ⊢ (𝑥 = +∞ → 𝑅 = 𝐶) & ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐾 = ((ordTop‘ ≤ ) ↾t 𝐴) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝑅) ⇝𝑟 𝐶 ↔ (𝑥 ∈ 𝐴 ↦ 𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞))) | ||
Theorem | efrlim 26024* | The limit of the sequence (1 + 𝐴 / 𝑘)↑𝑘 is the exponential function. This is often taken as an alternate definition of the exponential function (see also dfef2 26025). (Contributed by Mario Carneiro, 1-Mar-2015.) |
⊢ 𝑆 = (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))) ⇒ ⊢ (𝐴 ∈ ℂ → (𝑘 ∈ ℝ+ ↦ ((1 + (𝐴 / 𝑘))↑𝑐𝑘)) ⇝𝑟 (exp‘𝐴)) | ||
Theorem | dfef2 26025* | The limit of the sequence (1 + 𝐴 / 𝑘)↑𝑘 as 𝑘 goes to +∞ is (exp‘𝐴). This is another common definition of e. (Contributed by Mario Carneiro, 1-Mar-2015.) |
⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = ((1 + (𝐴 / 𝑘))↑𝑘)) ⇒ ⊢ (𝜑 → 𝐹 ⇝ (exp‘𝐴)) | ||
Theorem | cxplim 26026* | A power to a negative exponent goes to zero as the base becomes large. (Contributed by Mario Carneiro, 15-Sep-2014.) (Revised by Mario Carneiro, 18-May-2016.) |
⊢ (𝐴 ∈ ℝ+ → (𝑛 ∈ ℝ+ ↦ (1 / (𝑛↑𝑐𝐴))) ⇝𝑟 0) | ||
Theorem | sqrtlim 26027 | The inverse square root function converges to zero. (Contributed by Mario Carneiro, 18-May-2016.) |
⊢ (𝑛 ∈ ℝ+ ↦ (1 / (√‘𝑛))) ⇝𝑟 0 | ||
Theorem | rlimcxp 26028* | Any power to a positive exponent of a converging sequence also converges. (Contributed by Mario Carneiro, 18-Sep-2014.) |
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑛 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 0) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝑛 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶)) ⇝𝑟 0) | ||
Theorem | o1cxp 26029* | An eventually bounded function taken to a nonnegative power is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.) |
⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 0 ≤ (ℜ‘𝐶)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶)) ∈ 𝑂(1)) | ||
Theorem | cxp2limlem 26030* | A linear factor grows slower than any exponential with base greater than 1. (Contributed by Mario Carneiro, 15-Sep-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (𝑛 ∈ ℝ+ ↦ (𝑛 / (𝐴↑𝑐𝑛))) ⇝𝑟 0) | ||
Theorem | cxp2lim 26031* | Any power grows slower than any exponential with base greater than 1. (Contributed by Mario Carneiro, 18-Sep-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ ℝ+ ↦ ((𝑛↑𝑐𝐴) / (𝐵↑𝑐𝑛))) ⇝𝑟 0) | ||
Theorem | cxploglim 26032* | The logarithm grows slower than any positive power. (Contributed by Mario Carneiro, 18-Sep-2014.) |
⊢ (𝐴 ∈ ℝ+ → (𝑛 ∈ ℝ+ ↦ ((log‘𝑛) / (𝑛↑𝑐𝐴))) ⇝𝑟 0) | ||
Theorem | cxploglim2 26033* | Every power of the logarithm grows slower than any positive power. (Contributed by Mario Carneiro, 20-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (𝑛 ∈ ℝ+ ↦ (((log‘𝑛)↑𝑐𝐴) / (𝑛↑𝑐𝐵))) ⇝𝑟 0) | ||
Theorem | divsqrtsumlem 26034* | Lemma for divsqrsum 26036 and divsqrtsum2 26037. (Contributed by Mario Carneiro, 18-May-2016.) |
⊢ 𝐹 = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑛)) − (2 · (√‘𝑥)))) ⇒ ⊢ (𝐹:ℝ+⟶ℝ ∧ 𝐹 ∈ dom ⇝𝑟 ∧ ((𝐹 ⇝𝑟 𝐿 ∧ 𝐴 ∈ ℝ+) → (abs‘((𝐹‘𝐴) − 𝐿)) ≤ (1 / (√‘𝐴)))) | ||
