Detailed syntax breakdown of Definition df-rag
| Step | Hyp | Ref
| Expression |
| 1 | | crag 28701 |
. 2
class
∟G |
| 2 | | vg |
. . 3
setvar 𝑔 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vw |
. . . . . . . 8
setvar 𝑤 |
| 5 | 4 | cv 1539 |
. . . . . . 7
class 𝑤 |
| 6 | | chash 14369 |
. . . . . . 7
class
♯ |
| 7 | 5, 6 | cfv 6561 |
. . . . . 6
class
(♯‘𝑤) |
| 8 | | c3 12322 |
. . . . . 6
class
3 |
| 9 | 7, 8 | wceq 1540 |
. . . . 5
wff
(♯‘𝑤) =
3 |
| 10 | | cc0 11155 |
. . . . . . . 8
class
0 |
| 11 | 10, 5 | cfv 6561 |
. . . . . . 7
class (𝑤‘0) |
| 12 | | c2 12321 |
. . . . . . . 8
class
2 |
| 13 | 12, 5 | cfv 6561 |
. . . . . . 7
class (𝑤‘2) |
| 14 | 2 | cv 1539 |
. . . . . . . 8
class 𝑔 |
| 15 | | cds 17306 |
. . . . . . . 8
class
dist |
| 16 | 14, 15 | cfv 6561 |
. . . . . . 7
class
(dist‘𝑔) |
| 17 | 11, 13, 16 | co 7431 |
. . . . . 6
class ((𝑤‘0)(dist‘𝑔)(𝑤‘2)) |
| 18 | | c1 11156 |
. . . . . . . . . 10
class
1 |
| 19 | 18, 5 | cfv 6561 |
. . . . . . . . 9
class (𝑤‘1) |
| 20 | | cmir 28660 |
. . . . . . . . . 10
class
pInvG |
| 21 | 14, 20 | cfv 6561 |
. . . . . . . . 9
class
(pInvG‘𝑔) |
| 22 | 19, 21 | cfv 6561 |
. . . . . . . 8
class
((pInvG‘𝑔)‘(𝑤‘1)) |
| 23 | 13, 22 | cfv 6561 |
. . . . . . 7
class
(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2)) |
| 24 | 11, 23, 16 | co 7431 |
. . . . . 6
class ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2))) |
| 25 | 17, 24 | wceq 1540 |
. . . . 5
wff ((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2))) |
| 26 | 9, 25 | wa 395 |
. . . 4
wff
((♯‘𝑤) =
3 ∧ ((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2)))) |
| 27 | | cbs 17247 |
. . . . . 6
class
Base |
| 28 | 14, 27 | cfv 6561 |
. . . . 5
class
(Base‘𝑔) |
| 29 | 28 | cword 14552 |
. . . 4
class Word
(Base‘𝑔) |
| 30 | 26, 4, 29 | crab 3436 |
. . 3
class {𝑤 ∈ Word (Base‘𝑔) ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2))))} |
| 31 | 2, 3, 30 | cmpt 5225 |
. 2
class (𝑔 ∈ V ↦ {𝑤 ∈ Word (Base‘𝑔) ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2))))}) |
| 32 | 1, 31 | wceq 1540 |
1
wff ∟G =
(𝑔 ∈ V ↦ {𝑤 ∈ Word (Base‘𝑔) ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2))))}) |