Detailed syntax breakdown of Definition df-rag
Step | Hyp | Ref
| Expression |
1 | | crag 27054 |
. 2
class
∟G |
2 | | vg |
. . 3
setvar 𝑔 |
3 | | cvv 3432 |
. . 3
class
V |
4 | | vw |
. . . . . . . 8
setvar 𝑤 |
5 | 4 | cv 1538 |
. . . . . . 7
class 𝑤 |
6 | | chash 14044 |
. . . . . . 7
class
♯ |
7 | 5, 6 | cfv 6433 |
. . . . . 6
class
(♯‘𝑤) |
8 | | c3 12029 |
. . . . . 6
class
3 |
9 | 7, 8 | wceq 1539 |
. . . . 5
wff
(♯‘𝑤) =
3 |
10 | | cc0 10871 |
. . . . . . . 8
class
0 |
11 | 10, 5 | cfv 6433 |
. . . . . . 7
class (𝑤‘0) |
12 | | c2 12028 |
. . . . . . . 8
class
2 |
13 | 12, 5 | cfv 6433 |
. . . . . . 7
class (𝑤‘2) |
14 | 2 | cv 1538 |
. . . . . . . 8
class 𝑔 |
15 | | cds 16971 |
. . . . . . . 8
class
dist |
16 | 14, 15 | cfv 6433 |
. . . . . . 7
class
(dist‘𝑔) |
17 | 11, 13, 16 | co 7275 |
. . . . . 6
class ((𝑤‘0)(dist‘𝑔)(𝑤‘2)) |
18 | | c1 10872 |
. . . . . . . . . 10
class
1 |
19 | 18, 5 | cfv 6433 |
. . . . . . . . 9
class (𝑤‘1) |
20 | | cmir 27013 |
. . . . . . . . . 10
class
pInvG |
21 | 14, 20 | cfv 6433 |
. . . . . . . . 9
class
(pInvG‘𝑔) |
22 | 19, 21 | cfv 6433 |
. . . . . . . 8
class
((pInvG‘𝑔)‘(𝑤‘1)) |
23 | 13, 22 | cfv 6433 |
. . . . . . 7
class
(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2)) |
24 | 11, 23, 16 | co 7275 |
. . . . . 6
class ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2))) |
25 | 17, 24 | wceq 1539 |
. . . . 5
wff ((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2))) |
26 | 9, 25 | wa 396 |
. . . 4
wff
((♯‘𝑤) =
3 ∧ ((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2)))) |
27 | | cbs 16912 |
. . . . . 6
class
Base |
28 | 14, 27 | cfv 6433 |
. . . . 5
class
(Base‘𝑔) |
29 | 28 | cword 14217 |
. . . 4
class Word
(Base‘𝑔) |
30 | 26, 4, 29 | crab 3068 |
. . 3
class {𝑤 ∈ Word (Base‘𝑔) ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2))))} |
31 | 2, 3, 30 | cmpt 5157 |
. 2
class (𝑔 ∈ V ↦ {𝑤 ∈ Word (Base‘𝑔) ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2))))}) |
32 | 1, 31 | wceq 1539 |
1
wff ∟G =
(𝑔 ∈ V ↦ {𝑤 ∈ Word (Base‘𝑔) ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2))))}) |