| Metamath
Proof Explorer Theorem List (p. 261 of 494) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30865) |
(30866-32388) |
(32389-49332) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | dvfsumrlimf 26001* | Lemma for dvfsumrlim 26008. (Contributed by Mario Carneiro, 18-May-2016.) |
| ⊢ 𝑆 = (𝑇(,)+∞) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ≤ (𝐷 + 1)) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) & ⊢ (𝑥 = 𝑘 → 𝐵 = 𝐶) & ⊢ 𝐺 = (𝑥 ∈ 𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 − 𝐴)) ⇒ ⊢ (𝜑 → 𝐺:𝑆⟶ℝ) | ||
| Theorem | dvfsumlem1 26002* | Lemma for dvfsumrlim 26008. (Contributed by Mario Carneiro, 17-May-2016.) |
| ⊢ 𝑆 = (𝑇(,)+∞) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ≤ (𝐷 + 1)) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) & ⊢ (𝑥 = 𝑘 → 𝐵 = 𝐶) & ⊢ (𝜑 → 𝑈 ∈ ℝ*) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈)) → 𝐶 ≤ 𝐵) & ⊢ 𝐻 = (𝑥 ∈ 𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 − 𝐴))) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) & ⊢ (𝜑 → 𝐷 ≤ 𝑋) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 𝑌 ≤ 𝑈) & ⊢ (𝜑 → 𝑌 ≤ ((⌊‘𝑋) + 1)) ⇒ ⊢ (𝜑 → (𝐻‘𝑌) = ((((𝑌 − (⌊‘𝑋)) · ⦋𝑌 / 𝑥⦌𝐵) − ⦋𝑌 / 𝑥⦌𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶)) | ||
| Theorem | dvfsumlem2 26003* | Lemma for dvfsumrlim 26008. (Contributed by Mario Carneiro, 17-May-2016.) Avoid ax-mulf 11217. (Revised by GG, 16-Mar-2025.) |
| ⊢ 𝑆 = (𝑇(,)+∞) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ≤ (𝐷 + 1)) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) & ⊢ (𝑥 = 𝑘 → 𝐵 = 𝐶) & ⊢ (𝜑 → 𝑈 ∈ ℝ*) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈)) → 𝐶 ≤ 𝐵) & ⊢ 𝐻 = (𝑥 ∈ 𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 − 𝐴))) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) & ⊢ (𝜑 → 𝐷 ≤ 𝑋) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 𝑌 ≤ 𝑈) & ⊢ (𝜑 → 𝑌 ≤ ((⌊‘𝑋) + 1)) ⇒ ⊢ (𝜑 → ((𝐻‘𝑌) ≤ (𝐻‘𝑋) ∧ ((𝐻‘𝑋) − ⦋𝑋 / 𝑥⦌𝐵) ≤ ((𝐻‘𝑌) − ⦋𝑌 / 𝑥⦌𝐵))) | ||
| Theorem | dvfsumlem2OLD 26004* | Obsolete version of dvfsumlem2 26003 as of 17-Apr-2025. (Contributed by Mario Carneiro, 17-May-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑆 = (𝑇(,)+∞) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ≤ (𝐷 + 1)) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) & ⊢ (𝑥 = 𝑘 → 𝐵 = 𝐶) & ⊢ (𝜑 → 𝑈 ∈ ℝ*) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈)) → 𝐶 ≤ 𝐵) & ⊢ 𝐻 = (𝑥 ∈ 𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 − 𝐴))) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) & ⊢ (𝜑 → 𝐷 ≤ 𝑋) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 𝑌 ≤ 𝑈) & ⊢ (𝜑 → 𝑌 ≤ ((⌊‘𝑋) + 1)) ⇒ ⊢ (𝜑 → ((𝐻‘𝑌) ≤ (𝐻‘𝑋) ∧ ((𝐻‘𝑋) − ⦋𝑋 / 𝑥⦌𝐵) ≤ ((𝐻‘𝑌) − ⦋𝑌 / 𝑥⦌𝐵))) | ||
| Theorem | dvfsumlem3 26005* | Lemma for dvfsumrlim 26008. (Contributed by Mario Carneiro, 17-May-2016.) |
| ⊢ 𝑆 = (𝑇(,)+∞) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ≤ (𝐷 + 1)) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) & ⊢ (𝑥 = 𝑘 → 𝐵 = 𝐶) & ⊢ (𝜑 → 𝑈 ∈ ℝ*) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈)) → 𝐶 ≤ 𝐵) & ⊢ 𝐻 = (𝑥 ∈ 𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 − 𝐴))) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) & ⊢ (𝜑 → 𝐷 ≤ 𝑋) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 𝑌 ≤ 𝑈) ⇒ ⊢ (𝜑 → ((𝐻‘𝑌) ≤ (𝐻‘𝑋) ∧ ((𝐻‘𝑋) − ⦋𝑋 / 𝑥⦌𝐵) ≤ ((𝐻‘𝑌) − ⦋𝑌 / 𝑥⦌𝐵))) | ||
| Theorem | dvfsumlem4 26006* | Lemma for dvfsumrlim 26008. (Contributed by Mario Carneiro, 18-May-2016.) |
| ⊢ 𝑆 = (𝑇(,)+∞) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ≤ (𝐷 + 1)) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) & ⊢ (𝑥 = 𝑘 → 𝐵 = 𝐶) & ⊢ (𝜑 → 𝑈 ∈ ℝ*) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈)) → 𝐶 ≤ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 − 𝐴)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑈)) → 0 ≤ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) & ⊢ (𝜑 → 𝐷 ≤ 𝑋) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 𝑌 ≤ 𝑈) ⇒ ⊢ (𝜑 → (abs‘((𝐺‘𝑌) − (𝐺‘𝑋))) ≤ ⦋𝑋 / 𝑥⦌𝐵) | ||
| Theorem | dvfsumrlimge0 26007* | Lemma for dvfsumrlim 26008. Satisfy the assumption of dvfsumlem4 26006. (Contributed by Mario Carneiro, 18-May-2016.) |
| ⊢ 𝑆 = (𝑇(,)+∞) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ≤ (𝐷 + 1)) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) & ⊢ (𝑥 = 𝑘 → 𝐵 = 𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘)) → 𝐶 ≤ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 − 𝐴)) & ⊢ (𝜑 → (𝑥 ∈ 𝑆 ↦ 𝐵) ⇝𝑟 0) ⇒ ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → 0 ≤ 𝐵) | ||
| Theorem | dvfsumrlim 26008* | Compare a finite sum to an integral (the integral here is given as a function with a known derivative). The statement here says that if 𝑥 ∈ 𝑆 ↦ 𝐵 is a decreasing function with antiderivative 𝐴 converging to zero, then the difference between Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐵(𝑘) and 𝐴(𝑥) = ∫𝑢 ∈ (𝑀[,]𝑥)𝐵(𝑢) d𝑢 converges to a constant limit value, with the remainder term bounded by 𝐵(𝑥). (Contributed by Mario Carneiro, 18-May-2016.) |
| ⊢ 𝑆 = (𝑇(,)+∞) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ≤ (𝐷 + 1)) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) & ⊢ (𝑥 = 𝑘 → 𝐵 = 𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘)) → 𝐶 ≤ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 − 𝐴)) & ⊢ (𝜑 → (𝑥 ∈ 𝑆 ↦ 𝐵) ⇝𝑟 0) ⇒ ⊢ (𝜑 → 𝐺 ∈ dom ⇝𝑟 ) | ||
| Theorem | dvfsumrlim2 26009* | Compare a finite sum to an integral (the integral here is given as a function with a known derivative). The statement here says that if 𝑥 ∈ 𝑆 ↦ 𝐵 is a decreasing function with antiderivative 𝐴 converging to zero, then the difference between Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐵(𝑘) and ∫𝑢 ∈ (𝑀[,]𝑥)𝐵(𝑢) d𝑢 = 𝐴(𝑥) converges to a constant limit value, with the remainder term bounded by 𝐵(𝑥). (Contributed by Mario Carneiro, 18-May-2016.) |
| ⊢ 𝑆 = (𝑇(,)+∞) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ≤ (𝐷 + 1)) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) & ⊢ (𝑥 = 𝑘 → 𝐵 = 𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘)) → 𝐶 ≤ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 − 𝐴)) & ⊢ (𝜑 → (𝑥 ∈ 𝑆 ↦ 𝐵) ⇝𝑟 0) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝐷 ≤ 𝑋) ⇒ ⊢ ((𝜑 ∧ 𝐺 ⇝𝑟 𝐿) → (abs‘((𝐺‘𝑋) − 𝐿)) ≤ ⦋𝑋 / 𝑥⦌𝐵) | ||
| Theorem | dvfsumrlim3 26010* | Conjoin the statements of dvfsumrlim 26008 and dvfsumrlim2 26009. (This is useful as a target for lemmas, because the hypotheses to this theorem are complex, and we don't want to repeat ourselves.) (Contributed by Mario Carneiro, 18-May-2016.) |
| ⊢ 𝑆 = (𝑇(,)+∞) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ≤ (𝐷 + 1)) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) & ⊢ (𝑥 = 𝑘 → 𝐵 = 𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘)) → 𝐶 ≤ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 − 𝐴)) & ⊢ (𝜑 → (𝑥 ∈ 𝑆 ↦ 𝐵) ⇝𝑟 0) & ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐸) ⇒ ⊢ (𝜑 → (𝐺:𝑆⟶ℝ ∧ 𝐺 ∈ dom ⇝𝑟 ∧ ((𝐺 ⇝𝑟 𝐿 ∧ 𝑋 ∈ 𝑆 ∧ 𝐷 ≤ 𝑋) → (abs‘((𝐺‘𝑋) − 𝐿)) ≤ 𝐸))) | ||
| Theorem | dvfsum2 26011* | The reverse of dvfsumrlim 26008, when comparing a finite sum of increasing terms to an integral. In this case there is no point in stating the limit properties, because the terms of the sum aren't approaching zero, but there is nevertheless still a natural asymptotic statement that can be made. (Contributed by Mario Carneiro, 20-May-2016.) |
| ⊢ 𝑆 = (𝑇(,)+∞) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ*) & ⊢ (𝜑 → 𝑀 ≤ (𝐷 + 1)) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) & ⊢ (𝑥 = 𝑘 → 𝐵 = 𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈)) → 𝐵 ≤ 𝐶) & ⊢ 𝐺 = (𝑥 ∈ 𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 − 𝐴)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → 0 ≤ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) & ⊢ (𝜑 → 𝐷 ≤ 𝑋) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 𝑌 ≤ 𝑈) & ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐸) ⇒ ⊢ (𝜑 → (abs‘((𝐺‘𝑌) − (𝐺‘𝑋))) ≤ 𝐸) | ||
| Theorem | ftc1lem1 26012* | Lemma for ftc1a 26014 and ftc1 26019. (Contributed by Mario Carneiro, 31-Aug-2014.) |
| ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ (𝜑 → 𝐹 ∈ 𝐿1) & ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) & ⊢ (𝜑 → 𝑋 ∈ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝑌 ∈ (𝐴[,]𝐵)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ≤ 𝑌) → ((𝐺‘𝑌) − (𝐺‘𝑋)) = ∫(𝑋(,)𝑌)(𝐹‘𝑡) d𝑡) | ||
| Theorem | ftc1lem2 26013* | Lemma for ftc1 26019. (Contributed by Mario Carneiro, 12-Aug-2014.) |
| ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ (𝜑 → 𝐹 ∈ 𝐿1) & ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) ⇒ ⊢ (𝜑 → 𝐺:(𝐴[,]𝐵)⟶ℂ) | ||
| Theorem | ftc1a 26014* | The Fundamental Theorem of Calculus, part one. The function 𝐺 formed by varying the right endpoint of an integral of 𝐹 is continuous if 𝐹 is integrable. (Contributed by Mario Carneiro, 1-Sep-2014.) |
| ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ (𝜑 → 𝐹 ∈ 𝐿1) & ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) ⇒ ⊢ (𝜑 → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ)) | ||
| Theorem | ftc1lem3 26015* | Lemma for ftc1 26019. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 8-Sep-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ (𝜑 → 𝐹 ∈ 𝐿1) & ⊢ (𝜑 → 𝐶 ∈ (𝐴(,)𝐵)) & ⊢ (𝜑 → 𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶)) & ⊢ 𝐽 = (𝐿 ↾t ℝ) & ⊢ 𝐾 = (𝐿 ↾t 𝐷) & ⊢ 𝐿 = (TopOpen‘ℂfld) ⇒ ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) | ||
| Theorem | ftc1lem4 26016* | Lemma for ftc1 26019. (Contributed by Mario Carneiro, 31-Aug-2014.) |
| ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ (𝜑 → 𝐹 ∈ 𝐿1) & ⊢ (𝜑 → 𝐶 ∈ (𝐴(,)𝐵)) & ⊢ (𝜑 → 𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶)) & ⊢ 𝐽 = (𝐿 ↾t ℝ) & ⊢ 𝐾 = (𝐿 ↾t 𝐷) & ⊢ 𝐿 = (TopOpen‘ℂfld) & ⊢ 𝐻 = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((abs‘(𝑦 − 𝐶)) < 𝑅 → (abs‘((𝐹‘𝑦) − (𝐹‘𝐶))) < 𝐸)) & ⊢ (𝜑 → 𝑋 ∈ (𝐴[,]𝐵)) & ⊢ (𝜑 → (abs‘(𝑋 − 𝐶)) < 𝑅) & ⊢ (𝜑 → 𝑌 ∈ (𝐴[,]𝐵)) & ⊢ (𝜑 → (abs‘(𝑌 − 𝐶)) < 𝑅) ⇒ ⊢ ((𝜑 ∧ 𝑋 < 𝑌) → (abs‘((((𝐺‘𝑌) − (𝐺‘𝑋)) / (𝑌 − 𝑋)) − (𝐹‘𝐶))) < 𝐸) | ||
| Theorem | ftc1lem5 26017* | Lemma for ftc1 26019. (Contributed by Mario Carneiro, 14-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) |
| ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ (𝜑 → 𝐹 ∈ 𝐿1) & ⊢ (𝜑 → 𝐶 ∈ (𝐴(,)𝐵)) & ⊢ (𝜑 → 𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶)) & ⊢ 𝐽 = (𝐿 ↾t ℝ) & ⊢ 𝐾 = (𝐿 ↾t 𝐷) & ⊢ 𝐿 = (TopOpen‘ℂfld) & ⊢ 𝐻 = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((abs‘(𝑦 − 𝐶)) < 𝑅 → (abs‘((𝐹‘𝑦) − (𝐹‘𝐶))) < 𝐸)) & ⊢ (𝜑 → 𝑋 ∈ (𝐴[,]𝐵)) & ⊢ (𝜑 → (abs‘(𝑋 − 𝐶)) < 𝑅) ⇒ ⊢ ((𝜑 ∧ 𝑋 ≠ 𝐶) → (abs‘((𝐻‘𝑋) − (𝐹‘𝐶))) < 𝐸) | ||
| Theorem | ftc1lem6 26018* | Lemma for ftc1 26019. (Contributed by Mario Carneiro, 14-Aug-2014.) (Proof shortened by Mario Carneiro, 28-Dec-2016.) |
| ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ (𝜑 → 𝐹 ∈ 𝐿1) & ⊢ (𝜑 → 𝐶 ∈ (𝐴(,)𝐵)) & ⊢ (𝜑 → 𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶)) & ⊢ 𝐽 = (𝐿 ↾t ℝ) & ⊢ 𝐾 = (𝐿 ↾t 𝐷) & ⊢ 𝐿 = (TopOpen‘ℂfld) & ⊢ 𝐻 = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) ⇒ ⊢ (𝜑 → (𝐹‘𝐶) ∈ (𝐻 limℂ 𝐶)) | ||
| Theorem | ftc1 26019* | The Fundamental Theorem of Calculus, part one. The function formed by varying the right endpoint of an integral is differentiable at 𝐶 with derivative 𝐹(𝐶) if the original function is continuous at 𝐶. This is part of Metamath 100 proof #15. (Contributed by Mario Carneiro, 1-Sep-2014.) |
| ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐷 ⊆ ℝ) & ⊢ (𝜑 → 𝐹 ∈ 𝐿1) & ⊢ (𝜑 → 𝐶 ∈ (𝐴(,)𝐵)) & ⊢ (𝜑 → 𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶)) & ⊢ 𝐽 = (𝐿 ↾t ℝ) & ⊢ 𝐾 = (𝐿 ↾t 𝐷) & ⊢ 𝐿 = (TopOpen‘ℂfld) ⇒ ⊢ (𝜑 → 𝐶(ℝ D 𝐺)(𝐹‘𝐶)) | ||
| Theorem | ftc1cn 26020* | Strengthen the assumptions of ftc1 26019 to when the function 𝐹 is continuous on the entire interval (𝐴, 𝐵); in this case we can calculate D 𝐺 exactly. (Contributed by Mario Carneiro, 1-Sep-2014.) |
| ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) & ⊢ (𝜑 → 𝐹 ∈ 𝐿1) ⇒ ⊢ (𝜑 → (ℝ D 𝐺) = 𝐹) | ||
| Theorem | ftc2 26021* | The Fundamental Theorem of Calculus, part two. If 𝐹 is a function continuous on [𝐴, 𝐵] and continuously differentiable on (𝐴, 𝐵), then the integral of the derivative of 𝐹 is equal to 𝐹(𝐵) − 𝐹(𝐴). This is part of Metamath 100 proof #15. (Contributed by Mario Carneiro, 2-Sep-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → (ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ)) & ⊢ (𝜑 → (ℝ D 𝐹) ∈ 𝐿1) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) ⇒ ⊢ (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹‘𝐵) − (𝐹‘𝐴))) | ||
| Theorem | ftc2ditglem 26022* | Lemma for ftc2ditg 26023. (Contributed by Mario Carneiro, 3-Sep-2014.) |
| ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ (𝑋[,]𝑌)) & ⊢ (𝜑 → 𝐵 ∈ (𝑋[,]𝑌)) & ⊢ (𝜑 → (ℝ D 𝐹) ∈ ((𝑋(,)𝑌)–cn→ℂ)) & ⊢ (𝜑 → (ℝ D 𝐹) ∈ 𝐿1) & ⊢ (𝜑 → 𝐹 ∈ ((𝑋[,]𝑌)–cn→ℂ)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ⨜[𝐴 → 𝐵]((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹‘𝐵) − (𝐹‘𝐴))) | ||
| Theorem | ftc2ditg 26023* | Directed integral analogue of ftc2 26021. (Contributed by Mario Carneiro, 3-Sep-2014.) |
| ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ (𝑋[,]𝑌)) & ⊢ (𝜑 → 𝐵 ∈ (𝑋[,]𝑌)) & ⊢ (𝜑 → (ℝ D 𝐹) ∈ ((𝑋(,)𝑌)–cn→ℂ)) & ⊢ (𝜑 → (ℝ D 𝐹) ∈ 𝐿1) & ⊢ (𝜑 → 𝐹 ∈ ((𝑋[,]𝑌)–cn→ℂ)) ⇒ ⊢ (𝜑 → ⨜[𝐴 → 𝐵]((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹‘𝐵) − (𝐹‘𝐴))) | ||
| Theorem | itgparts 26024* | Integration by parts. If 𝐵(𝑥) is the derivative of 𝐴(𝑥) and 𝐷(𝑥) is the derivative of 𝐶(𝑥), and 𝐸 = (𝐴 · 𝐵)(𝑋) and 𝐹 = (𝐴 · 𝐵)(𝑌), then under suitable integrability and differentiability assumptions, the integral of 𝐴 · 𝐷 from 𝑋 to 𝑌 is equal to 𝐹 − 𝐸 minus the integral of 𝐵 · 𝐶. (Contributed by Mario Carneiro, 3-Sep-2014.) |
| ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→ℂ)) & ⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶) ∈ ((𝑋[,]𝑌)–cn→ℂ)) & ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ ((𝑋(,)𝑌)–cn→ℂ)) & ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷) ∈ ((𝑋(,)𝑌)–cn→ℂ)) & ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐴 · 𝐷)) ∈ 𝐿1) & ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (𝐵 · 𝐶)) ∈ 𝐿1) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵)) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐶)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐷)) & ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐴 · 𝐶) = 𝐸) & ⊢ ((𝜑 ∧ 𝑥 = 𝑌) → (𝐴 · 𝐶) = 𝐹) ⇒ ⊢ (𝜑 → ∫(𝑋(,)𝑌)(𝐴 · 𝐷) d𝑥 = ((𝐹 − 𝐸) − ∫(𝑋(,)𝑌)(𝐵 · 𝐶) d𝑥)) | ||
| Theorem | itgsubstlem 26025* | Lemma for itgsubst 26026. (Contributed by Mario Carneiro, 12-Sep-2014.) |
| ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 𝑍 ∈ ℝ*) & ⊢ (𝜑 → 𝑊 ∈ ℝ*) & ⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊))) & ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1)) & ⊢ (𝜑 → (𝑢 ∈ (𝑍(,)𝑊) ↦ 𝐶) ∈ ((𝑍(,)𝑊)–cn→ℂ)) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵)) & ⊢ (𝑢 = 𝐴 → 𝐶 = 𝐸) & ⊢ (𝑥 = 𝑋 → 𝐴 = 𝐾) & ⊢ (𝑥 = 𝑌 → 𝐴 = 𝐿) & ⊢ (𝜑 → 𝑀 ∈ (𝑍(,)𝑊)) & ⊢ (𝜑 → 𝑁 ∈ (𝑍(,)𝑊)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋[,]𝑌)) → 𝐴 ∈ (𝑀(,)𝑁)) ⇒ ⊢ (𝜑 → ⨜[𝐾 → 𝐿]𝐶 d𝑢 = ⨜[𝑋 → 𝑌](𝐸 · 𝐵) d𝑥) | ||
| Theorem | itgsubst 26026* | Integration by 𝑢-substitution. If 𝐴(𝑥) is a continuous, differentiable function from [𝑋, 𝑌] to (𝑍, 𝑊), whose derivative is continuous and integrable, and 𝐶(𝑢) is a continuous function on (𝑍, 𝑊), then the integral of 𝐶(𝑢) from 𝐾 = 𝐴(𝑋) to 𝐿 = 𝐴(𝑌) is equal to the integral of 𝐶(𝐴(𝑥)) D 𝐴(𝑥) from 𝑋 to 𝑌. In this part of the proof we discharge the assumptions in itgsubstlem 26025, which use the fact that (𝑍, 𝑊) is open to shrink the interval a little to (𝑀, 𝑁) where 𝑍 < 𝑀 < 𝑁 < 𝑊- this is possible because 𝐴(𝑥) is a continuous function on a closed interval, so its range is in fact a closed interval, and we have some wiggle room on the edges. (Contributed by Mario Carneiro, 7-Sep-2014.) |
| ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 𝑍 ∈ ℝ*) & ⊢ (𝜑 → 𝑊 ∈ ℝ*) & ⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝑍(,)𝑊))) & ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1)) & ⊢ (𝜑 → (𝑢 ∈ (𝑍(,)𝑊) ↦ 𝐶) ∈ ((𝑍(,)𝑊)–cn→ℂ)) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵)) & ⊢ (𝑢 = 𝐴 → 𝐶 = 𝐸) & ⊢ (𝑥 = 𝑋 → 𝐴 = 𝐾) & ⊢ (𝑥 = 𝑌 → 𝐴 = 𝐿) ⇒ ⊢ (𝜑 → ⨜[𝐾 → 𝐿]𝐶 d𝑢 = ⨜[𝑋 → 𝑌](𝐸 · 𝐵) d𝑥) | ||
| Theorem | itgpowd 26027* | The integral of a monomial on a closed bounded interval of the real line. Co-authors TA and MC. (Contributed by Jon Pennant, 31-May-2019.) (Revised by Thierry Arnoux, 14-Jun-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ∫(𝐴[,]𝐵)(𝑥↑𝑁) d𝑥 = (((𝐵↑(𝑁 + 1)) − (𝐴↑(𝑁 + 1))) / (𝑁 + 1))) | ||
| Syntax | cmdg 26028 | Multivariate polynomial degree. |
| class mDeg | ||
| Syntax | cdg1 26029 | Univariate polynomial degree. |
| class deg1 | ||
| Definition | df-mdeg 26030* | Define the degree of a polynomial. Note (SO): as an experiment I am using a definition which makes the degree of the zero polynomial -∞, contrary to the convention used in df-dgr 26166. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by AV, 25-Jun-2019.) |
| ⊢ mDeg = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ sup(ran (ℎ ∈ (𝑓 supp (0g‘𝑟)) ↦ (ℂfld Σg ℎ)), ℝ*, < ))) | ||
| Definition | df-deg1 26031 | Define the degree of a univariate polynomial. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| ⊢ deg1 = (𝑟 ∈ V ↦ (1o mDeg 𝑟)) | ||
| Theorem | reldmmdeg 26032 | Multivariate degree is a binary operation. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ Rel dom mDeg | ||
| Theorem | tdeglem1 26033* | Functionality of the total degree helper function. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) Remove sethood antecedent. (Revised by SN, 7-Aug-2024.) |
| ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} & ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) ⇒ ⊢ 𝐻:𝐴⟶ℕ0 | ||
| Theorem | tdeglem3 26034* | Additivity of the total degree helper function. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) Remove a sethood antecedent. (Revised by SN, 7-Aug-2024.) |
| ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} & ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) ⇒ ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝐻‘(𝑋 ∘f + 𝑌)) = ((𝐻‘𝑋) + (𝐻‘𝑌))) | ||
| Theorem | tdeglem4 26035* | There is only one multi-index with total degree 0. (Contributed by Stefan O'Rear, 29-Mar-2015.) Remove a sethood antecedent. (Revised by SN, 7-Aug-2024.) |
| ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} & ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) ⇒ ⊢ (𝑋 ∈ 𝐴 → ((𝐻‘𝑋) = 0 ↔ 𝑋 = (𝐼 × {0}))) | ||
| Theorem | tdeglem2 26036 | Simplification of total degree for the univariate case. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| ⊢ (ℎ ∈ (ℕ0 ↑m 1o) ↦ (ℎ‘∅)) = (ℎ ∈ (ℕ0 ↑m 1o) ↦ (ℂfld Σg ℎ)) | ||
| Theorem | mdegfval 26037* | Value of the multivariate degree function. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by AV, 25-Jun-2019.) |
| ⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} & ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) ⇒ ⊢ 𝐷 = (𝑓 ∈ 𝐵 ↦ sup((𝐻 “ (𝑓 supp 0 )), ℝ*, < )) | ||
| Theorem | mdegval 26038* | Value of the multivariate degree function at some particular polynomial. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by AV, 25-Jun-2019.) |
| ⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} & ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) ⇒ ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < )) | ||
| Theorem | mdegleb 26039* | Property of being of limited degree. (Contributed by Stefan O'Rear, 19-Mar-2015.) |
| ⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} & ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) ⇒ ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → ((𝐷‘𝐹) ≤ 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐺 < (𝐻‘𝑥) → (𝐹‘𝑥) = 0 ))) | ||
| Theorem | mdeglt 26040* | If there is an upper limit on the degree of a polynomial that is lower than the degree of some exponent bag, then that exponent bag is unrepresented in the polynomial. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
| ⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} & ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → (𝐷‘𝐹) < (𝐻‘𝑋)) ⇒ ⊢ (𝜑 → (𝐹‘𝑋) = 0 ) | ||
| Theorem | mdegldg 26041* | A nonzero polynomial has some coefficient which witnesses its degree. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| ⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} & ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) & ⊢ 𝑌 = (0g‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 𝑌) → ∃𝑥 ∈ 𝐴 ((𝐹‘𝑥) ≠ 0 ∧ (𝐻‘𝑥) = (𝐷‘𝐹))) | ||
| Theorem | mdegxrcl 26042 | Closure of polynomial degree in the extended reals. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
| ⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) ∈ ℝ*) | ||
| Theorem | mdegxrf 26043 | Functionality of polynomial degree in the extended reals. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
| ⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ 𝐷:𝐵⟶ℝ* | ||
| Theorem | mdegcl 26044 | Sharp closure for multivariate polynomials. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| ⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) ∈ (ℕ0 ∪ {-∞})) | ||
| Theorem | mdeg0 26045 | Degree of the zero polynomial. (Contributed by Stefan O'Rear, 20-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
| ⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 0 = (0g‘𝑃) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → (𝐷‘ 0 ) = -∞) | ||
| Theorem | mdegnn0cl 26046 | Degree of a nonzero polynomial. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| ⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐷‘𝐹) ∈ ℕ0) | ||
| Theorem | degltlem1 26047 | Theorem on arithmetic of extended reals useful for degrees. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| ⊢ ((𝑋 ∈ (ℕ0 ∪ {-∞}) ∧ 𝑌 ∈ ℤ) → (𝑋 < 𝑌 ↔ 𝑋 ≤ (𝑌 − 1))) | ||
| Theorem | degltp1le 26048 | Theorem on arithmetic of extended reals useful for degrees. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
| ⊢ ((𝑋 ∈ (ℕ0 ∪ {-∞}) ∧ 𝑌 ∈ ℤ) → (𝑋 < (𝑌 + 1) ↔ 𝑋 ≤ 𝑌)) | ||
| Theorem | mdegaddle 26049 | The degree of a sum is at most the maximum of the degrees of the factors. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
| ⊢ 𝑌 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ + = (+g‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 + 𝐺)) ≤ if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹))) | ||
| Theorem | mdegvscale 26050 | The degree of a scalar multiple of a polynomial is at most the degree of the original polynomial. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
| ⊢ 𝑌 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐷‘𝐺)) | ||
| Theorem | mdegvsca 26051 | The degree of a scalar multiple of a polynomial is exactly the degree of the original polynomial when the multiple is a nonzero-divisor. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
| ⊢ 𝑌 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐸) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) = (𝐷‘𝐺)) | ||
| Theorem | mdegle0 26052 | A polynomial has nonpositive degree iff it is a constant. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| ⊢ 𝑌 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐴 = (algSc‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝐷‘𝐹) ≤ 0 ↔ 𝐹 = (𝐴‘(𝐹‘(𝐼 × {0}))))) | ||
| Theorem | mdegmullem 26053* | Lemma for mdegmulle2 26054. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
| ⊢ 𝑌 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ · = (.r‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ (𝜑 → (𝐷‘𝐹) ≤ 𝐽) & ⊢ (𝜑 → (𝐷‘𝐺) ≤ 𝐾) & ⊢ 𝐴 = {𝑎 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑎 “ ℕ) ∈ Fin} & ⊢ 𝐻 = (𝑏 ∈ 𝐴 ↦ (ℂfld Σg 𝑏)) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾)) | ||
| Theorem | mdegmulle2 26054 | The multivariate degree of a product of polynomials is at most the sum of the degrees of the polynomials. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
| ⊢ 𝑌 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = (𝐼 mDeg 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ · = (.r‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ (𝜑 → (𝐷‘𝐹) ≤ 𝐽) & ⊢ (𝜑 → (𝐷‘𝐺) ≤ 𝐾) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾)) | ||
| Theorem | deg1fval 26055 | Relate univariate polynomial degree to multivariate. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) ⇒ ⊢ 𝐷 = (1o mDeg 𝑅) | ||
| Theorem | deg1xrf 26056 | Functionality of univariate polynomial degree, weak range. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ 𝐷:𝐵⟶ℝ* | ||
| Theorem | deg1xrcl 26057 | Closure of univariate polynomial degree in extended reals. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) ∈ ℝ*) | ||
| Theorem | deg1cl 26058 | Sharp closure of univariate polynomial degree. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) ∈ (ℕ0 ∪ {-∞})) | ||
| Theorem | mdegpropd 26059* | Property deduction for polynomial degree. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐵 = (Base‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑆)𝑦)) ⇒ ⊢ (𝜑 → (𝐼 mDeg 𝑅) = (𝐼 mDeg 𝑆)) | ||
| Theorem | deg1fvi 26060 | Univariate polynomial degree respects protection. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ (deg1‘𝑅) = (deg1‘( I ‘𝑅)) | ||
| Theorem | deg1propd 26061* | Property deduction for polynomial degree. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐵 = (Base‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑆)𝑦)) ⇒ ⊢ (𝜑 → (deg1‘𝑅) = (deg1‘𝑆)) | ||
| Theorem | deg1z 26062 | Degree of the zero univariate polynomial. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑃) ⇒ ⊢ (𝑅 ∈ Ring → (𝐷‘ 0 ) = -∞) | ||
| Theorem | deg1nn0cl 26063 | Degree of a nonzero univariate polynomial. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐷‘𝐹) ∈ ℕ0) | ||
| Theorem | deg1n0ima 26064 | Degree image of a set of polynomials which does not include zero. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ (𝑅 ∈ Ring → (𝐷 “ (𝐵 ∖ { 0 })) ⊆ ℕ0) | ||
| Theorem | deg1nn0clb 26065 | A polynomial is nonzero iff it has definite degree. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → (𝐹 ≠ 0 ↔ (𝐷‘𝐹) ∈ ℕ0)) | ||
| Theorem | deg1lt0 26066 | A polynomial is zero iff it has negative degree. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → ((𝐷‘𝐹) < 0 ↔ 𝐹 = 0 )) | ||
| Theorem | deg1ldg 26067 | A nonzero univariate polynomial always has a nonzero leading coefficient. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑌 = (0g‘𝑅) & ⊢ 𝐴 = (coe1‘𝐹) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐴‘(𝐷‘𝐹)) ≠ 𝑌) | ||
| Theorem | deg1ldgn 26068 | An index at which a polynomial is zero, cannot be its degree. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑌 = (0g‘𝑅) & ⊢ 𝐴 = (coe1‘𝐹) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ ℕ0) & ⊢ (𝜑 → (𝐴‘𝑋) = 𝑌) ⇒ ⊢ (𝜑 → (𝐷‘𝐹) ≠ 𝑋) | ||
| Theorem | deg1ldgdomn 26069 | A nonzero univariate polynomial over a domain always has a nonzero-divisor leading coefficient. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 𝐴 = (coe1‘𝐹) ⇒ ⊢ ((𝑅 ∈ Domn ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐴‘(𝐷‘𝐹)) ∈ 𝐸) | ||
| Theorem | deg1leb 26070* | Property of being of limited degree. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = (coe1‘𝐹) ⇒ ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → ((𝐷‘𝐹) ≤ 𝐺 ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴‘𝑥) = 0 ))) | ||
| Theorem | deg1val 26071 | Value of the univariate degree as a supremum. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Jul-2019.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = (coe1‘𝐹) ⇒ ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) = sup((𝐴 supp 0 ), ℝ*, < )) | ||
| Theorem | deg1lt 26072 | If the degree of a univariate polynomial is less than some index, then that coefficient must be zero. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = (coe1‘𝐹) ⇒ ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℕ0 ∧ (𝐷‘𝐹) < 𝐺) → (𝐴‘𝐺) = 0 ) | ||
| Theorem | deg1ge 26073 | Conversely, a nonzero coefficient sets a lower bound on the degree. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = (coe1‘𝐹) ⇒ ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℕ0 ∧ (𝐴‘𝐺) ≠ 0 ) → 𝐺 ≤ (𝐷‘𝐹)) | ||
| Theorem | coe1mul3 26074 | The coefficient vector of multiplication in the univariate polynomial ring, at indices high enough that at most one component can be active in the sum. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
| ⊢ 𝑌 = (Poly1‘𝑅) & ⊢ ∙ = (.r‘𝑌) & ⊢ · = (.r‘𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐼 ∈ ℕ0) & ⊢ (𝜑 → (𝐷‘𝐹) ≤ 𝐼) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → (𝐷‘𝐺) ≤ 𝐽) ⇒ ⊢ (𝜑 → ((coe1‘(𝐹 ∙ 𝐺))‘(𝐼 + 𝐽)) = (((coe1‘𝐹)‘𝐼) · ((coe1‘𝐺)‘𝐽))) | ||
| Theorem | coe1mul4 26075 | Value of the "leading" coefficient of a product of two nonzero polynomials. This will fail to actually be the leading coefficient only if it is zero (requiring the basic ring to contain zero divisors). (Contributed by Stefan O'Rear, 25-Mar-2015.) |
| ⊢ 𝑌 = (Poly1‘𝑅) & ⊢ ∙ = (.r‘𝑌) & ⊢ · = (.r‘𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 0 = (0g‘𝑌) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ≠ 0 ) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ≠ 0 ) ⇒ ⊢ (𝜑 → ((coe1‘(𝐹 ∙ 𝐺))‘((𝐷‘𝐹) + (𝐷‘𝐺))) = (((coe1‘𝐹)‘(𝐷‘𝐹)) · ((coe1‘𝐺)‘(𝐷‘𝐺)))) | ||
| Theorem | deg1addle 26076 | The degree of a sum is at most the maximum of the degrees of the factors. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
| ⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ + = (+g‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 + 𝐺)) ≤ if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹))) | ||
| Theorem | deg1addle2 26077 | If both factors have degree bounded by 𝐿, then the sum of the polynomials also has degree bounded by 𝐿. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
| ⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ + = (+g‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → 𝐿 ∈ ℝ*) & ⊢ (𝜑 → (𝐷‘𝐹) ≤ 𝐿) & ⊢ (𝜑 → (𝐷‘𝐺) ≤ 𝐿) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 + 𝐺)) ≤ 𝐿) | ||
| Theorem | deg1add 26078 | Exact degree of a sum of two polynomials of unequal degree. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ + = (+g‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → (𝐷‘𝐺) < (𝐷‘𝐹)) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 + 𝐺)) = (𝐷‘𝐹)) | ||
| Theorem | deg1vscale 26079 | The degree of a scalar times a polynomial is at most the degree of the original polynomial. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
| ⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐷‘𝐺)) | ||
| Theorem | deg1vsca 26080 | The degree of a scalar times a polynomial is exactly the degree of the original polynomial when the scalar is not a zero divisor. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐸) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) = (𝐷‘𝐺)) | ||
| Theorem | deg1invg 26081 | The degree of the negated polynomial is the same as the original. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑁 = (invg‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐷‘(𝑁‘𝐹)) = (𝐷‘𝐹)) | ||
| Theorem | deg1suble 26082 | The degree of a difference of polynomials is bounded by the maximum of degrees. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
| ⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) ≤ if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹))) | ||
| Theorem | deg1sub 26083 | Exact degree of a difference of two polynomials of unequal degree. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → (𝐷‘𝐺) < (𝐷‘𝐹)) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) = (𝐷‘𝐹)) | ||
| Theorem | deg1mulle2 26084 | Produce a bound on the product of two univariate polynomials given bounds on the factors. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
| ⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ · = (.r‘𝑌) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ (𝜑 → (𝐷‘𝐹) ≤ 𝐽) & ⊢ (𝜑 → (𝐷‘𝐺) ≤ 𝐾) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾)) | ||
| Theorem | deg1sublt 26085 | Subtraction of two polynomials limited to the same degree with the same leading coefficient gives a polynomial with a smaller degree. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ − = (-g‘𝑃) & ⊢ (𝜑 → 𝐿 ∈ ℕ0) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → (𝐷‘𝐹) ≤ 𝐿) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → (𝐷‘𝐺) ≤ 𝐿) & ⊢ 𝐴 = (coe1‘𝐹) & ⊢ 𝐶 = (coe1‘𝐺) & ⊢ (𝜑 → ((coe1‘𝐹)‘𝐿) = ((coe1‘𝐺)‘𝐿)) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) < 𝐿) | ||
| Theorem | deg1le0 26086 | A polynomial has nonpositive degree iff it is a constant. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐴 = (algSc‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → ((𝐷‘𝐹) ≤ 0 ↔ 𝐹 = (𝐴‘((coe1‘𝐹)‘0)))) | ||
| Theorem | deg1sclle 26087 | A scalar polynomial has nonpositive degree. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾) → (𝐷‘(𝐴‘𝐹)) ≤ 0) | ||
| Theorem | deg1scl 26088 | A nonzero scalar polynomial has zero degree. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐹 ≠ 0 ) → (𝐷‘(𝐴‘𝐹)) = 0) | ||
| Theorem | deg1mul2 26089 | Degree of multiplication of two nonzero polynomials when the first leads with a nonzero-divisor coefficient. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ · = (.r‘𝑃) & ⊢ 0 = (0g‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ≠ 0 ) & ⊢ (𝜑 → ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝐸) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) = ((𝐷‘𝐹) + (𝐷‘𝐺))) | ||
| Theorem | deg1mul 26090 | Degree of multiplication of two nonzero polynomials in a domain. (Contributed by metakunt, 6-May-2025.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ · = (.r‘𝑃) & ⊢ 0 = (0g‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Domn) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ≠ 0 ) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) = ((𝐷‘𝐹) + (𝐷‘𝐺))) | ||
| Theorem | deg1mul3 26091 | Degree of multiplication of a polynomial on the left by a nonzero-dividing scalar. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Proof shortened by AV, 25-Jul-2019.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ · = (.r‘𝑃) & ⊢ 𝐴 = (algSc‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵) → (𝐷‘((𝐴‘𝐹) · 𝐺)) = (𝐷‘𝐺)) | ||
| Theorem | deg1mul3le 26092 | Degree of multiplication of a polynomial on the left by a scalar. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ · = (.r‘𝑃) & ⊢ 𝐴 = (algSc‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐵) → (𝐷‘((𝐴‘𝐹) · 𝐺)) ≤ (𝐷‘𝐺)) | ||
| Theorem | deg1tmle 26093 | Limiting degree of a polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0) → (𝐷‘(𝐶 · (𝐹 ↑ 𝑋))) ≤ 𝐹) | ||
| Theorem | deg1tm 26094 | Exact degree of a polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝐶 ∈ 𝐾 ∧ 𝐶 ≠ 0 ) ∧ 𝐹 ∈ ℕ0) → (𝐷‘(𝐶 · (𝐹 ↑ 𝑋))) = 𝐹) | ||
| Theorem | deg1pwle 26095 | Limiting degree of a variable power. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ ℕ0) → (𝐷‘(𝐹 ↑ 𝑋)) ≤ 𝐹) | ||
| Theorem | deg1pw 26096 | Exact degree of a variable power over a nontrivial ring. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
| ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) ⇒ ⊢ ((𝑅 ∈ NzRing ∧ 𝐹 ∈ ℕ0) → (𝐷‘(𝐹 ↑ 𝑋)) = 𝐹) | ||
| Theorem | ply1nz 26097 | Univariate polynomials over a nonzero ring are a nonzero ring. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (𝑅 ∈ NzRing → 𝑃 ∈ NzRing) | ||
| Theorem | ply1nzb 26098 | Univariate polynomials are nonzero iff the base is nonzero. Or in contraposition, the univariate polynomials over the zero ring are also zero. (Contributed by Mario Carneiro, 13-Jun-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝑅 ∈ NzRing ↔ 𝑃 ∈ NzRing)) | ||
| Theorem | ply1domn 26099 | Corollary of deg1mul2 26089: the univariate polynomials over a domain are a domain. This is true for multivariate but with a much more complicated proof. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (𝑅 ∈ Domn → 𝑃 ∈ Domn) | ||
| Theorem | ply1idom 26100 | The ring of univariate polynomials over an integral domain is itself an integral domain. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (𝑅 ∈ IDomn → 𝑃 ∈ IDomn) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |