| Metamath
Proof Explorer Theorem List (p. 284 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Definition | df-zs 28301 | Define the surreal integers. Compare dfz2 12484. (Contributed by Scott Fenton, 17-May-2025.) |
| ⊢ ℤs = ( -s “ (ℕs × ℕs)) | ||
| Theorem | zsex 28302 | The surreal integers form a set. (Contributed by Scott Fenton, 17-May-2025.) |
| ⊢ ℤs ∈ V | ||
| Theorem | zssno 28303 | The surreal integers are a subset of the surreals. (Contributed by Scott Fenton, 17-May-2025.) |
| ⊢ ℤs ⊆ No | ||
| Theorem | zno 28304 | A surreal integer is a surreal. (Contributed by Scott Fenton, 17-May-2025.) |
| ⊢ (𝐴 ∈ ℤs → 𝐴 ∈ No ) | ||
| Theorem | znod 28305 | A surreal integer is a surreal. Deduction form. (Contributed by Scott Fenton, 17-May-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤs) ⇒ ⊢ (𝜑 → 𝐴 ∈ No ) | ||
| Theorem | elzs 28306* | Membership in the set of surreal integers. (Contributed by Scott Fenton, 17-May-2025.) |
| ⊢ (𝐴 ∈ ℤs ↔ ∃𝑥 ∈ ℕs ∃𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦)) | ||
| Theorem | nnzsubs 28307 | The difference of two surreal positive integers is an integer. (Contributed by Scott Fenton, 25-Jul-2025.) |
| ⊢ ((𝐴 ∈ ℕs ∧ 𝐵 ∈ ℕs) → (𝐴 -s 𝐵) ∈ ℤs) | ||
| Theorem | nnzs 28308 | A positive surreal integer is a surreal integer. (Contributed by Scott Fenton, 17-May-2025.) |
| ⊢ (𝐴 ∈ ℕs → 𝐴 ∈ ℤs) | ||
| Theorem | nnzsd 28309 | A positive surreal integer is a surreal integer. Deduction form. (Contributed by Scott Fenton, 26-May-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕs) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℤs) | ||
| Theorem | 0zs 28310 | Zero is a surreal integer. (Contributed by Scott Fenton, 26-May-2025.) |
| ⊢ 0s ∈ ℤs | ||
| Theorem | n0zs 28311 | A non-negative surreal integer is a surreal integer. (Contributed by Scott Fenton, 26-May-2025.) |
| ⊢ (𝐴 ∈ ℕ0s → 𝐴 ∈ ℤs) | ||
| Theorem | n0zsd 28312 | A non-negative surreal integer is a surreal integer. (Contributed by Scott Fenton, 26-May-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ0s) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℤs) | ||
| Theorem | 1zs 28313 | One is a surreal integer. (Contributed by Scott Fenton, 24-Jul-2025.) |
| ⊢ 1s ∈ ℤs | ||
| Theorem | znegscl 28314 | The surreal integers are closed under negation. (Contributed by Scott Fenton, 26-May-2025.) |
| ⊢ (𝐴 ∈ ℤs → ( -us ‘𝐴) ∈ ℤs) | ||
| Theorem | znegscld 28315 | The surreal integers are closed under negation. (Contributed by Scott Fenton, 26-May-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤs) ⇒ ⊢ (𝜑 → ( -us ‘𝐴) ∈ ℤs) | ||
| Theorem | zaddscl 28316 | The surreal integers are closed under addition. (Contributed by Scott Fenton, 25-Jul-2025.) |
| ⊢ ((𝐴 ∈ ℤs ∧ 𝐵 ∈ ℤs) → (𝐴 +s 𝐵) ∈ ℤs) | ||
| Theorem | zaddscld 28317 | The surreal integers are closed under addition. (Contributed by Scott Fenton, 25-Jul-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤs) & ⊢ (𝜑 → 𝐵 ∈ ℤs) ⇒ ⊢ (𝜑 → (𝐴 +s 𝐵) ∈ ℤs) | ||
| Theorem | zsubscld 28318 | The surreal integers are closed under subtraction. (Contributed by Scott Fenton, 25-Jul-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤs) & ⊢ (𝜑 → 𝐵 ∈ ℤs) ⇒ ⊢ (𝜑 → (𝐴 -s 𝐵) ∈ ℤs) | ||
| Theorem | zmulscld 28319 | The surreal integers are closed under multiplication. (Contributed by Scott Fenton, 20-Aug-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤs) & ⊢ (𝜑 → 𝐵 ∈ ℤs) ⇒ ⊢ (𝜑 → (𝐴 ·s 𝐵) ∈ ℤs) | ||
| Theorem | elzn0s 28320 | A surreal integer is a surreal that is a non-negative integer or whose negative is a non-negative integer. (Contributed by Scott Fenton, 26-May-2025.) |
| ⊢ (𝐴 ∈ ℤs ↔ (𝐴 ∈ No ∧ (𝐴 ∈ ℕ0s ∨ ( -us ‘𝐴) ∈ ℕ0s))) | ||
| Theorem | elzs2 28321 | A surreal integer is either a positive integer, zero, or the negative of a positive integer. (Contributed by Scott Fenton, 25-Jul-2025.) |
| ⊢ (𝑁 ∈ ℤs ↔ (𝑁 ∈ No ∧ (𝑁 ∈ ℕs ∨ 𝑁 = 0s ∨ ( -us ‘𝑁) ∈ ℕs))) | ||
| Theorem | eln0zs 28322 | Non-negative surreal integer property expressed in terms of integers. (Contributed by Scott Fenton, 25-Jul-2025.) |
| ⊢ (𝑁 ∈ ℕ0s ↔ (𝑁 ∈ ℤs ∧ 0s ≤s 𝑁)) | ||
| Theorem | elnnzs 28323 | Positive surreal integer property expressed in terms of integers. (Contributed by Scott Fenton, 25-Jul-2025.) |
| ⊢ (𝑁 ∈ ℕs ↔ (𝑁 ∈ ℤs ∧ 0s <s 𝑁)) | ||
| Theorem | elznns 28324 | Surreal integer property expressed in terms of positive integers and non-negative integers. (Contributed by Scott Fenton, 25-Jul-2025.) |
| ⊢ (𝑁 ∈ ℤs ↔ (𝑁 ∈ No ∧ (𝑁 ∈ ℕs ∨ ( -us ‘𝑁) ∈ ℕ0s))) | ||
| Theorem | zn0subs 28325 | The non-negative difference of surreal integers is a non-negative integer. (Contributed by Scott Fenton, 25-Jul-2025.) |
| ⊢ ((𝑀 ∈ ℤs ∧ 𝑁 ∈ ℤs) → (𝑀 ≤s 𝑁 ↔ (𝑁 -s 𝑀) ∈ ℕ0s)) | ||
| Theorem | peano5uzs 28326* | Peano's inductive postulate for upper surreal integers. (Contributed by Scott Fenton, 25-Jul-2025.) |
| ⊢ (𝜑 → 𝑁 ∈ ℤs) & ⊢ (𝜑 → 𝑁 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 +s 1s ) ∈ 𝐴) ⇒ ⊢ (𝜑 → {𝑘 ∈ ℤs ∣ 𝑁 ≤s 𝑘} ⊆ 𝐴) | ||
| Theorem | uzsind 28327* | Induction on the upper surreal integers that start at 𝑀. (Contributed by Scott Fenton, 25-Jul-2025.) |
| ⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑘 +s 1s ) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) & ⊢ (𝑀 ∈ ℤs → 𝜓) & ⊢ ((𝑀 ∈ ℤs ∧ 𝑘 ∈ ℤs ∧ 𝑀 ≤s 𝑘) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝑀 ∈ ℤs ∧ 𝑁 ∈ ℤs ∧ 𝑀 ≤s 𝑁) → 𝜏) | ||
| Theorem | zsbday 28328 | A surreal integer has a finite birthday. (Contributed by Scott Fenton, 26-May-2025.) |
| ⊢ (𝐴 ∈ ℤs → ( bday ‘𝐴) ∈ ω) | ||
| Theorem | zscut 28329 | A cut expression for surreal integers. (Contributed by Scott Fenton, 20-Aug-2025.) |
| ⊢ (𝐴 ∈ ℤs → 𝐴 = ({(𝐴 -s 1s )} |s {(𝐴 +s 1s )})) | ||
| Theorem | zsoring 28330 | The surreal integers form an ordered ring. Note that we have to restrict the operations here since No is a proper class. (Contributed by Scott Fenton, 23-Dec-2025.) |
| ⊢ ℤs = (Base‘𝐾) & ⊢ ( +s ↾ (ℤs × ℤs)) = (+g‘𝐾) & ⊢ ( ·s ↾ (ℤs × ℤs)) = (.r‘𝐾) & ⊢ ( ≤s ∩ (ℤs × ℤs)) = (le‘𝐾) & ⊢ 0s = (0g‘𝐾) ⇒ ⊢ 𝐾 ∈ oRing | ||
| Syntax | c2s 28331 | Declare the syntax for surreal two. |
| class 2s | ||
| Definition | df-2s 28332 | Define surreal two. This is the simplest number greater than one. See 1p1e2s 28337 for its addition version. (Contributed by Scott Fenton, 27-May-2025.) |
| ⊢ 2s = ({ 1s } |s ∅) | ||
| Syntax | cexps 28333 | Declare the syntax for surreal exponentiation. |
| class ↑s | ||
| Definition | df-exps 28334* | Define surreal exponentiation. Compare df-exp 13966. (Contributed by Scott Fenton, 27-May-2025.) |
| ⊢ ↑s = (𝑥 ∈ No , 𝑦 ∈ ℤs ↦ if(𝑦 = 0s , 1s , if( 0s <s 𝑦, (seqs 1s ( ·s , (ℕs × {𝑥}))‘𝑦), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝑥}))‘( -us ‘𝑦)))))) | ||
| Syntax | czs12 28335 | Define the syntax for the set of surreal dyadic fractions. |
| class ℤs[1/2] | ||
| Definition | df-zs12 28336* | Define the set of dyadic rationals. This is the set of rationals whose denominator is a power of two. Later we will prove that this is precisely the set of surreals with a finite birthday. (Contributed by Scott Fenton, 27-May-2025.) |
| ⊢ ℤs[1/2] = {𝑥 ∣ ∃𝑦 ∈ ℤs ∃𝑧 ∈ ℕ0s 𝑥 = (𝑦 /su (2s↑s𝑧))} | ||
| Theorem | 1p1e2s 28337 | One plus one is two. Surreal version. (Contributed by Scott Fenton, 27-May-2025.) |
| ⊢ ( 1s +s 1s ) = 2s | ||
| Theorem | no2times 28338 | Version of 2times 12253 for surreal numbers. (Contributed by Scott Fenton, 23-Jul-2025.) |
| ⊢ (𝐴 ∈ No → (2s ·s 𝐴) = (𝐴 +s 𝐴)) | ||
| Theorem | 2nns 28339 | Surreal two is a surreal natural. (Contributed by Scott Fenton, 23-Jul-2025.) |
| ⊢ 2s ∈ ℕs | ||
| Theorem | 2sno 28340 | Surreal two is a surreal number. (Contributed by Scott Fenton, 23-Jul-2025.) |
| ⊢ 2s ∈ No | ||
| Theorem | 2ne0s 28341 | Surreal two is non-zero. (Contributed by Scott Fenton, 23-Jul-2025.) |
| ⊢ 2s ≠ 0s | ||
| Theorem | n0seo 28342* | A non-negative surreal integer is either even or odd. (Contributed by Scott Fenton, 19-Aug-2025.) |
| ⊢ (𝑁 ∈ ℕ0s → (∃𝑥 ∈ ℕ0s 𝑁 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑁 = ((2s ·s 𝑥) +s 1s ))) | ||
| Theorem | zseo 28343* | A surreal integer is either even or odd. (Contributed by Scott Fenton, 19-Aug-2025.) |
| ⊢ (𝑁 ∈ ℤs → (∃𝑥 ∈ ℤs 𝑁 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs 𝑁 = ((2s ·s 𝑥) +s 1s ))) | ||
| Theorem | twocut 28344 | Two times the cut of zero and one is one. (Contributed by Scott Fenton, 5-Sep-2025.) |
| ⊢ (2s ·s ({ 0s } |s { 1s })) = 1s | ||
| Theorem | nohalf 28345 | An explicit expression for one half. This theorem avoids the axiom of infinity. (Contributed by Scott Fenton, 23-Jul-2025.) |
| ⊢ ( 1s /su 2s) = ({ 0s } |s { 1s }) | ||
| Theorem | expsval 28346 | The value of surreal exponentiation. (Contributed by Scott Fenton, 24-Jul-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ ℤs) → (𝐴↑s𝐵) = if(𝐵 = 0s , 1s , if( 0s <s 𝐵, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us ‘𝐵)))))) | ||
| Theorem | expsnnval 28347 | Value of surreal exponentiation at a natural number. (Contributed by Scott Fenton, 25-Jul-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝑁 ∈ ℕs) → (𝐴↑s𝑁) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁)) | ||
| Theorem | exps0 28348 | Surreal exponentiation to zero. (Contributed by Scott Fenton, 24-Jul-2025.) |
| ⊢ (𝐴 ∈ No → (𝐴↑s 0s ) = 1s ) | ||
| Theorem | exps1 28349 | Surreal exponentiation to one. (Contributed by Scott Fenton, 24-Jul-2025.) |
| ⊢ (𝐴 ∈ No → (𝐴↑s 1s ) = 𝐴) | ||
| Theorem | expsp1 28350 | Value of a surreal number raised to a non-negative integer power plus one. (Contributed by Scott Fenton, 6-Aug-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝑁 ∈ ℕ0s) → (𝐴↑s(𝑁 +s 1s )) = ((𝐴↑s𝑁) ·s 𝐴)) | ||
| Theorem | expscllem 28351* | Lemma for proving non-negative surreal integer exponentiation closure. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ 𝐹 ⊆ No & ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝑥 ·s 𝑦) ∈ 𝐹) & ⊢ 1s ∈ 𝐹 ⇒ ⊢ ((𝐴 ∈ 𝐹 ∧ 𝑁 ∈ ℕ0s) → (𝐴↑s𝑁) ∈ 𝐹) | ||
| Theorem | expscl 28352 | Closure law for surreal exponentiation. (Contributed by Scott Fenton, 7-Aug-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝑁 ∈ ℕ0s) → (𝐴↑s𝑁) ∈ No ) | ||
| Theorem | n0expscl 28353 | Closure law for non-negative surreal integer exponentiation. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ ((𝐴 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) → (𝐴↑s𝑁) ∈ ℕ0s) | ||
| Theorem | nnexpscl 28354 | Closure law for positive surreal integer exponentiation. (Contributed by Scott Fenton, 8-Nov-2025.) |
| ⊢ ((𝐴 ∈ ℕs ∧ 𝑁 ∈ ℕ0s) → (𝐴↑s𝑁) ∈ ℕs) | ||
| Theorem | zexpscl 28355 | Closure law for surreal integer exponentiation. (Contributed by Scott Fenton, 11-Dec-2025.) |
| ⊢ ((𝐴 ∈ ℤs ∧ 𝑁 ∈ ℕ0s) → (𝐴↑s𝑁) ∈ ℤs) | ||
| Theorem | expadds 28356 | Sum of exponents law for surreals. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) → (𝐴↑s(𝑀 +s 𝑁)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑁))) | ||
| Theorem | expsne0 28357 | A non-negative surreal integer power is non-zero if its base is non-zero. (Contributed by Scott Fenton, 7-Aug-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝑁 ∈ ℕ0s) → (𝐴↑s𝑁) ≠ 0s ) | ||
| Theorem | expsgt0 28358 | A non-negative surreal integer power is positive if its base is positive. (Contributed by Scott Fenton, 7-Aug-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝑁 ∈ ℕ0s ∧ 0s <s 𝐴) → 0s <s (𝐴↑s𝑁)) | ||
| Theorem | pw2recs 28359* | Any power of two has a multiplicative inverse. Note that this theorem does not require the axiom of infinity. (Contributed by Scott Fenton, 5-Sep-2025.) |
| ⊢ (𝑁 ∈ ℕ0s → ∃𝑥 ∈ No ((2s↑s𝑁) ·s 𝑥) = 1s ) | ||
| Theorem | pw2divscld 28360 | Division closure for powers of two. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0s) ⇒ ⊢ (𝜑 → (𝐴 /su (2s↑s𝑁)) ∈ No ) | ||
| Theorem | pw2divsmuld 28361 | Relationship between surreal division and multiplication for powers of two. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0s) ⇒ ⊢ (𝜑 → ((𝐴 /su (2s↑s𝑁)) = 𝐵 ↔ ((2s↑s𝑁) ·s 𝐵) = 𝐴)) | ||
| Theorem | pw2divscan3d 28362 | Cancellation law for surreal division by powers of two. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0s) ⇒ ⊢ (𝜑 → (((2s↑s𝑁) ·s 𝐴) /su (2s↑s𝑁)) = 𝐴) | ||
| Theorem | pw2divscan2d 28363 | A cancellation law for surreal division by powers of two. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0s) ⇒ ⊢ (𝜑 → ((2s↑s𝑁) ·s (𝐴 /su (2s↑s𝑁))) = 𝐴) | ||
| Theorem | pw2divsassd 28364 | An associative law for division by powers of two. (Contributed by Scott Fenton, 11-Dec-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0s) ⇒ ⊢ (𝜑 → ((𝐴 ·s 𝐵) /su (2s↑s𝑁)) = (𝐴 ·s (𝐵 /su (2s↑s𝑁)))) | ||
| Theorem | pw2divscan4d 28365 | Cancellation law for divison by powers of two. (Contributed by Scott Fenton, 11-Dec-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0s) & ⊢ (𝜑 → 𝑀 ∈ ℕ0s) ⇒ ⊢ (𝜑 → (𝐴 /su (2s↑s𝑁)) = (((2s↑s𝑀) ·s 𝐴) /su (2s↑s(𝑁 +s 𝑀)))) | ||
| Theorem | pw2gt0divsd 28366 | Division of a positive surreal by a power of two. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0s) ⇒ ⊢ (𝜑 → ( 0s <s 𝐴 ↔ 0s <s (𝐴 /su (2s↑s𝑁)))) | ||
| Theorem | pw2ge0divsd 28367 | Divison of a non-negative surreal by a power of two. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0s) ⇒ ⊢ (𝜑 → ( 0s ≤s 𝐴 ↔ 0s ≤s (𝐴 /su (2s↑s𝑁)))) | ||
| Theorem | pw2divsrecd 28368 | Relationship between surreal division and reciprocal for powers of two. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0s) ⇒ ⊢ (𝜑 → (𝐴 /su (2s↑s𝑁)) = (𝐴 ·s ( 1s /su (2s↑s𝑁)))) | ||
| Theorem | pw2divsdird 28369 | Distribution of surreal division over addition for powers of two. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0s) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐵) /su (2s↑s𝑁)) = ((𝐴 /su (2s↑s𝑁)) +s (𝐵 /su (2s↑s𝑁)))) | ||
| Theorem | pw2divsnegd 28370 | Move negative sign inside of a power of two division. (Contributed by Scott Fenton, 8-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0s) ⇒ ⊢ (𝜑 → ( -us ‘(𝐴 /su (2s↑s𝑁))) = (( -us ‘𝐴) /su (2s↑s𝑁))) | ||
| Theorem | pw2sltdivmuld 28371 | Surreal less-than relationship between division and multiplication for powers of two. (Contributed by Scott Fenton, 11-Dec-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0s) ⇒ ⊢ (𝜑 → ((𝐴 /su (2s↑s𝑁)) <s 𝐵 ↔ 𝐴 <s ((2s↑s𝑁) ·s 𝐵))) | ||
| Theorem | pw2sltmuldiv2d 28372 | Surreal less-than relationship between division and multiplication for powers of two. (Contributed by Scott Fenton, 11-Dec-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0s) ⇒ ⊢ (𝜑 → (((2s↑s𝑁) ·s 𝐴) <s 𝐵 ↔ 𝐴 <s (𝐵 /su (2s↑s𝑁)))) | ||
| Theorem | pw2sltdiv1d 28373 | Surreal less-than relationship for division by a power of two. (Contributed by Scott Fenton, 18-Jan-2026.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0s) ⇒ ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (𝐴 /su (2s↑s𝑁)) <s (𝐵 /su (2s↑s𝑁)))) | ||
| Theorem | avgslt1d 28374 | Ordering property for average. (Contributed by Scott Fenton, 11-Dec-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ 𝐴 <s ((𝐴 +s 𝐵) /su 2s))) | ||
| Theorem | avgslt2d 28375 | Ordering property for average. (Contributed by Scott Fenton, 11-Dec-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ ((𝐴 +s 𝐵) /su 2s) <s 𝐵)) | ||
| Theorem | halfcut 28376 | Relate the cut of twice of two numbers to the cut of the numbers. Lemma 4.2 of [Gonshor] p. 28. (Contributed by Scott Fenton, 7-Aug-2025.) Avoid the axiom of infinity. (Proof modified by Scott Fenton, 6-Sep-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐴 <s 𝐵) & ⊢ (𝜑 → ({(2s ·s 𝐴)} |s {(2s ·s 𝐵)}) = (𝐴 +s 𝐵)) & ⊢ 𝐶 = ({𝐴} |s {𝐵}) ⇒ ⊢ (𝜑 → 𝐶 = ((𝐴 +s 𝐵) /su 2s)) | ||
| Theorem | addhalfcut 28377 | The cut of a surreal non-negative integer and its successor is the original number plus one half. Part of theorem 4.2 of [Gonshor] p. 30. (Contributed by Scott Fenton, 13-Aug-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ0s) ⇒ ⊢ (𝜑 → ({𝐴} |s {(𝐴 +s 1s )}) = (𝐴 +s ( 1s /su 2s))) | ||
| Theorem | pw2cut 28378 | Extend halfcut 28376 to arbitrary powers of two. Part of theorem 4.2 of [Gonshor] p. 28. (Contributed by Scott Fenton, 18-Aug-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0s) & ⊢ (𝜑 → 𝐴 <s 𝐵) & ⊢ (𝜑 → ({(2s ·s 𝐴)} |s {(2s ·s 𝐵)}) = (𝐴 +s 𝐵)) ⇒ ⊢ (𝜑 → ({(𝐴 /su (2s↑s𝑁))} |s {(𝐵 /su (2s↑s𝑁))}) = ((𝐴 +s 𝐵) /su (2s↑s(𝑁 +s 1s )))) | ||
| Theorem | pw2cutp1 28379 | Simplify pw2cut 28378 in the case of successors of surreal integers. (Contributed by Scott Fenton, 11-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤs) & ⊢ (𝜑 → 𝑁 ∈ ℕ0s) ⇒ ⊢ (𝜑 → ({(𝐴 /su (2s↑s𝑁))} |s {((𝐴 +s 1s ) /su (2s↑s𝑁))}) = (((2s ·s 𝐴) +s 1s ) /su (2s↑s(𝑁 +s 1s )))) | ||
| Theorem | pw2cut2 28380 | Cut expression for powers of two. Theorem 12 of [Conway] p. 12-13. (Contributed by Scott Fenton, 18-Jan-2026.) |
| ⊢ ((𝐴 ∈ ℤs ∧ 𝑁 ∈ ℕ0s) → (𝐴 /su (2s↑s𝑁)) = ({((𝐴 -s 1s ) /su (2s↑s𝑁))} |s {((𝐴 +s 1s ) /su (2s↑s𝑁))})) | ||
| Theorem | elzs12 28381* | Membership in the dyadic fractions. (Contributed by Scott Fenton, 7-Aug-2025.) |
| ⊢ (𝐴 ∈ ℤs[1/2] ↔ ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2s↑s𝑦))) | ||
| Theorem | zs12ex 28382 | The class of dyadic fractions is a set. (Contributed by Scott Fenton, 7-Aug-2025.) |
| ⊢ ℤs[1/2] ∈ V | ||
| Theorem | zzs12 28383 | A surreal integer is a dyadic fraction. (Contributed by Scott Fenton, 7-Aug-2025.) |
| ⊢ (𝐴 ∈ ℤs → 𝐴 ∈ ℤs[1/2]) | ||
| Theorem | zs12no 28384 | A dyadic is a surreal. (Contributed by Scott Fenton, 11-Dec-2025.) |
| ⊢ (𝐴 ∈ ℤs[1/2] → 𝐴 ∈ No ) | ||
| Theorem | zs12addscl 28385 | The dyadics are closed under addition. (Contributed by Scott Fenton, 11-Dec-2025.) |
| ⊢ ((𝐴 ∈ ℤs[1/2] ∧ 𝐵 ∈ ℤs[1/2]) → (𝐴 +s 𝐵) ∈ ℤs[1/2]) | ||
| Theorem | zs12negscl 28386 | The dyadics are closed under negation. (Contributed by Scott Fenton, 9-Nov-2025.) |
| ⊢ (𝐴 ∈ ℤs[1/2] → ( -us ‘𝐴) ∈ ℤs[1/2]) | ||
| Theorem | zs12subscl 28387 | The dyadics are closed under subtraction. (Contributed by Scott Fenton, 12-Dec-2025.) |
| ⊢ ((𝐴 ∈ ℤs[1/2] ∧ 𝐵 ∈ ℤs[1/2]) → (𝐴 -s 𝐵) ∈ ℤs[1/2]) | ||
| Theorem | zs12half 28388 | Half of a dyadic is a dyadic. (Contributed by Scott Fenton, 11-Dec-2025.) |
| ⊢ (𝐴 ∈ ℤs[1/2] → (𝐴 /su 2s) ∈ ℤs[1/2]) | ||
| Theorem | zs12negsclb 28389 | A surreal is a dyadic fraction iff its negative is. (Contributed by Scott Fenton, 9-Nov-2025.) |
| ⊢ (𝐴 ∈ No → (𝐴 ∈ ℤs[1/2] ↔ ( -us ‘𝐴) ∈ ℤs[1/2])) | ||
| Theorem | zs12zodd 28390* | A dyadic fraction is either an integer or an odd number divided by a positive power of two. (Contributed by Scott Fenton, 5-Dec-2025.) |
| ⊢ (𝐴 ∈ ℤs[1/2] → (𝐴 ∈ ℤs ∨ ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕs 𝐴 = (((2s ·s 𝑥) +s 1s ) /su (2s↑s𝑦)))) | ||
| Theorem | zs12ge0 28391* | An expression for non-negative dyadic rationals. (Contributed by Scott Fenton, 8-Nov-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 0s ≤s 𝐴) → (𝐴 ∈ ℤs[1/2] ↔ ∃𝑥 ∈ ℕ0s ∃𝑦 ∈ ℕ0s ∃𝑝 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su (2s↑s𝑝))) ∧ 𝑦 <s (2s↑s𝑝)))) | ||
| Theorem | zs12bday 28392 | A dyadic fraction has a finite birthday. (Contributed by Scott Fenton, 20-Aug-2025.) |
| ⊢ (𝐴 ∈ ℤs[1/2] → ( bday ‘𝐴) ∈ ω) | ||
| Syntax | creno 28393 | Declare the syntax for the surreal reals. |
| class ℝs | ||
| Definition | df-reno 28394* | Define the surreal reals. These are the finite numbers without any infintesimal parts. Definition from [Conway] p. 24. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ ℝs = {𝑥 ∈ No ∣ (∃𝑛 ∈ ℕs (( -us ‘𝑛) <s 𝑥 ∧ 𝑥 <s 𝑛) ∧ 𝑥 = ({𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (𝑥 -s ( 1s /su 𝑛))} |s {𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (𝑥 +s ( 1s /su 𝑛))}))} | ||
| Theorem | elreno 28395* | Membership in the set of surreal reals. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝐴 ∈ ℝs ↔ (𝐴 ∈ No ∧ (∃𝑛 ∈ ℕs (( -us ‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})))) | ||
| Theorem | recut 28396* | The cut involved in defining surreal reals is a genuine cut. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝐴 ∈ No → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} <<s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) | ||
| Theorem | 0reno 28397 | Surreal zero is a surreal real. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ 0s ∈ ℝs | ||
| Theorem | renegscl 28398 | The surreal reals are closed under negation. Part of theorem 13(ii) of [Conway] p. 24. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝐴 ∈ ℝs → ( -us ‘𝐴) ∈ ℝs) | ||
| Theorem | readdscl 28399 | The surreal reals are closed under addition. Part of theorem 13(ii) of [Conway] p. 24. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ ((𝐴 ∈ ℝs ∧ 𝐵 ∈ ℝs) → (𝐴 +s 𝐵) ∈ ℝs) | ||
| Theorem | remulscllem1 28400* | Lemma for remulscl 28402. Split a product of reciprocals of naturals. (Contributed by Scott Fenton, 16-Apr-2025.) |
| ⊢ (∃𝑝 ∈ ℕs ∃𝑞 ∈ ℕs 𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) ↔ ∃𝑛 ∈ ℕs 𝐴 = (𝐵𝐹( 1s /su 𝑛))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |