HomeHome Metamath Proof Explorer
Theorem List (p. 284 of 466)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29289)
  Hilbert Space Explorer  Hilbert Space Explorer
(29290-30812)
  Users' Mathboxes  Users' Mathboxes
(30813-46532)
 

Theorem List for Metamath Proof Explorer - 28301-28400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorem2wlkdlem3 28301 Lemma 3 for 2wlkd 28310. (Contributed by AV, 14-Feb-2021.)
𝑃 = ⟨“𝐴𝐵𝐶”⟩    &   𝐹 = ⟨“𝐽𝐾”⟩    &   (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))       (𝜑 → ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶))
 
Theorem2wlkdlem4 28302* Lemma 4 for 2wlkd 28310. (Contributed by AV, 14-Feb-2021.)
𝑃 = ⟨“𝐴𝐵𝐶”⟩    &   𝐹 = ⟨“𝐽𝐾”⟩    &   (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))       (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃𝑘) ∈ 𝑉)
 
Theorem2wlkdlem5 28303* Lemma 5 for 2wlkd 28310. (Contributed by AV, 14-Feb-2021.)
𝑃 = ⟨“𝐴𝐵𝐶”⟩    &   𝐹 = ⟨“𝐽𝐾”⟩    &   (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))    &   (𝜑 → (𝐴𝐵𝐵𝐶))       (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
 
Theorem2pthdlem1 28304* Lemma 1 for 2pthd 28314. (Contributed by AV, 14-Feb-2021.)
𝑃 = ⟨“𝐴𝐵𝐶”⟩    &   𝐹 = ⟨“𝐽𝐾”⟩    &   (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))    &   (𝜑 → (𝐴𝐵𝐵𝐶))       (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^(♯‘𝐹))(𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)))
 
Theorem2wlkdlem6 28305 Lemma 6 for 2wlkd 28310. (Contributed by AV, 23-Jan-2021.)
𝑃 = ⟨“𝐴𝐵𝐶”⟩    &   𝐹 = ⟨“𝐽𝐾”⟩    &   (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))    &   (𝜑 → (𝐴𝐵𝐵𝐶))    &   (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)))       (𝜑 → (𝐵 ∈ (𝐼𝐽) ∧ 𝐵 ∈ (𝐼𝐾)))
 
Theorem2wlkdlem7 28306 Lemma 7 for 2wlkd 28310. (Contributed by AV, 14-Feb-2021.)
𝑃 = ⟨“𝐴𝐵𝐶”⟩    &   𝐹 = ⟨“𝐽𝐾”⟩    &   (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))    &   (𝜑 → (𝐴𝐵𝐵𝐶))    &   (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)))       (𝜑 → (𝐽 ∈ V ∧ 𝐾 ∈ V))
 
Theorem2wlkdlem8 28307 Lemma 8 for 2wlkd 28310. (Contributed by AV, 14-Feb-2021.)
𝑃 = ⟨“𝐴𝐵𝐶”⟩    &   𝐹 = ⟨“𝐽𝐾”⟩    &   (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))    &   (𝜑 → (𝐴𝐵𝐵𝐶))    &   (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)))       (𝜑 → ((𝐹‘0) = 𝐽 ∧ (𝐹‘1) = 𝐾))
 
Theorem2wlkdlem9 28308 Lemma 9 for 2wlkd 28310. (Contributed by AV, 14-Feb-2021.)
𝑃 = ⟨“𝐴𝐵𝐶”⟩    &   𝐹 = ⟨“𝐽𝐾”⟩    &   (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))    &   (𝜑 → (𝐴𝐵𝐵𝐶))    &   (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)))       (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘(𝐹‘0)) ∧ {𝐵, 𝐶} ⊆ (𝐼‘(𝐹‘1))))
 
Theorem2wlkdlem10 28309* Lemma 10 for 3wlkd 28543. (Contributed by AV, 14-Feb-2021.)
𝑃 = ⟨“𝐴𝐵𝐶”⟩    &   𝐹 = ⟨“𝐽𝐾”⟩    &   (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))    &   (𝜑 → (𝐴𝐵𝐵𝐶))    &   (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)))       (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))
 
Theorem2wlkd 28310 Construction of a walk from two given edges in a graph. (Contributed by Alexander van der Vekens, 5-Feb-2018.) (Revised by AV, 23-Jan-2021.) (Proof shortened by AV, 14-Feb-2021.) (Revised by AV, 24-Mar-2021.)
𝑃 = ⟨“𝐴𝐵𝐶”⟩    &   𝐹 = ⟨“𝐽𝐾”⟩    &   (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))    &   (𝜑 → (𝐴𝐵𝐵𝐶))    &   (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)))    &   𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)       (𝜑𝐹(Walks‘𝐺)𝑃)
 
Theorem2wlkond 28311 A walk of length 2 from one vertex to another, different vertex via a third vertex. (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 30-Jan-2021.) (Revised by AV, 24-Mar-2021.)
𝑃 = ⟨“𝐴𝐵𝐶”⟩    &   𝐹 = ⟨“𝐽𝐾”⟩    &   (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))    &   (𝜑 → (𝐴𝐵𝐵𝐶))    &   (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)))    &   𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)       (𝜑𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃)
 
Theorem2trld 28312 Construction of a trail from two given edges in a graph. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by AV, 24-Jan-2021.) (Revised by AV, 24-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.)
𝑃 = ⟨“𝐴𝐵𝐶”⟩    &   𝐹 = ⟨“𝐽𝐾”⟩    &   (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))    &   (𝜑 → (𝐴𝐵𝐵𝐶))    &   (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)))    &   𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   (𝜑𝐽𝐾)       (𝜑𝐹(Trails‘𝐺)𝑃)
 
Theorem2trlond 28313 A trail of length 2 from one vertex to another, different vertex via a third vertex. (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 30-Jan-2021.) (Revised by AV, 24-Mar-2021.)
𝑃 = ⟨“𝐴𝐵𝐶”⟩    &   𝐹 = ⟨“𝐽𝐾”⟩    &   (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))    &   (𝜑 → (𝐴𝐵𝐵𝐶))    &   (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)))    &   𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   (𝜑𝐽𝐾)       (𝜑𝐹(𝐴(TrailsOn‘𝐺)𝐶)𝑃)
 
Theorem2pthd 28314 A path of length 2 from one vertex to another vertex via a third vertex. (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 24-Jan-2021.) (Revised by AV, 24-Mar-2021.)
𝑃 = ⟨“𝐴𝐵𝐶”⟩    &   𝐹 = ⟨“𝐽𝐾”⟩    &   (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))    &   (𝜑 → (𝐴𝐵𝐵𝐶))    &   (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)))    &   𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   (𝜑𝐽𝐾)       (𝜑𝐹(Paths‘𝐺)𝑃)
 
Theorem2spthd 28315 A simple path of length 2 from one vertex to another, different vertex via a third vertex. (Contributed by Alexander van der Vekens, 1-Feb-2018.) (Revised by AV, 24-Jan-2021.) (Revised by AV, 24-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.)
𝑃 = ⟨“𝐴𝐵𝐶”⟩    &   𝐹 = ⟨“𝐽𝐾”⟩    &   (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))    &   (𝜑 → (𝐴𝐵𝐵𝐶))    &   (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)))    &   𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   (𝜑𝐽𝐾)    &   (𝜑𝐴𝐶)       (𝜑𝐹(SPaths‘𝐺)𝑃)
 
Theorem2pthond 28316 A simple path of length 2 from one vertex to another, different vertex via a third vertex. (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 24-Jan-2021.) (Proof shortened by AV, 30-Jan-2021.) (Revised by AV, 24-Mar-2021.)
𝑃 = ⟨“𝐴𝐵𝐶”⟩    &   𝐹 = ⟨“𝐽𝐾”⟩    &   (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))    &   (𝜑 → (𝐴𝐵𝐵𝐶))    &   (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)))    &   𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   (𝜑𝐽𝐾)    &   (𝜑𝐴𝐶)       (𝜑𝐹(𝐴(SPathsOn‘𝐺)𝐶)𝑃)
 
Theorem2pthon3v 28317* For a vertex adjacent to two other vertices there is a simple path of length 2 between these other vertices in a hypergraph. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by AV, 24-Jan-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)       (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) → ∃𝑓𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (♯‘𝑓) = 2))
 
Theoremumgr2adedgwlklem 28318 Lemma for umgr2adedgwlk 28319, umgr2adedgspth 28322, etc. (Contributed by Alexander van der Vekens, 1-Feb-2018.) (Revised by AV, 29-Jan-2021.)
𝐸 = (Edg‘𝐺)       ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ((𝐴𝐵𝐵𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))))
 
Theoremumgr2adedgwlk 28319 In a multigraph, two adjacent edges form a walk of length 2. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 29-Jan-2021.)
𝐸 = (Edg‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   𝐹 = ⟨“𝐽𝐾”⟩    &   𝑃 = ⟨“𝐴𝐵𝐶”⟩    &   (𝜑𝐺 ∈ UMGraph)    &   (𝜑 → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))    &   (𝜑 → (𝐼𝐽) = {𝐴, 𝐵})    &   (𝜑 → (𝐼𝐾) = {𝐵, 𝐶})       (𝜑 → (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))))
 
Theoremumgr2adedgwlkon 28320 In a multigraph, two adjacent edges form a walk between two vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 30-Jan-2021.)
𝐸 = (Edg‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   𝐹 = ⟨“𝐽𝐾”⟩    &   𝑃 = ⟨“𝐴𝐵𝐶”⟩    &   (𝜑𝐺 ∈ UMGraph)    &   (𝜑 → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))    &   (𝜑 → (𝐼𝐽) = {𝐴, 𝐵})    &   (𝜑 → (𝐼𝐾) = {𝐵, 𝐶})       (𝜑𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃)
 
Theoremumgr2adedgwlkonALT 28321 Alternate proof for umgr2adedgwlkon 28320, using umgr2adedgwlk 28319, but with a much longer proof! In a multigraph, two adjacent edges form a walk between two (different) vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 30-Jan-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐸 = (Edg‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   𝐹 = ⟨“𝐽𝐾”⟩    &   𝑃 = ⟨“𝐴𝐵𝐶”⟩    &   (𝜑𝐺 ∈ UMGraph)    &   (𝜑 → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))    &   (𝜑 → (𝐼𝐽) = {𝐴, 𝐵})    &   (𝜑 → (𝐼𝐾) = {𝐵, 𝐶})       (𝜑𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃)
 
Theoremumgr2adedgspth 28322 In a multigraph, two adjacent edges with different endvertices form a simple path of length 2. (Contributed by Alexander van der Vekens, 1-Feb-2018.) (Revised by AV, 29-Jan-2021.)
𝐸 = (Edg‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   𝐹 = ⟨“𝐽𝐾”⟩    &   𝑃 = ⟨“𝐴𝐵𝐶”⟩    &   (𝜑𝐺 ∈ UMGraph)    &   (𝜑 → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))    &   (𝜑 → (𝐼𝐽) = {𝐴, 𝐵})    &   (𝜑 → (𝐼𝐾) = {𝐵, 𝐶})    &   (𝜑𝐴𝐶)       (𝜑𝐹(SPaths‘𝐺)𝑃)
 
Theoremumgr2wlk 28323* In a multigraph, there is a walk of length 2 for each pair of adjacent edges. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 30-Jan-2021.)
𝐸 = (Edg‘𝐺)       ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))
 
Theoremumgr2wlkon 28324* For each pair of adjacent edges in a multigraph, there is a walk of length 2 between the not common vertices of the edges. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 30-Jan-2021.)
𝐸 = (Edg‘𝐺)       ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑓𝑝 𝑓(𝐴(WalksOn‘𝐺)𝐶)𝑝)
 
Theoremelwwlks2s3 28325* A walk of length 2 as word is a length 3 string. (Contributed by AV, 18-May-2021.)
𝑉 = (Vtx‘𝐺)       (𝑊 ∈ (2 WWalksN 𝐺) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 𝑊 = ⟨“𝑎𝑏𝑐”⟩)
 
Theoremmidwwlks2s3 28326* There is a vertex between the endpoints of a walk of length 2 between two vertices as length 3 string. (Contributed by AV, 10-Jan-2022.)
𝑉 = (Vtx‘𝐺)       (𝑊 ∈ (2 WWalksN 𝐺) → ∃𝑏𝑉 (𝑊‘1) = 𝑏)
 
Theoremwwlks2onv 28327 If a length 3 string represents a walk of length 2, its components are vertices. (Contributed by Alexander van der Vekens, 19-Feb-2018.) (Proof shortened by AV, 14-Mar-2022.)
𝑉 = (Vtx‘𝐺)       ((𝐵𝑈 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → (𝐴𝑉𝐵𝑉𝐶𝑉))
 
Theoremelwwlks2ons3im 28328 A walk as word of length 2 between two vertices is a length 3 string and its second symbol is a vertex. (Contributed by AV, 14-Mar-2022.)
𝑉 = (Vtx‘𝐺)       (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))
 
Theoremelwwlks2ons3 28329* For each walk of length 2 between two vertices, there is a third vertex in the middle of the walk. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 12-May-2021.) (Revised by AV, 14-Mar-2022.)
𝑉 = (Vtx‘𝐺)       (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
 
Theorems3wwlks2on 28330* A length 3 string which represents a walk of length 2 between two vertices. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 12-May-2021.)
𝑉 = (Vtx‘𝐺)       ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘𝑓) = 2)))
 
Theoremumgrwwlks2on 28331 A walk of length 2 between two vertices as word in a multigraph. This theorem would also hold for pseudographs, but to prove this the cases 𝐴 = 𝐵 and/or 𝐵 = 𝐶 must be considered separately. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 12-May-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)       ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
 
Theoremwwlks2onsym 28332 There is a walk of length 2 from one vertex to another vertex iff there is a walk of length 2 from the other vertex to the first vertex. (Contributed by AV, 7-Jan-2022.)
𝑉 = (Vtx‘𝐺)       ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ⟨“𝐶𝐵𝐴”⟩ ∈ (𝐶(2 WWalksNOn 𝐺)𝐴)))
 
Theoremelwwlks2on 28333* A walk of length 2 between two vertices as length 3 string. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 12-May-2021.)
𝑉 = (Vtx‘𝐺)       ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2))))
 
Theoremelwspths2on 28334* A simple path of length 2 between two vertices (in a graph) as length 3 string. (Contributed by Alexander van der Vekens, 9-Mar-2018.) (Revised by AV, 12-May-2021.) (Proof shortened by AV, 16-Mar-2022.)
𝑉 = (Vtx‘𝐺)       ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))))
 
Theoremwpthswwlks2on 28335 For two different vertices, a walk of length 2 between these vertices is a simple path of length 2 between these vertices in a simple graph. (Contributed by Alexander van der Vekens, 2-Mar-2018.) (Revised by AV, 13-May-2021.) (Revised by AV, 16-Mar-2022.)
((𝐺 ∈ USGraph ∧ 𝐴𝐵) → (𝐴(2 WSPathsNOn 𝐺)𝐵) = (𝐴(2 WWalksNOn 𝐺)𝐵))
 
Theorem2wspdisj 28336* All simple paths of length 2 from a fixed vertex to another vertex are disjunct. (Contributed by Alexander van der Vekens, 4-Mar-2018.) (Revised by AV, 9-Jan-2022.)
Disj 𝑏 ∈ (𝑉 ∖ {𝐴})(𝐴(2 WSPathsNOn 𝐺)𝑏)
 
Theorem2wspiundisj 28337* All simple paths of length 2 from a fixed vertex to another vertex are disjunct. (Contributed by Alexander van der Vekens, 5-Mar-2018.) (Revised by AV, 14-May-2021.) (Proof shortened by AV, 9-Jan-2022.)
Disj 𝑎𝑉 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)
 
Theoremusgr2wspthons3 28338 A simple path of length 2 between two vertices represented as length 3 string corresponds to two adjacent edges in a simple graph. (Contributed by Alexander van der Vekens, 8-Mar-2018.) (Revised by AV, 17-May-2021.) (Proof shortened by AV, 16-Mar-2022.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)       ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝐴𝐶 ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
 
Theoremusgr2wspthon 28339* A simple path of length 2 between two vertices corresponds to two adjacent edges in a simple graph. (Contributed by Alexander van der Vekens, 9-Mar-2018.) (Revised by AV, 17-May-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)       ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉)) → (𝑇 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ ∃𝑏𝑉 ((𝑇 = ⟨“𝐴𝑏𝐶”⟩ ∧ 𝐴𝐶) ∧ ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸))))
 
Theoremelwwlks2 28340* A walk of length 2 between two vertices as length 3 string in a pseudograph. (Contributed by Alexander van der Vekens, 21-Feb-2018.) (Revised by AV, 17-May-2021.) (Proof shortened by AV, 14-Mar-2022.)
𝑉 = (Vtx‘𝐺)       (𝐺 ∈ UPGraph → (𝑊 ∈ (2 WWalksN 𝐺) ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))))
 
Theoremelwspths2spth 28341* A simple path of length 2 between two vertices as length 3 string in a pseudograph. (Contributed by Alexander van der Vekens, 28-Feb-2018.) (Revised by AV, 18-May-2021.) (Proof shortened by AV, 16-Mar-2022.)
𝑉 = (Vtx‘𝐺)       (𝐺 ∈ UPGraph → (𝑊 ∈ (2 WSPathsN 𝐺) ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓𝑝(𝑓(SPaths‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))))
 
16.3.9  Walks in regular graphs
 
Theoremrusgrnumwwlkl1 28342* In a k-regular graph, there are k walks (as word) of length 1 starting at each vertex. (Contributed by Alexander van der Vekens, 28-Jul-2018.) (Revised by AV, 7-May-2021.)
𝑉 = (Vtx‘𝐺)       ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (♯‘{𝑤 ∈ (1 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = 𝐾)
 
Theoremrusgrnumwwlkslem 28343* Lemma for rusgrnumwwlks 28348. (Contributed by Alexander van der Vekens, 23-Aug-2018.)
(𝑌 ∈ {𝑤𝑍 ∣ (𝑤‘0) = 𝑃} → {𝑤𝑋 ∣ (𝜑𝜓)} = {𝑤𝑋 ∣ (𝜑 ∧ (𝑌‘0) = 𝑃𝜓)})
 
Theoremrusgrnumwwlklem 28344* Lemma for rusgrnumwwlk 28349 etc. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 7-May-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐿 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))       ((𝑃𝑉𝑁 ∈ ℕ0) → (𝑃𝐿𝑁) = (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}))
 
Theoremrusgrnumwwlkb0 28345* Induction base 0 for rusgrnumwwlk 28349. Here, we do not need the regularity of the graph yet. (Contributed by Alexander van der Vekens, 24-Jul-2018.) (Revised by AV, 7-May-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐿 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))       ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → (𝑃𝐿0) = 1)
 
Theoremrusgrnumwwlkb1 28346* Induction base 1 for rusgrnumwwlk 28349. (Contributed by Alexander van der Vekens, 28-Jul-2018.) (Revised by AV, 7-May-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐿 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))       ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (𝑃𝐿1) = 𝐾)
 
Theoremrusgr0edg 28347* Special case for graphs without edges: There are no walks of length greater than 0. (Contributed by Alexander van der Vekens, 26-Jul-2018.) (Revised by AV, 7-May-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐿 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))       ((𝐺 RegUSGraph 0 ∧ 𝑃𝑉𝑁 ∈ ℕ) → (𝑃𝐿𝑁) = 0)
 
Theoremrusgrnumwwlks 28348* Induction step for rusgrnumwwlk 28349. (Contributed by Alexander van der Vekens, 24-Aug-2018.) (Revised by AV, 7-May-2021.) (Proof shortened by AV, 27-May-2022.)
𝑉 = (Vtx‘𝐺)    &   𝐿 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))       ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → ((𝑃𝐿𝑁) = (𝐾𝑁) → (𝑃𝐿(𝑁 + 1)) = (𝐾↑(𝑁 + 1))))
 
Theoremrusgrnumwwlk 28349* In a 𝐾-regular graph, the number of walks of a fixed length 𝑁 from a fixed vertex is 𝐾 to the power of 𝑁. By definition, (𝑁 WWalksN 𝐺) is the set of walks (as words) with length 𝑁, and (𝑃𝐿𝑁) is the number of walks with length 𝑁 starting at the vertex 𝑃. Because of the 𝐾-regularity, a walk can be continued in 𝐾 different ways at the end vertex of the walk, and this repeated 𝑁 times.

This theorem even holds for 𝑁 = 0: in this case, the walk consists of only one vertex 𝑃, so the number of walks of length 𝑁 = 0 starting with 𝑃 is (𝐾↑0) = 1. (Contributed by Alexander van der Vekens, 24-Aug-2018.) (Revised by AV, 7-May-2021.)

𝑉 = (Vtx‘𝐺)    &   𝐿 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))       ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (𝑃𝐿𝑁) = (𝐾𝑁))
 
Theoremrusgrnumwwlkg 28350* In a 𝐾-regular graph, the number of walks (as words) of a fixed length 𝑁 from a fixed vertex is 𝐾 to the power of 𝑁. Closed form of rusgrnumwwlk 28349. (Contributed by Alexander van der Vekens, 30-Sep-2018.) (Revised by AV, 7-May-2021.)
𝑉 = (Vtx‘𝐺)       ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁))
 
Theoremrusgrnumwlkg 28351* In a k-regular graph, the number of walks of a fixed length n from a fixed vertex is k to the power of n. This theorem corresponds to statement 11 in [Huneke] p. 2: "The total number of walks v(0) v(1) ... v(n-2) from a fixed vertex v = v(0) is k^(n-2) as G is k-regular." This theorem even holds for n=0: then the walk consists of only one vertex v(0), so the number of walks of length n=0 starting with v=v(0) is 1=k^0. (Contributed by Alexander van der Vekens, 24-Aug-2018.) (Revised by AV, 7-May-2021.) (Proof shortened by AV, 5-Aug-2022.)
𝑉 = (Vtx‘𝐺)       ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (♯‘{𝑤 ∈ (Walks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑃)}) = (𝐾𝑁))
 
Theoremclwwlknclwwlkdif 28352* The set 𝐴 of walks of length 𝑁 starting with a fixed vertex 𝑉 and ending not at this vertex is the difference between the set 𝐶 of walks of length 𝑁 starting with this vertex 𝑋 and the set 𝐵 of closed walks of length 𝑁 anchored at this vertex 𝑋. (Contributed by Alexander van der Vekens, 30-Sep-2018.) (Revised by AV, 7-May-2021.) (Revised by AV, 16-Mar-2022.)
𝐴 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)}    &   𝐵 = (𝑋(𝑁 WWalksNOn 𝐺)𝑋)    &   𝐶 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}       𝐴 = (𝐶𝐵)
 
Theoremclwwlknclwwlkdifnum 28353* In a 𝐾-regular graph, the size of the set 𝐴 of walks of length 𝑁 starting with a fixed vertex 𝑋 and ending not at this vertex is the difference between 𝐾 to the power of 𝑁 and the size of the set 𝐵 of closed walks of length 𝑁 anchored at this vertex 𝑋. (Contributed by Alexander van der Vekens, 30-Sep-2018.) (Revised by AV, 7-May-2021.) (Revised by AV, 8-Mar-2022.) (Proof shortened by AV, 16-Mar-2022.)
𝐴 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)}    &   𝐵 = (𝑋(𝑁 WWalksNOn 𝐺)𝑋)    &   𝑉 = (Vtx‘𝐺)       (((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ0)) → (♯‘𝐴) = ((𝐾𝑁) − (♯‘𝐵)))
 
16.3.10  Closed walks as words

In general, a closed walk is an alternating sequence of vertices and edges, as defined in df-clwlks 28148: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n), with p(n) = p(0). Often, it is sufficient to refer to a walk by the (cyclic) sequence of its vertices, i.e omitting its edges in its representation: p(0) p(1) ... p(n-1) p(0), see the corresponding remark on cycles (which are special closed walks) in [Diestel] p. 7. As for "walks as words" in general, the concept of a Word, see df-word 14227, is also used in Definitions df-clwwlk 28355 and df-clwwlkn 28398, and the representation of a closed walk as the sequence of its vertices is called "closed walk as word".

In contrast to "walks as words", the terminating vertex p(n) of a closed walk is omitted in the representation of a closed walk as word, see definitions df-clwwlk 28355, df-clwwlkn 28398 and df-clwwlknon 28461, because it is always equal to the first vertex of the closed walk. This represenation has the advantage that the vertices can be cyclically shifted without changing the represented closed walk. Furthermore, the length of a closed walk (i.e. the number of its edges) equals the number of symbols/vertices of the word representing the closed walk.

To avoid to handle the degenerate case of representing a (closed) walk of length 0 by the empty word, this case is excluded within the definition (𝑤 ≠ ∅). This is because a walk of length 0 is anchored at an arbitrary vertex by the general definition for closed walks, see 0clwlkv 28504, which neither can be reflected by the empty word nor by a singleton word ⟨“𝑣”⟩ with vertex v : ⟨“𝑣”⟩ represents the walk "𝑣𝑣", which is a (closed) walk of length 1 (if there is an edge/loop from 𝑣 to 𝑣), see loopclwwlkn1b 28415.

Therefore, a closed walk corresponds to a closed walk as word only for walks of length at least 1, see clwlkclwwlk2 28376 or clwlkclwwlken 28385. Although the set ClWWalksN of all closed walks of a fixed length as words over the set of vertices is defined as function over 0, the fixed length is usually not 0, because (0 ClWWalksN 𝐺) = ∅ (see clwwlkn0 28401).

Analogous to (𝐴(𝑁 WWalksNOn 𝐺)𝐵), the set of walks of a fixed length 𝑁 between two vertices 𝐴 and 𝐵, the set (𝑋(ClWWalksNOn‘𝐺)𝑁) of closed walks of a fixed length 𝑁 anchored at a fixed vertex 𝑋 is defined by df-clwwlknon 28461. This definition is also based on 0 instead of , with (𝑋(ClWWalksNOn‘𝐺)0) = ∅ (see clwwlk0on0 28465). clwwlknon1le1 28474 states that there is at most one (closed) walk of length 1 on a vertex, which would consist of a loop (see clwwlknon1loop 28471). And in a 𝐾-regular graph, there are 𝐾 closed walks of length 2 on each vertex, see clwwlknon2num 28478.

 
16.3.10.1  Closed walks as words
 
Syntaxcclwwlk 28354 Extend class notation with closed walks (in an undirected graph) as word over the set of vertices.
class ClWWalks
 
Definitiondf-clwwlk 28355* Define the set of all closed walks (in an undirected graph) as words over the set of vertices. Such a word corresponds to the sequence p(0) p(1) ... p(n-1) of the vertices in a closed walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n)=p(0) as defined in df-clwlks 28148. Notice that the word does not contain the terminating vertex p(n) of the walk, because it is always equal to the first vertex of the closed walk. (Contributed by Alexander van der Vekens, 20-Mar-2018.) (Revised by AV, 24-Apr-2021.)
ClWWalks = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))})
 
Theoremclwwlk 28356* The set of closed walks (in an undirected graph) as words over the set of vertices. (Contributed by Alexander van der Vekens, 20-Mar-2018.) (Revised by AV, 24-Apr-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)       (ClWWalks‘𝐺) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ 𝐸)}
 
Theoremisclwwlk 28357* Properties of a word to represent a closed walk (in an undirected graph). (Contributed by Alexander van der Vekens, 20-Mar-2018.) (Revised by AV, 24-Apr-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)       (𝑊 ∈ (ClWWalks‘𝐺) ↔ ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸))
 
Theoremclwwlkbp 28358 Basic properties of a closed walk (in an undirected graph) as word. (Contributed by Alexander van der Vekens, 15-Mar-2018.) (Revised by AV, 24-Apr-2021.)
𝑉 = (Vtx‘𝐺)       (𝑊 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑊 ∈ Word 𝑉𝑊 ≠ ∅))
 
Theoremclwwlkgt0 28359 There is no empty closed walk (i.e. a closed walk without any edge) represented by a word of vertices. (Contributed by Alexander van der Vekens, 15-Sep-2018.) (Revised by AV, 24-Apr-2021.)
(𝑊 ∈ (ClWWalks‘𝐺) → 0 < (♯‘𝑊))
 
Theoremclwwlksswrd 28360 Closed walks (represented by words) are words. (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Revised by AV, 25-Apr-2021.)
(ClWWalks‘𝐺) ⊆ Word (Vtx‘𝐺)
 
Theoremclwwlk1loop 28361 A closed walk of length 1 is a loop. See also clwlkl1loop 28160. (Contributed by AV, 24-Apr-2021.)
((𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 1) → {(𝑊‘0), (𝑊‘0)} ∈ (Edg‘𝐺))
 
Theoremclwwlkccatlem 28362* Lemma for clwwlkccat 28363: index 𝑗 is shifted up by (♯‘𝐴), and the case 𝑖 = ((♯‘𝐴) − 1) is covered by the "bridge" {(lastS‘𝐴), (𝐵‘0)} = {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺). (Contributed by AV, 23-Apr-2022.)
((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) → ∀𝑖 ∈ (0..^((♯‘(𝐴 ++ 𝐵)) − 1)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
 
Theoremclwwlkccat 28363 The concatenation of two words representing closed walks anchored at the same vertex represents a closed walk. The resulting walk is a "double loop", starting at the common vertex, coming back to the common vertex by the first walk, following the second walk and finally coming back to the common vertex again. (Contributed by AV, 23-Apr-2022.)
((𝐴 ∈ (ClWWalks‘𝐺) ∧ 𝐵 ∈ (ClWWalks‘𝐺) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴 ++ 𝐵) ∈ (ClWWalks‘𝐺))
 
Theoremumgrclwwlkge2 28364 A closed walk in a multigraph has a length of at least 2 (because it cannot have a loop). (Contributed by Alexander van der Vekens, 16-Sep-2018.) (Revised by AV, 24-Apr-2021.)
(𝐺 ∈ UMGraph → (𝑃 ∈ (ClWWalks‘𝐺) → 2 ≤ (♯‘𝑃)))
 
Theoremclwlkclwwlklem2a1 28365* Lemma 1 for clwlkclwwlklem2a 28371. (Contributed by Alexander van der Vekens, 21-Jun-2018.) (Revised by AV, 11-Apr-2021.)
((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
 
Theoremclwlkclwwlklem2a2 28366* Lemma 2 for clwlkclwwlklem2a 28371. (Contributed by Alexander van der Vekens, 21-Jun-2018.)
𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})))       ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝐹) = ((♯‘𝑃) − 1))
 
Theoremclwlkclwwlklem2a3 28367* Lemma 3 for clwlkclwwlklem2a 28371. (Contributed by Alexander van der Vekens, 21-Jun-2018.)
𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})))       ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑃‘(♯‘𝐹)) = (lastS‘𝑃))
 
Theoremclwlkclwwlklem2fv1 28368* Lemma 4a for clwlkclwwlklem2a 28371. (Contributed by Alexander van der Vekens, 22-Jun-2018.)
𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})))       (((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 2))) → (𝐹𝐼) = (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}))
 
Theoremclwlkclwwlklem2fv2 28369* Lemma 4b for clwlkclwwlklem2a 28371. (Contributed by Alexander van der Vekens, 22-Jun-2018.)
𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})))       (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (𝐹‘((♯‘𝑃) − 2)) = (𝐸‘{(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)}))
 
Theoremclwlkclwwlklem2a4 28370* Lemma 4 for clwlkclwwlklem2a 28371. (Contributed by Alexander van der Vekens, 21-Jun-2018.) (Revised by AV, 11-Apr-2021.)
𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})))       ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((lastS‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 1))) → ({(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸 → (𝐸‘(𝐹𝐼)) = {(𝑃𝐼), (𝑃‘(𝐼 + 1))})))
 
Theoremclwlkclwwlklem2a 28371* Lemma for clwlkclwwlklem2 28373. (Contributed by Alexander van der Vekens, 22-Jun-2018.) (Revised by AV, 11-Apr-2021.)
𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})))       ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → ((𝐹 ∈ Word dom 𝐸𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))))
 
Theoremclwlkclwwlklem1 28372* Lemma 1 for clwlkclwwlk 28375. (Contributed by Alexander van der Vekens, 22-Jun-2018.) (Revised by AV, 11-Apr-2021.)
((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → ∃𝑓((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))))
 
Theoremclwlkclwwlklem2 28373* Lemma 2 for clwlkclwwlk 28375. (Contributed by Alexander van der Vekens, 22-Jun-2018.) (Revised by AV, 11-Apr-2021.)
(((𝐸:dom 𝐸1-1𝑅𝐹 ∈ Word dom 𝐸) ∧ (𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) → ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝐹) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘0)} ∈ ran 𝐸))
 
Theoremclwlkclwwlklem3 28374* Lemma 3 for clwlkclwwlk 28375. (Contributed by Alexander van der Vekens, 22-Jun-2018.) (Revised by AV, 11-Apr-2021.)
((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))))
 
Theoremclwlkclwwlk 28375* A closed walk as word of length at least 2 corresponds to a closed walk in a simple pseudograph. (Contributed by Alexander van der Vekens, 22-Jun-2018.) (Revised by AV, 24-Apr-2021.) (Revised by AV, 30-Oct-2022.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (iEdg‘𝐺)       ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓 𝑓(ClWalks‘𝐺)𝑃 ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ (𝑃 prefix ((♯‘𝑃) − 1)) ∈ (ClWWalks‘𝐺))))
 
Theoremclwlkclwwlk2 28376* A closed walk corresponds to a closed walk as word in a simple pseudograph. (Contributed by Alexander van der Vekens, 22-Jun-2018.) (Revised by AV, 24-Apr-2021.) (Proof shortened by AV, 2-Nov-2022.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (iEdg‘𝐺)       ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (∃𝑓 𝑓(ClWalks‘𝐺)(𝑃 ++ ⟨“(𝑃‘0)”⟩) ↔ 𝑃 ∈ (ClWWalks‘𝐺)))
 
Theoremclwlkclwwlkflem 28377* Lemma for clwlkclwwlkf 28381. (Contributed by AV, 24-May-2022.)
𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}    &   𝐴 = (1st𝑈)    &   𝐵 = (2nd𝑈)       (𝑈𝐶 → (𝐴(Walks‘𝐺)𝐵 ∧ (𝐵‘0) = (𝐵‘(♯‘𝐴)) ∧ (♯‘𝐴) ∈ ℕ))
 
Theoremclwlkclwwlkf1lem2 28378* Lemma 2 for clwlkclwwlkf1 28383. (Contributed by AV, 24-May-2022.) (Revised by AV, 30-Oct-2022.)
𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}    &   𝐴 = (1st𝑈)    &   𝐵 = (2nd𝑈)    &   𝐷 = (1st𝑊)    &   𝐸 = (2nd𝑊)       ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → ((♯‘𝐴) = (♯‘𝐷) ∧ ∀𝑖 ∈ (0..^(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖)))
 
Theoremclwlkclwwlkf1lem3 28379* Lemma 3 for clwlkclwwlkf1 28383. (Contributed by Alexander van der Vekens, 5-Jul-2018.) (Revised by AV, 30-Oct-2022.)
𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}    &   𝐴 = (1st𝑈)    &   𝐵 = (2nd𝑈)    &   𝐷 = (1st𝑊)    &   𝐸 = (2nd𝑊)       ((𝑈𝐶𝑊𝐶 ∧ (𝐵 prefix (♯‘𝐴)) = (𝐸 prefix (♯‘𝐷))) → ∀𝑖 ∈ (0...(♯‘𝐴))(𝐵𝑖) = (𝐸𝑖))
 
Theoremclwlkclwwlkfolem 28380* Lemma for clwlkclwwlkfo 28382. (Contributed by AV, 25-May-2022.)
𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}       ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑊) ∧ ⟨𝑓, (𝑊 ++ ⟨“(𝑊‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → ⟨𝑓, (𝑊 ++ ⟨“(𝑊‘0)”⟩)⟩ ∈ 𝐶)
 
Theoremclwlkclwwlkf 28381* 𝐹 is a function from the nonempty closed walks into the closed walks as word in a simple pseudograph. (Contributed by AV, 23-May-2022.) (Revised by AV, 29-Oct-2022.)
𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}    &   𝐹 = (𝑐𝐶 ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))       (𝐺 ∈ USPGraph → 𝐹:𝐶⟶(ClWWalks‘𝐺))
 
Theoremclwlkclwwlkfo 28382* 𝐹 is a function from the nonempty closed walks onto the closed walks as words in a simple pseudograph. (Contributed by Alexander van der Vekens, 30-Jun-2018.) (Revised by AV, 2-May-2021.) (Revised by AV, 29-Oct-2022.)
𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}    &   𝐹 = (𝑐𝐶 ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))       (𝐺 ∈ USPGraph → 𝐹:𝐶onto→(ClWWalks‘𝐺))
 
Theoremclwlkclwwlkf1 28383* 𝐹 is a one-to-one function from the nonempty closed walks into the closed walks as words in a simple pseudograph. (Contributed by Alexander van der Vekens, 5-Jul-2018.) (Revised by AV, 3-May-2021.) (Revised by AV, 29-Oct-2022.)
𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}    &   𝐹 = (𝑐𝐶 ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))       (𝐺 ∈ USPGraph → 𝐹:𝐶1-1→(ClWWalks‘𝐺))
 
Theoremclwlkclwwlkf1o 28384* 𝐹 is a bijection between the nonempty closed walks and the closed walks as words in a simple pseudograph. (Contributed by Alexander van der Vekens, 5-Jul-2018.) (Revised by AV, 3-May-2021.) (Revised by AV, 29-Oct-2022.)
𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}    &   𝐹 = (𝑐𝐶 ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))       (𝐺 ∈ USPGraph → 𝐹:𝐶1-1-onto→(ClWWalks‘𝐺))
 
Theoremclwlkclwwlken 28385* The set of the nonempty closed walks and the set of closed walks as word are equinumerous in a simple pseudograph. (Contributed by AV, 25-May-2022.) (Proof shortened by AV, 4-Nov-2022.)
(𝐺 ∈ USPGraph → {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ≈ (ClWWalks‘𝐺))
 
Theoremclwwisshclwwslemlem 28386* Lemma for clwwisshclwwslem 28387. (Contributed by Alexander van der Vekens, 23-Mar-2018.)
(((𝐿 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ∀𝑖 ∈ (0..^(𝐿 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝑅 ∧ {(𝑊‘(𝐿 − 1)), (𝑊‘0)} ∈ 𝑅) → {(𝑊‘((𝐴 + 𝐵) mod 𝐿)), (𝑊‘(((𝐴 + 1) + 𝐵) mod 𝐿))} ∈ 𝑅)
 
Theoremclwwisshclwwslem 28387* Lemma for clwwisshclwws 28388. (Contributed by AV, 24-Mar-2018.) (Revised by AV, 28-Apr-2021.)
((𝑊 ∈ Word 𝑉𝑁 ∈ (1..^(♯‘𝑊))) → ((∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → ∀𝑗 ∈ (0..^((♯‘(𝑊 cyclShift 𝑁)) − 1)){((𝑊 cyclShift 𝑁)‘𝑗), ((𝑊 cyclShift 𝑁)‘(𝑗 + 1))} ∈ 𝐸))
 
Theoremclwwisshclwws 28388 Cyclically shifting a closed walk as word results in a closed walk as word (in an undirected graph). (Contributed by Alexander van der Vekens, 24-Mar-2018.) (Revised by AV, 28-Apr-2021.)
((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺))
 
Theoremclwwisshclwwsn 28389 Cyclically shifting a closed walk as word results in a closed walk as word (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Jun-2018.) (Revised by AV, 29-Apr-2021.)
((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 cyclShift 𝑁) ∈ (ClWWalks‘𝐺))
 
Theoremerclwwlkrel 28390 is a relation. (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Revised by AV, 29-Apr-2021.)
= {⟨𝑢, 𝑤⟩ ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))}       Rel
 
Theoremerclwwlkeq 28391* Two classes are equivalent regarding if both are words and one is the other cyclically shifted. (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Revised by AV, 29-Apr-2021.)
= {⟨𝑢, 𝑤⟩ ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))}       ((𝑈𝑋𝑊𝑌) → (𝑈 𝑊 ↔ (𝑈 ∈ (ClWWalks‘𝐺) ∧ 𝑊 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑊))𝑈 = (𝑊 cyclShift 𝑛))))
 
Theoremerclwwlkeqlen 28392* If two classes are equivalent regarding , then they are words of the same length. (Contributed by Alexander van der Vekens, 8-Apr-2018.) (Revised by AV, 29-Apr-2021.)
= {⟨𝑢, 𝑤⟩ ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))}       ((𝑈𝑋𝑊𝑌) → (𝑈 𝑊 → (♯‘𝑈) = (♯‘𝑊)))
 
Theoremerclwwlkref 28393* is a reflexive relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Revised by AV, 29-Apr-2021.)
= {⟨𝑢, 𝑤⟩ ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))}       (𝑥 ∈ (ClWWalks‘𝐺) ↔ 𝑥 𝑥)
 
Theoremerclwwlksym 28394* is a symmetric relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 8-Apr-2018.) (Revised by AV, 29-Apr-2021.)
= {⟨𝑢, 𝑤⟩ ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))}       (𝑥 𝑦𝑦 𝑥)
 
Theoremerclwwlktr 28395* is a transitive relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 10-Apr-2018.) (Revised by AV, 30-Apr-2021.)
= {⟨𝑢, 𝑤⟩ ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))}       ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)
 
Theoremerclwwlk 28396* is an equivalence relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 10-Apr-2018.) (Revised by AV, 30-Apr-2021.)
= {⟨𝑢, 𝑤⟩ ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(♯‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))}        Er (ClWWalks‘𝐺)
 
16.3.10.2  Closed walks of a fixed length as words
 
Syntaxcclwwlkn 28397 Extend class notation with closed walks (in an undirected graph) of a fixed length as word over the set of vertices.
class ClWWalksN
 
Definitiondf-clwwlkn 28398* Define the set of all closed walks of a fixed length 𝑛 as words over the set of vertices in a graph 𝑔. If 0 < 𝑛, such a word corresponds to the sequence p(0) p(1) ... p(n-1) of the vertices in a closed walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n)=p(0) as defined in df-clwlks 28148. For 𝑛 = 0, the set is empty, see clwwlkn0 28401. (Contributed by Alexander van der Vekens, 20-Mar-2018.) (Revised by AV, 24-Apr-2021.) (Revised by AV, 22-Mar-2022.)
ClWWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (ClWWalks‘𝑔) ∣ (♯‘𝑤) = 𝑛})
 
Theoremclwwlkn 28399* The set of closed walks of a fixed length 𝑁 as words over the set of vertices in a graph 𝐺. (Contributed by Alexander van der Vekens, 20-Mar-2018.) (Revised by AV, 24-Apr-2021.) (Revised by AV, 22-Mar-2022.)
(𝑁 ClWWalksN 𝐺) = {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁}
 
Theoremisclwwlkn 28400 A word over the set of vertices representing a closed walk of a fixed length. (Contributed by Alexander van der Vekens, 15-Mar-2018.) (Revised by AV, 24-Apr-2021.) (Revised by AV, 22-Mar-2022.)
(𝑊 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46532
  Copyright terms: Public domain < Previous  Next >