Theorem | divsqrsumf 26035* | The function 𝐹 used in divsqrsum 26036 is a real function. (Contributed by Mario Carneiro, 12-May-2016.) |
⊢ 𝐹 = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑛)) − (2 · (√‘𝑥)))) ⇒ ⊢ 𝐹:ℝ+⟶ℝ | ||
Theorem | divsqrsum 26036* | The sum Σ𝑛 ≤ 𝑥(1 / √𝑛) is asymptotic to 2√𝑥 + 𝐿 with a finite limit 𝐿. (In fact, this limit is ζ(1 / 2) ≈ -1.46....) (Contributed by Mario Carneiro, 9-May-2016.) |
⊢ 𝐹 = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑛)) − (2 · (√‘𝑥)))) ⇒ ⊢ 𝐹 ∈ dom ⇝𝑟 | ||
Theorem | divsqrtsum2 26037* | A bound on the distance of the sum Σ𝑛 ≤ 𝑥(1 / √𝑛) from its asymptotic value 2√𝑥 + 𝐿. (Contributed by Mario Carneiro, 18-May-2016.) |
⊢ 𝐹 = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑛)) − (2 · (√‘𝑥)))) & ⊢ (𝜑 → 𝐹 ⇝𝑟 𝐿) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ+) → (abs‘((𝐹‘𝐴) − 𝐿)) ≤ (1 / (√‘𝐴))) | ||
Theorem | divsqrtsumo1 26038* | The sum Σ𝑛 ≤ 𝑥(1 / √𝑛) has the asymptotic expansion 2√𝑥 + 𝐿 + 𝑂(1 / √𝑥), for some 𝐿. (Contributed by Mario Carneiro, 10-May-2016.) |
⊢ 𝐹 = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑛)) − (2 · (√‘𝑥)))) & ⊢ (𝜑 → 𝐹 ⇝𝑟 𝐿) ⇒ ⊢ (𝜑 → (𝑦 ∈ ℝ+ ↦ (((𝐹‘𝑦) − 𝐿) · (√‘𝑦))) ∈ 𝑂(1)) | ||
Theorem | cvxcl 26039* | Closure of a 0-1 linear combination in a convex set. (Contributed by Mario Carneiro, 21-Jun-2015.) |
⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥[,]𝑦) ⊆ 𝐷) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ 𝐷) | ||
Theorem | scvxcvx 26040* | A strictly convex function is convex. (Contributed by Mario Carneiro, 20-Jun-2015.) |
⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐷 ∧ 𝑏 ∈ 𝐷)) → (𝑎[,]𝑏) ⊆ 𝐷) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹‘𝑥)) + ((1 − 𝑡) · (𝐹‘𝑦)))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) ≤ ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌)))) | ||
Theorem | jensenlem1 26041* | Lemma for jensen 26043. (Contributed by Mario Carneiro, 4-Jun-2016.) |
⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐷 ∧ 𝑏 ∈ 𝐷)) → (𝑎[,]𝑏) ⊆ 𝐷) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝑇:𝐴⟶(0[,)+∞)) & ⊢ (𝜑 → 𝑋:𝐴⟶𝐷) & ⊢ (𝜑 → 0 < (ℂfld Σg 𝑇)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝑡 ∈ (0[,]1))) → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹‘𝑥)) + ((1 − 𝑡) · (𝐹‘𝑦)))) & ⊢ (𝜑 → ¬ 𝑧 ∈ 𝐵) & ⊢ (𝜑 → (𝐵 ∪ {𝑧}) ⊆ 𝐴) & ⊢ 𝑆 = (ℂfld Σg (𝑇 ↾ 𝐵)) & ⊢ 𝐿 = (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧}))) ⇒ ⊢ (𝜑 → 𝐿 = (𝑆 + (𝑇‘𝑧))) | ||
Theorem | jensenlem2 26042* | Lemma for jensen 26043. (Contributed by Mario Carneiro, 21-Jun-2015.) |
⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐷 ∧ 𝑏 ∈ 𝐷)) → (𝑎[,]𝑏) ⊆ 𝐷) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝑇:𝐴⟶(0[,)+∞)) & ⊢ (𝜑 → 𝑋:𝐴⟶𝐷) & ⊢ (𝜑 → 0 < (ℂfld Σg 𝑇)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝑡 ∈ (0[,]1))) → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹‘𝑥)) + ((1 − 𝑡) · (𝐹‘𝑦)))) & ⊢ (𝜑 → ¬ 𝑧 ∈ 𝐵) & ⊢ (𝜑 → (𝐵 ∪ {𝑧}) ⊆ 𝐴) & ⊢ 𝑆 = (ℂfld Σg (𝑇 ↾ 𝐵)) & ⊢ 𝐿 = (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧}))) & ⊢ (𝜑 → 𝑆 ∈ ℝ+) & ⊢ (𝜑 → ((ℂfld Σg ((𝑇 ∘f · 𝑋) ↾ 𝐵)) / 𝑆) ∈ 𝐷) & ⊢ (𝜑 → (𝐹‘((ℂfld Σg ((𝑇 ∘f · 𝑋) ↾ 𝐵)) / 𝑆)) ≤ ((ℂfld Σg ((𝑇 ∘f · (𝐹 ∘ 𝑋)) ↾ 𝐵)) / 𝑆)) ⇒ ⊢ (𝜑 → (((ℂfld Σg ((𝑇 ∘f · 𝑋) ↾ (𝐵 ∪ {𝑧}))) / 𝐿) ∈ 𝐷 ∧ (𝐹‘((ℂfld Σg ((𝑇 ∘f · 𝑋) ↾ (𝐵 ∪ {𝑧}))) / 𝐿)) ≤ ((ℂfld Σg ((𝑇 ∘f · (𝐹 ∘ 𝑋)) ↾ (𝐵 ∪ {𝑧}))) / 𝐿))) | ||
Theorem | jensen 26043* | Jensen's inequality, a finite extension of the definition of convexity (the last hypothesis). (Contributed by Mario Carneiro, 21-Jun-2015.) (Proof shortened by AV, 27-Jul-2019.) |
⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐷 ∧ 𝑏 ∈ 𝐷)) → (𝑎[,]𝑏) ⊆ 𝐷) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝑇:𝐴⟶(0[,)+∞)) & ⊢ (𝜑 → 𝑋:𝐴⟶𝐷) & ⊢ (𝜑 → 0 < (ℂfld Σg 𝑇)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝑡 ∈ (0[,]1))) → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹‘𝑥)) + ((1 − 𝑡) · (𝐹‘𝑦)))) ⇒ ⊢ (𝜑 → (((ℂfld Σg (𝑇 ∘f · 𝑋)) / (ℂfld Σg 𝑇)) ∈ 𝐷 ∧ (𝐹‘((ℂfld Σg (𝑇 ∘f · 𝑋)) / (ℂfld Σg 𝑇))) ≤ ((ℂfld Σg (𝑇 ∘f · (𝐹 ∘ 𝑋))) / (ℂfld Σg 𝑇)))) | ||
Theorem | amgmlem 26044 | Lemma for amgm 26045. (Contributed by Mario Carneiro, 21-Jun-2015.) |
⊢ 𝑀 = (mulGrp‘ℂfld) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ+) ⇒ ⊢ (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴))) | ||
Theorem | amgm 26045 | Inequality of arithmetic and geometric means. Here (𝑀 Σg 𝐹) calculates the group sum within the multiplicative monoid of the complex numbers (or in other words, it multiplies the elements 𝐹(𝑥), 𝑥 ∈ 𝐴 together), and (ℂfld Σg 𝐹) calculates the group sum in the additive group (i.e. the sum of the elements). This is Metamath 100 proof #38. (Contributed by Mario Carneiro, 20-Jun-2015.) |
⊢ 𝑀 = (mulGrp‘ℂfld) ⇒ ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴))) | ||
Syntax | cem 26046 | The Euler-Mascheroni constant. (The label abbreviates Euler-Mascheroni.) |
class γ | ||
Definition | df-em 26047 | Define the Euler-Mascheroni constant, γ = 0.57721.... This is the limit of the series Σ𝑘 ∈ (1...𝑚)(1 / 𝑘) − (log‘𝑚), with a proof that the limit exists in emcl 26057. (Contributed by Mario Carneiro, 11-Jul-2014.) |
⊢ γ = Σ𝑘 ∈ ℕ ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))) | ||
Theorem | logdifbnd 26048 | Bound on the difference of logs. (Contributed by Mario Carneiro, 23-May-2016.) |
⊢ (𝐴 ∈ ℝ+ → ((log‘(𝐴 + 1)) − (log‘𝐴)) ≤ (1 / 𝐴)) | ||
Theorem | logdiflbnd 26049 | Lower bound on the difference of logs. (Contributed by Mario Carneiro, 3-Jul-2017.) |
⊢ (𝐴 ∈ ℝ+ → (1 / (𝐴 + 1)) ≤ ((log‘(𝐴 + 1)) − (log‘𝐴))) | ||
Theorem | emcllem1 26050* | Lemma for emcl 26057. The series 𝐹 and 𝐺 are sequences of real numbers that approach γ from above and below, respectively. (Contributed by Mario Carneiro, 11-Jul-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) ⇒ ⊢ (𝐹:ℕ⟶ℝ ∧ 𝐺:ℕ⟶ℝ) | ||
Theorem | emcllem2 26051* | Lemma for emcl 26057. 𝐹 is increasing, and 𝐺 is decreasing. (Contributed by Mario Carneiro, 11-Jul-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) ⇒ ⊢ (𝑁 ∈ ℕ → ((𝐹‘(𝑁 + 1)) ≤ (𝐹‘𝑁) ∧ (𝐺‘𝑁) ≤ (𝐺‘(𝑁 + 1)))) | ||
Theorem | emcllem3 26052* | Lemma for emcl 26057. The function 𝐻 is the difference between 𝐹 and 𝐺. (Contributed by Mario Carneiro, 11-Jul-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛)))) ⇒ ⊢ (𝑁 ∈ ℕ → (𝐻‘𝑁) = ((𝐹‘𝑁) − (𝐺‘𝑁))) | ||
Theorem | emcllem4 26053* | Lemma for emcl 26057. The difference between series 𝐹 and 𝐺 tends to zero. (Contributed by Mario Carneiro, 11-Jul-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛)))) ⇒ ⊢ 𝐻 ⇝ 0 | ||
Theorem | emcllem5 26054* | Lemma for emcl 26057. The partial sums of the series 𝑇, which is used in Definition df-em 26047, is in fact the same as 𝐺. (Contributed by Mario Carneiro, 11-Jul-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛)))) & ⊢ 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛))))) ⇒ ⊢ 𝐺 = seq1( + , 𝑇) | ||
Theorem | emcllem6 26055* | Lemma for emcl 26057. By the previous lemmas, 𝐹 and 𝐺 must approach a common limit, which is γ by definition. (Contributed by Mario Carneiro, 11-Jul-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛)))) & ⊢ 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛))))) ⇒ ⊢ (𝐹 ⇝ γ ∧ 𝐺 ⇝ γ) | ||
Theorem | emcllem7 26056* | Lemma for emcl 26057 and harmonicbnd 26058. Derive bounds on γ as 𝐹(1) and 𝐺(1). (Contributed by Mario Carneiro, 11-Jul-2014.) (Revised by Mario Carneiro, 9-Apr-2016.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛)))) & ⊢ 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛))))) ⇒ ⊢ (γ ∈ ((1 − (log‘2))[,]1) ∧ 𝐹:ℕ⟶(γ[,]1) ∧ 𝐺:ℕ⟶((1 − (log‘2))[,]γ)) | ||
Theorem | emcl 26057 | Closure and bounds for the Euler-Mascheroni constant. (Contributed by Mario Carneiro, 11-Jul-2014.) |
⊢ γ ∈ ((1 − (log‘2))[,]1) | ||
Theorem | harmonicbnd 26058* | A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 9-Apr-2016.) |
⊢ (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)) ∈ (γ[,]1)) | ||
Theorem | harmonicbnd2 26059* | A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 13-Apr-2016.) |
⊢ (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ ((1 − (log‘2))[,]γ)) | ||
Theorem | emre 26060 | The Euler-Mascheroni constant is a real number. (Contributed by Mario Carneiro, 11-Jul-2014.) |
⊢ γ ∈ ℝ | ||
Theorem | emgt0 26061 | The Euler-Mascheroni constant is positive. (Contributed by Mario Carneiro, 11-Jul-2014.) |
⊢ 0 < γ | ||
Theorem | harmonicbnd3 26062* | A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 13-Apr-2016.) |
⊢ (𝑁 ∈ ℕ0 → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ (0[,]γ)) | ||
Theorem | harmoniclbnd 26063* | A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 13-Apr-2016.) |
⊢ (𝐴 ∈ ℝ+ → (log‘𝐴) ≤ Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚)) | ||
Theorem | harmonicubnd 26064* | A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 13-Apr-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) ≤ ((log‘𝐴) + 1)) | ||
Theorem | harmonicbnd4 26065* | The asymptotic behavior of Σ𝑚 ≤ 𝐴, 1 / 𝑚 = log𝐴 + γ + 𝑂(1 / 𝐴). (Contributed by Mario Carneiro, 14-May-2016.) |
⊢ (𝐴 ∈ ℝ+ → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))) ≤ (1 / 𝐴)) | ||
Theorem | fsumharmonic 26066* | Bound a finite sum based on the harmonic series, where the "strong" bound 𝐶 only applies asymptotically, and there is a "weak" bound 𝑅 for the remaining values. (Contributed by Mario Carneiro, 18-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → (𝑇 ∈ ℝ ∧ 1 ≤ 𝑇)) & ⊢ (𝜑 → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅)) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 0 ≤ 𝐶) & ⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑇 ≤ (𝐴 / 𝑛)) → (abs‘𝐵) ≤ (𝐶 · 𝑛)) & ⊢ (((𝜑 ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ (𝐴 / 𝑛) < 𝑇) → (abs‘𝐵) ≤ 𝑅) ⇒ ⊢ (𝜑 → (abs‘Σ𝑛 ∈ (1...(⌊‘𝐴))(𝐵 / 𝑛)) ≤ (Σ𝑛 ∈ (1...(⌊‘𝐴))𝐶 + (𝑅 · ((log‘𝑇) + 1)))) | ||
Syntax | czeta 26067 | The Riemann zeta function. |
class ζ | ||
Definition | df-zeta 26068* | Define the Riemann zeta function. This definition uses a series expansion of the alternating zeta function ~? zetaalt that is convergent everywhere except 1, but going from the alternating zeta function to the regular zeta function requires dividing by 1 − 2↑(1 − 𝑠), which has zeroes other than 1. To extract the correct value of the zeta function at these points, we extend the divided alternating zeta function by continuity. (Contributed by Mario Carneiro, 18-Jul-2014.) |
⊢ ζ = (℩𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓‘𝑠)) = Σ𝑛 ∈ ℕ0 (Σ𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))) | ||
Theorem | zetacvg 26069* | The zeta series is convergent. (Contributed by Mario Carneiro, 18-Jul-2014.) |
⊢ (𝜑 → 𝑆 ∈ ℂ) & ⊢ (𝜑 → 1 < (ℜ‘𝑆)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = (𝑘↑𝑐-𝑆)) ⇒ ⊢ (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ ) | ||
Syntax | clgam 26070 | Logarithm of the Gamma function. |
class log Γ | ||
Syntax | cgam 26071 | The Gamma function. |
class Γ | ||
Syntax | cigam 26072 | The inverse Gamma function. |
class 1/Γ | ||
Definition | df-lgam 26073* | Define the log-Gamma function. We can work with this form of the gamma function a bit easier than the equivalent expression for the gamma function itself, and moreover this function is not actually equal to log(Γ(𝑥)) because the branch cuts are placed differently (we do have exp(log Γ(𝑥)) = Γ(𝑥), though). This definition is attributed to Euler, and unlike the usual integral definition is defined on the entire complex plane except the nonpositive integers ℤ ∖ ℕ, where the function has simple poles. (Contributed by Mario Carneiro, 12-Jul-2014.) |
⊢ log Γ = (𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↦ (Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧))) | ||
Definition | df-gam 26074 | Define the Gamma function. See df-lgam 26073 for more information about the reason for this definition in terms of the log-gamma function. (Contributed by Mario Carneiro, 12-Jul-2014.) |
⊢ Γ = (exp ∘ log Γ) | ||
Definition | df-igam 26075 | Define the inverse Gamma function, which is defined everywhere, unlike the Gamma function itself. (Contributed by Mario Carneiro, 16-Jul-2017.) |
⊢ 1/Γ = (𝑥 ∈ ℂ ↦ if(𝑥 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝑥)))) | ||
Theorem | eldmgm 26076 | Elementhood in the set of non-nonpositive integers. (Contributed by Mario Carneiro, 12-Jul-2014.) |
⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0)) | ||
Theorem | dmgmaddn0 26077 | If 𝐴 is not a nonpositive integer, then 𝐴 + 𝑁 is nonzero for any nonnegative integer 𝑁. (Contributed by Mario Carneiro, 12-Jul-2014.) |
⊢ ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑁 ∈ ℕ0) → (𝐴 + 𝑁) ≠ 0) | ||
Theorem | dmlogdmgm 26078 | If 𝐴 is in the continuous domain of the logarithm, then it is in the domain of the Gamma function. (Contributed by Mario Carneiro, 8-Jul-2017.) |
⊢ (𝐴 ∈ (ℂ ∖ (-∞(,]0)) → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) | ||
Theorem | rpdmgm 26079 | A positive real number is in the domain of the Gamma function. (Contributed by Mario Carneiro, 9-Jul-2017.) |
⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) | ||
Theorem | dmgmn0 26080 | If 𝐴 is not a nonpositive integer, then 𝐴 is nonzero. (Contributed by Mario Carneiro, 3-Jul-2017.) |
⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) ⇒ ⊢ (𝜑 → 𝐴 ≠ 0) | ||
Theorem | dmgmaddnn0 26081 | If 𝐴 is not a nonpositive integer and 𝑁 is a nonnegative integer, then 𝐴 + 𝑁 is also not a nonpositive integer. (Contributed by Mario Carneiro, 6-Jul-2017.) |
⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴 + 𝑁) ∈ (ℂ ∖ (ℤ ∖ ℕ))) | ||
Theorem | dmgmdivn0 26082 | Lemma for lgamf 26096. (Contributed by Mario Carneiro, 3-Jul-2017.) |
⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) ⇒ ⊢ (𝜑 → ((𝐴 / 𝑀) + 1) ≠ 0) | ||
Theorem | lgamgulmlem1 26083* | Lemma for lgamgulm 26089. (Contributed by Mario Carneiro, 3-Jul-2017.) |
⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} ⇒ ⊢ (𝜑 → 𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ))) | ||
Theorem | lgamgulmlem2 26084* | Lemma for lgamgulm 26089. (Contributed by Mario Carneiro, 3-Jul-2017.) |
⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → (2 · 𝑅) ≤ 𝑁) ⇒ ⊢ (𝜑 → (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1)))) ≤ (𝑅 · ((1 / (𝑁 − 𝑅)) − (1 / 𝑁)))) | ||
Theorem | lgamgulmlem3 26085* | Lemma for lgamgulm 26089. (Contributed by Mario Carneiro, 3-Jul-2017.) |
⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → (2 · 𝑅) ≤ 𝑁) ⇒ ⊢ (𝜑 → (abs‘((𝐴 · (log‘((𝑁 + 1) / 𝑁))) − (log‘((𝐴 / 𝑁) + 1)))) ≤ (𝑅 · ((2 · (𝑅 + 1)) / (𝑁↑2)))) | ||
Theorem | lgamgulmlem4 26086* | Lemma for lgamgulm 26089. (Contributed by Mario Carneiro, 3-Jul-2017.) |
⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) & ⊢ 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)))) ⇒ ⊢ (𝜑 → seq1( + , 𝑇) ∈ dom ⇝ ) | ||
Theorem | lgamgulmlem5 26087* | Lemma for lgamgulm 26089. (Contributed by Mario Carneiro, 3-Jul-2017.) |
⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) & ⊢ 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)))) ⇒ ⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈)) → (abs‘((𝐺‘𝑛)‘𝑦)) ≤ (𝑇‘𝑛)) | ||
Theorem | lgamgulmlem6 26088* | The series 𝐺 is uniformly convergent on the compact region 𝑈, which describes a circle of radius 𝑅 with holes of size 1 / 𝑅 around the poles of the gamma function. (Contributed by Mario Carneiro, 9-Jul-2017.) |
⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) & ⊢ 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)))) ⇒ ⊢ (𝜑 → (seq1( ∘f + , 𝐺) ∈ dom (⇝𝑢‘𝑈) ∧ (seq1( ∘f + , 𝐺)(⇝𝑢‘𝑈)(𝑧 ∈ 𝑈 ↦ 𝑂) → ∃𝑟 ∈ ℝ ∀𝑧 ∈ 𝑈 (abs‘𝑂) ≤ 𝑟))) | ||
Theorem | lgamgulm 26089* | The series 𝐺 is uniformly convergent on the compact region 𝑈, which describes a circle of radius 𝑅 with holes of size 1 / 𝑅 around the poles of the gamma function. (Contributed by Mario Carneiro, 3-Jul-2017.) |
⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) ⇒ ⊢ (𝜑 → seq1( ∘f + , 𝐺) ∈ dom (⇝𝑢‘𝑈)) | ||
Theorem | lgamgulm2 26090* | Rewrite the limit of the sequence 𝐺 in terms of the log-Gamma function. (Contributed by Mario Carneiro, 6-Jul-2017.) |
⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) ⇒ ⊢ (𝜑 → (∀𝑧 ∈ 𝑈 (log Γ‘𝑧) ∈ ℂ ∧ seq1( ∘f + , 𝐺)(⇝𝑢‘𝑈)(𝑧 ∈ 𝑈 ↦ ((log Γ‘𝑧) + (log‘𝑧))))) | ||
Theorem | lgambdd 26091* | The log-Gamma function is bounded on the region 𝑈. (Contributed by Mario Carneiro, 9-Jul-2017.) |
⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ ℝ ∀𝑧 ∈ 𝑈 (abs‘(log Γ‘𝑧)) ≤ 𝑟) | ||
Theorem | lgamucov 26092* | The 𝑈 regions used in the proof of lgamgulm 26089 have interiors which cover the entire domain of the Gamma function. (Contributed by Mario Carneiro, 6-Jul-2017.) |
⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) & ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ ℕ 𝐴 ∈ ((int‘𝐽)‘𝑈)) | ||
Theorem | lgamucov2 26093* | The 𝑈 regions used in the proof of lgamgulm 26089 have interiors which cover the entire domain of the Gamma function. (Contributed by Mario Carneiro, 8-Jul-2017.) |
⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ ℕ 𝐴 ∈ 𝑈) | ||
Theorem | lgamcvglem 26094* | Lemma for lgamf 26096 and lgamcvg 26108. (Contributed by Mario Carneiro, 8-Jul-2017.) |
⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))} & ⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) & ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))) ⇒ ⊢ (𝜑 → ((log Γ‘𝐴) ∈ ℂ ∧ seq1( + , 𝐺) ⇝ ((log Γ‘𝐴) + (log‘𝐴)))) | ||
Theorem | lgamcl 26095 | The log-Gamma function is a complex function defined on the whole complex plane except for the negative integers. (Contributed by Mario Carneiro, 8-Jul-2017.) |
⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (log Γ‘𝐴) ∈ ℂ) | ||
Theorem | lgamf 26096 | The log-Gamma function is a complex function defined on the whole complex plane except for the negative integers. (Contributed by Mario Carneiro, 6-Jul-2017.) |
⊢ log Γ:(ℂ ∖ (ℤ ∖ ℕ))⟶ℂ | ||
Theorem | gamf 26097 | The Gamma function is a complex function defined on the whole complex plane except for the negative integers. (Contributed by Mario Carneiro, 6-Jul-2017.) |
⊢ Γ:(ℂ ∖ (ℤ ∖ ℕ))⟶ℂ | ||
Theorem | gamcl 26098 | The exponential of the log-Gamma function is the Gamma function (by definition). (Contributed by Mario Carneiro, 8-Jul-2017.) |
⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (Γ‘𝐴) ∈ ℂ) | ||
Theorem | eflgam 26099 | The exponential of the log-Gamma function is the Gamma function (by definition). (Contributed by Mario Carneiro, 8-Jul-2017.) |
⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (exp‘(log Γ‘𝐴)) = (Γ‘𝐴)) | ||
Theorem | gamne0 26100 | The Gamma function is never zero. (Contributed by Mario Carneiro, 9-Jul-2017.) |
⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (Γ‘𝐴) ≠ 0) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |