HomeHome Metamath Proof Explorer
Theorem List (p. 284 of 499)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30893)
  Hilbert Space Explorer  Hilbert Space Explorer
(30894-32416)
  Users' Mathboxes  Users' Mathboxes
(32417-49836)
 

Theorem List for Metamath Proof Explorer - 28301-28400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Definitiondf-zs 28301 Define the surreal integers. Compare dfz2 12484. (Contributed by Scott Fenton, 17-May-2025.)
s = ( -s “ (ℕs × ℕs))
 
Theoremzsex 28302 The surreal integers form a set. (Contributed by Scott Fenton, 17-May-2025.)
s ∈ V
 
Theoremzssno 28303 The surreal integers are a subset of the surreals. (Contributed by Scott Fenton, 17-May-2025.)
s No
 
Theoremzno 28304 A surreal integer is a surreal. (Contributed by Scott Fenton, 17-May-2025.)
(𝐴 ∈ ℤs𝐴 No )
 
Theoremznod 28305 A surreal integer is a surreal. Deduction form. (Contributed by Scott Fenton, 17-May-2025.)
(𝜑𝐴 ∈ ℤs)       (𝜑𝐴 No )
 
Theoremelzs 28306* Membership in the set of surreal integers. (Contributed by Scott Fenton, 17-May-2025.)
(𝐴 ∈ ℤs ↔ ∃𝑥 ∈ ℕs𝑦 ∈ ℕs 𝐴 = (𝑥 -s 𝑦))
 
Theoremnnzsubs 28307 The difference of two surreal positive integers is an integer. (Contributed by Scott Fenton, 25-Jul-2025.)
((𝐴 ∈ ℕs𝐵 ∈ ℕs) → (𝐴 -s 𝐵) ∈ ℤs)
 
Theoremnnzs 28308 A positive surreal integer is a surreal integer. (Contributed by Scott Fenton, 17-May-2025.)
(𝐴 ∈ ℕs𝐴 ∈ ℤs)
 
Theoremnnzsd 28309 A positive surreal integer is a surreal integer. Deduction form. (Contributed by Scott Fenton, 26-May-2025.)
(𝜑𝐴 ∈ ℕs)       (𝜑𝐴 ∈ ℤs)
 
Theorem0zs 28310 Zero is a surreal integer. (Contributed by Scott Fenton, 26-May-2025.)
0s ∈ ℤs
 
Theoremn0zs 28311 A non-negative surreal integer is a surreal integer. (Contributed by Scott Fenton, 26-May-2025.)
(𝐴 ∈ ℕ0s𝐴 ∈ ℤs)
 
Theoremn0zsd 28312 A non-negative surreal integer is a surreal integer. (Contributed by Scott Fenton, 26-May-2025.)
(𝜑𝐴 ∈ ℕ0s)       (𝜑𝐴 ∈ ℤs)
 
Theorem1zs 28313 One is a surreal integer. (Contributed by Scott Fenton, 24-Jul-2025.)
1s ∈ ℤs
 
Theoremznegscl 28314 The surreal integers are closed under negation. (Contributed by Scott Fenton, 26-May-2025.)
(𝐴 ∈ ℤs → ( -us𝐴) ∈ ℤs)
 
Theoremznegscld 28315 The surreal integers are closed under negation. (Contributed by Scott Fenton, 26-May-2025.)
(𝜑𝐴 ∈ ℤs)       (𝜑 → ( -us𝐴) ∈ ℤs)
 
Theoremzaddscl 28316 The surreal integers are closed under addition. (Contributed by Scott Fenton, 25-Jul-2025.)
((𝐴 ∈ ℤs𝐵 ∈ ℤs) → (𝐴 +s 𝐵) ∈ ℤs)
 
Theoremzaddscld 28317 The surreal integers are closed under addition. (Contributed by Scott Fenton, 25-Jul-2025.)
(𝜑𝐴 ∈ ℤs)    &   (𝜑𝐵 ∈ ℤs)       (𝜑 → (𝐴 +s 𝐵) ∈ ℤs)
 
Theoremzsubscld 28318 The surreal integers are closed under subtraction. (Contributed by Scott Fenton, 25-Jul-2025.)
(𝜑𝐴 ∈ ℤs)    &   (𝜑𝐵 ∈ ℤs)       (𝜑 → (𝐴 -s 𝐵) ∈ ℤs)
 
Theoremzmulscld 28319 The surreal integers are closed under multiplication. (Contributed by Scott Fenton, 20-Aug-2025.)
(𝜑𝐴 ∈ ℤs)    &   (𝜑𝐵 ∈ ℤs)       (𝜑 → (𝐴 ·s 𝐵) ∈ ℤs)
 
Theoremelzn0s 28320 A surreal integer is a surreal that is a non-negative integer or whose negative is a non-negative integer. (Contributed by Scott Fenton, 26-May-2025.)
(𝐴 ∈ ℤs ↔ (𝐴 No ∧ (𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s)))
 
Theoremelzs2 28321 A surreal integer is either a positive integer, zero, or the negative of a positive integer. (Contributed by Scott Fenton, 25-Jul-2025.)
(𝑁 ∈ ℤs ↔ (𝑁 No ∧ (𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs)))
 
Theoremeln0zs 28322 Non-negative surreal integer property expressed in terms of integers. (Contributed by Scott Fenton, 25-Jul-2025.)
(𝑁 ∈ ℕ0s ↔ (𝑁 ∈ ℤs ∧ 0s ≤s 𝑁))
 
Theoremelnnzs 28323 Positive surreal integer property expressed in terms of integers. (Contributed by Scott Fenton, 25-Jul-2025.)
(𝑁 ∈ ℕs ↔ (𝑁 ∈ ℤs ∧ 0s <s 𝑁))
 
Theoremelznns 28324 Surreal integer property expressed in terms of positive integers and non-negative integers. (Contributed by Scott Fenton, 25-Jul-2025.)
(𝑁 ∈ ℤs ↔ (𝑁 No ∧ (𝑁 ∈ ℕs ∨ ( -us𝑁) ∈ ℕ0s)))
 
Theoremzn0subs 28325 The non-negative difference of surreal integers is a non-negative integer. (Contributed by Scott Fenton, 25-Jul-2025.)
((𝑀 ∈ ℤs𝑁 ∈ ℤs) → (𝑀 ≤s 𝑁 ↔ (𝑁 -s 𝑀) ∈ ℕ0s))
 
Theorempeano5uzs 28326* Peano's inductive postulate for upper surreal integers. (Contributed by Scott Fenton, 25-Jul-2025.)
(𝜑𝑁 ∈ ℤs)    &   (𝜑𝑁𝐴)    &   ((𝜑𝑥𝐴) → (𝑥 +s 1s ) ∈ 𝐴)       (𝜑 → {𝑘 ∈ ℤs𝑁 ≤s 𝑘} ⊆ 𝐴)
 
Theoremuzsind 28327* Induction on the upper surreal integers that start at 𝑀. (Contributed by Scott Fenton, 25-Jul-2025.)
(𝑗 = 𝑀 → (𝜑𝜓))    &   (𝑗 = 𝑘 → (𝜑𝜒))    &   (𝑗 = (𝑘 +s 1s ) → (𝜑𝜃))    &   (𝑗 = 𝑁 → (𝜑𝜏))    &   (𝑀 ∈ ℤs𝜓)    &   ((𝑀 ∈ ℤs𝑘 ∈ ℤs𝑀 ≤s 𝑘) → (𝜒𝜃))       ((𝑀 ∈ ℤs𝑁 ∈ ℤs𝑀 ≤s 𝑁) → 𝜏)
 
Theoremzsbday 28328 A surreal integer has a finite birthday. (Contributed by Scott Fenton, 26-May-2025.)
(𝐴 ∈ ℤs → ( bday 𝐴) ∈ ω)
 
Theoremzscut 28329 A cut expression for surreal integers. (Contributed by Scott Fenton, 20-Aug-2025.)
(𝐴 ∈ ℤs𝐴 = ({(𝐴 -s 1s )} |s {(𝐴 +s 1s )}))
 
Theoremzsoring 28330 The surreal integers form an ordered ring. Note that we have to restrict the operations here since No is a proper class. (Contributed by Scott Fenton, 23-Dec-2025.)
s = (Base‘𝐾)    &   ( +s ↾ (ℤs × ℤs)) = (+g𝐾)    &   ( ·s ↾ (ℤs × ℤs)) = (.r𝐾)    &   ( ≤s ∩ (ℤs × ℤs)) = (le‘𝐾)    &    0s = (0g𝐾)       𝐾 ∈ oRing
 
15.6.5  Dyadic fractions
 
Syntaxc2s 28331 Declare the syntax for surreal two.
class 2s
 
Definitiondf-2s 28332 Define surreal two. This is the simplest number greater than one. See 1p1e2s 28337 for its addition version. (Contributed by Scott Fenton, 27-May-2025.)
2s = ({ 1s } |s ∅)
 
Syntaxcexps 28333 Declare the syntax for surreal exponentiation.
class s
 
Definitiondf-exps 28334* Define surreal exponentiation. Compare df-exp 13966. (Contributed by Scott Fenton, 27-May-2025.)
s = (𝑥 No , 𝑦 ∈ ℤs ↦ if(𝑦 = 0s , 1s , if( 0s <s 𝑦, (seqs 1s ( ·s , (ℕs × {𝑥}))‘𝑦), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝑥}))‘( -us𝑦))))))
 
Syntaxczs12 28335 Define the syntax for the set of surreal dyadic fractions.
class s[1/2]
 
Definitiondf-zs12 28336* Define the set of dyadic rationals. This is the set of rationals whose denominator is a power of two. Later we will prove that this is precisely the set of surreals with a finite birthday. (Contributed by Scott Fenton, 27-May-2025.)
s[1/2] = {𝑥 ∣ ∃𝑦 ∈ ℤs𝑧 ∈ ℕ0s 𝑥 = (𝑦 /su (2ss𝑧))}
 
Theorem1p1e2s 28337 One plus one is two. Surreal version. (Contributed by Scott Fenton, 27-May-2025.)
( 1s +s 1s ) = 2s
 
Theoremno2times 28338 Version of 2times 12253 for surreal numbers. (Contributed by Scott Fenton, 23-Jul-2025.)
(𝐴 No → (2s ·s 𝐴) = (𝐴 +s 𝐴))
 
Theorem2nns 28339 Surreal two is a surreal natural. (Contributed by Scott Fenton, 23-Jul-2025.)
2s ∈ ℕs
 
Theorem2sno 28340 Surreal two is a surreal number. (Contributed by Scott Fenton, 23-Jul-2025.)
2s No
 
Theorem2ne0s 28341 Surreal two is non-zero. (Contributed by Scott Fenton, 23-Jul-2025.)
2s ≠ 0s
 
Theoremn0seo 28342* A non-negative surreal integer is either even or odd. (Contributed by Scott Fenton, 19-Aug-2025.)
(𝑁 ∈ ℕ0s → (∃𝑥 ∈ ℕ0s 𝑁 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑁 = ((2s ·s 𝑥) +s 1s )))
 
Theoremzseo 28343* A surreal integer is either even or odd. (Contributed by Scott Fenton, 19-Aug-2025.)
(𝑁 ∈ ℤs → (∃𝑥 ∈ ℤs 𝑁 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs 𝑁 = ((2s ·s 𝑥) +s 1s )))
 
Theoremtwocut 28344 Two times the cut of zero and one is one. (Contributed by Scott Fenton, 5-Sep-2025.)
(2s ·s ({ 0s } |s { 1s })) = 1s
 
Theoremnohalf 28345 An explicit expression for one half. This theorem avoids the axiom of infinity. (Contributed by Scott Fenton, 23-Jul-2025.)
( 1s /su 2s) = ({ 0s } |s { 1s })
 
Theoremexpsval 28346 The value of surreal exponentiation. (Contributed by Scott Fenton, 24-Jul-2025.)
((𝐴 No 𝐵 ∈ ℤs) → (𝐴s𝐵) = if(𝐵 = 0s , 1s , if( 0s <s 𝐵, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝐵))))))
 
Theoremexpsnnval 28347 Value of surreal exponentiation at a natural number. (Contributed by Scott Fenton, 25-Jul-2025.)
((𝐴 No 𝑁 ∈ ℕs) → (𝐴s𝑁) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁))
 
Theoremexps0 28348 Surreal exponentiation to zero. (Contributed by Scott Fenton, 24-Jul-2025.)
(𝐴 No → (𝐴s 0s ) = 1s )
 
Theoremexps1 28349 Surreal exponentiation to one. (Contributed by Scott Fenton, 24-Jul-2025.)
(𝐴 No → (𝐴s 1s ) = 𝐴)
 
Theoremexpsp1 28350 Value of a surreal number raised to a non-negative integer power plus one. (Contributed by Scott Fenton, 6-Aug-2025.)
((𝐴 No 𝑁 ∈ ℕ0s) → (𝐴s(𝑁 +s 1s )) = ((𝐴s𝑁) ·s 𝐴))
 
Theoremexpscllem 28351* Lemma for proving non-negative surreal integer exponentiation closure. (Contributed by Scott Fenton, 7-Nov-2025.)
𝐹 No     &   ((𝑥𝐹𝑦𝐹) → (𝑥 ·s 𝑦) ∈ 𝐹)    &    1s𝐹       ((𝐴𝐹𝑁 ∈ ℕ0s) → (𝐴s𝑁) ∈ 𝐹)
 
Theoremexpscl 28352 Closure law for surreal exponentiation. (Contributed by Scott Fenton, 7-Aug-2025.)
((𝐴 No 𝑁 ∈ ℕ0s) → (𝐴s𝑁) ∈ No )
 
Theoremn0expscl 28353 Closure law for non-negative surreal integer exponentiation. (Contributed by Scott Fenton, 7-Nov-2025.)
((𝐴 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝐴s𝑁) ∈ ℕ0s)
 
Theoremnnexpscl 28354 Closure law for positive surreal integer exponentiation. (Contributed by Scott Fenton, 8-Nov-2025.)
((𝐴 ∈ ℕs𝑁 ∈ ℕ0s) → (𝐴s𝑁) ∈ ℕs)
 
Theoremzexpscl 28355 Closure law for surreal integer exponentiation. (Contributed by Scott Fenton, 11-Dec-2025.)
((𝐴 ∈ ℤs𝑁 ∈ ℕ0s) → (𝐴s𝑁) ∈ ℤs)
 
Theoremexpadds 28356 Sum of exponents law for surreals. (Contributed by Scott Fenton, 7-Nov-2025.)
((𝐴 No 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝐴s(𝑀 +s 𝑁)) = ((𝐴s𝑀) ·s (𝐴s𝑁)))
 
Theoremexpsne0 28357 A non-negative surreal integer power is non-zero if its base is non-zero. (Contributed by Scott Fenton, 7-Aug-2025.)
((𝐴 No 𝐴 ≠ 0s𝑁 ∈ ℕ0s) → (𝐴s𝑁) ≠ 0s )
 
Theoremexpsgt0 28358 A non-negative surreal integer power is positive if its base is positive. (Contributed by Scott Fenton, 7-Aug-2025.)
((𝐴 No 𝑁 ∈ ℕ0s ∧ 0s <s 𝐴) → 0s <s (𝐴s𝑁))
 
Theorempw2recs 28359* Any power of two has a multiplicative inverse. Note that this theorem does not require the axiom of infinity. (Contributed by Scott Fenton, 5-Sep-2025.)
(𝑁 ∈ ℕ0s → ∃𝑥 No ((2ss𝑁) ·s 𝑥) = 1s )
 
Theorempw2divscld 28360 Division closure for powers of two. (Contributed by Scott Fenton, 7-Nov-2025.)
(𝜑𝐴 No )    &   (𝜑𝑁 ∈ ℕ0s)       (𝜑 → (𝐴 /su (2ss𝑁)) ∈ No )
 
Theorempw2divsmuld 28361 Relationship between surreal division and multiplication for powers of two. (Contributed by Scott Fenton, 7-Nov-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )    &   (𝜑𝑁 ∈ ℕ0s)       (𝜑 → ((𝐴 /su (2ss𝑁)) = 𝐵 ↔ ((2ss𝑁) ·s 𝐵) = 𝐴))
 
Theorempw2divscan3d 28362 Cancellation law for surreal division by powers of two. (Contributed by Scott Fenton, 7-Nov-2025.)
(𝜑𝐴 No )    &   (𝜑𝑁 ∈ ℕ0s)       (𝜑 → (((2ss𝑁) ·s 𝐴) /su (2ss𝑁)) = 𝐴)
 
Theorempw2divscan2d 28363 A cancellation law for surreal division by powers of two. (Contributed by Scott Fenton, 7-Nov-2025.)
(𝜑𝐴 No )    &   (𝜑𝑁 ∈ ℕ0s)       (𝜑 → ((2ss𝑁) ·s (𝐴 /su (2ss𝑁))) = 𝐴)
 
Theorempw2divsassd 28364 An associative law for division by powers of two. (Contributed by Scott Fenton, 11-Dec-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )    &   (𝜑𝑁 ∈ ℕ0s)       (𝜑 → ((𝐴 ·s 𝐵) /su (2ss𝑁)) = (𝐴 ·s (𝐵 /su (2ss𝑁))))
 
Theorempw2divscan4d 28365 Cancellation law for divison by powers of two. (Contributed by Scott Fenton, 11-Dec-2025.)
(𝜑𝐴 No )    &   (𝜑𝑁 ∈ ℕ0s)    &   (𝜑𝑀 ∈ ℕ0s)       (𝜑 → (𝐴 /su (2ss𝑁)) = (((2ss𝑀) ·s 𝐴) /su (2ss(𝑁 +s 𝑀))))
 
Theorempw2gt0divsd 28366 Division of a positive surreal by a power of two. (Contributed by Scott Fenton, 7-Nov-2025.)
(𝜑𝐴 No )    &   (𝜑𝑁 ∈ ℕ0s)       (𝜑 → ( 0s <s 𝐴 ↔ 0s <s (𝐴 /su (2ss𝑁))))
 
Theorempw2ge0divsd 28367 Divison of a non-negative surreal by a power of two. (Contributed by Scott Fenton, 7-Nov-2025.)
(𝜑𝐴 No )    &   (𝜑𝑁 ∈ ℕ0s)       (𝜑 → ( 0s ≤s 𝐴 ↔ 0s ≤s (𝐴 /su (2ss𝑁))))
 
Theorempw2divsrecd 28368 Relationship between surreal division and reciprocal for powers of two. (Contributed by Scott Fenton, 7-Nov-2025.)
(𝜑𝐴 No )    &   (𝜑𝑁 ∈ ℕ0s)       (𝜑 → (𝐴 /su (2ss𝑁)) = (𝐴 ·s ( 1s /su (2ss𝑁))))
 
Theorempw2divsdird 28369 Distribution of surreal division over addition for powers of two. (Contributed by Scott Fenton, 7-Nov-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )    &   (𝜑𝑁 ∈ ℕ0s)       (𝜑 → ((𝐴 +s 𝐵) /su (2ss𝑁)) = ((𝐴 /su (2ss𝑁)) +s (𝐵 /su (2ss𝑁))))
 
Theorempw2divsnegd 28370 Move negative sign inside of a power of two division. (Contributed by Scott Fenton, 8-Nov-2025.)
(𝜑𝐴 No )    &   (𝜑𝑁 ∈ ℕ0s)       (𝜑 → ( -us ‘(𝐴 /su (2ss𝑁))) = (( -us𝐴) /su (2ss𝑁)))
 
Theorempw2sltdivmuld 28371 Surreal less-than relationship between division and multiplication for powers of two. (Contributed by Scott Fenton, 11-Dec-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )    &   (𝜑𝑁 ∈ ℕ0s)       (𝜑 → ((𝐴 /su (2ss𝑁)) <s 𝐵𝐴 <s ((2ss𝑁) ·s 𝐵)))
 
Theorempw2sltmuldiv2d 28372 Surreal less-than relationship between division and multiplication for powers of two. (Contributed by Scott Fenton, 11-Dec-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )    &   (𝜑𝑁 ∈ ℕ0s)       (𝜑 → (((2ss𝑁) ·s 𝐴) <s 𝐵𝐴 <s (𝐵 /su (2ss𝑁))))
 
Theorempw2sltdiv1d 28373 Surreal less-than relationship for division by a power of two. (Contributed by Scott Fenton, 18-Jan-2026.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )    &   (𝜑𝑁 ∈ ℕ0s)       (𝜑 → (𝐴 <s 𝐵 ↔ (𝐴 /su (2ss𝑁)) <s (𝐵 /su (2ss𝑁))))
 
Theoremavgslt1d 28374 Ordering property for average. (Contributed by Scott Fenton, 11-Dec-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )       (𝜑 → (𝐴 <s 𝐵𝐴 <s ((𝐴 +s 𝐵) /su 2s)))
 
Theoremavgslt2d 28375 Ordering property for average. (Contributed by Scott Fenton, 11-Dec-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )       (𝜑 → (𝐴 <s 𝐵 ↔ ((𝐴 +s 𝐵) /su 2s) <s 𝐵))
 
Theoremhalfcut 28376 Relate the cut of twice of two numbers to the cut of the numbers. Lemma 4.2 of [Gonshor] p. 28. (Contributed by Scott Fenton, 7-Aug-2025.) Avoid the axiom of infinity. (Proof modified by Scott Fenton, 6-Sep-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )    &   (𝜑𝐴 <s 𝐵)    &   (𝜑 → ({(2s ·s 𝐴)} |s {(2s ·s 𝐵)}) = (𝐴 +s 𝐵))    &   𝐶 = ({𝐴} |s {𝐵})       (𝜑𝐶 = ((𝐴 +s 𝐵) /su 2s))
 
Theoremaddhalfcut 28377 The cut of a surreal non-negative integer and its successor is the original number plus one half. Part of theorem 4.2 of [Gonshor] p. 30. (Contributed by Scott Fenton, 13-Aug-2025.)
(𝜑𝐴 ∈ ℕ0s)       (𝜑 → ({𝐴} |s {(𝐴 +s 1s )}) = (𝐴 +s ( 1s /su 2s)))
 
Theorempw2cut 28378 Extend halfcut 28376 to arbitrary powers of two. Part of theorem 4.2 of [Gonshor] p. 28. (Contributed by Scott Fenton, 18-Aug-2025.)
(𝜑𝐴 No )    &   (𝜑𝐵 No )    &   (𝜑𝑁 ∈ ℕ0s)    &   (𝜑𝐴 <s 𝐵)    &   (𝜑 → ({(2s ·s 𝐴)} |s {(2s ·s 𝐵)}) = (𝐴 +s 𝐵))       (𝜑 → ({(𝐴 /su (2ss𝑁))} |s {(𝐵 /su (2ss𝑁))}) = ((𝐴 +s 𝐵) /su (2ss(𝑁 +s 1s ))))
 
Theorempw2cutp1 28379 Simplify pw2cut 28378 in the case of successors of surreal integers. (Contributed by Scott Fenton, 11-Nov-2025.)
(𝜑𝐴 ∈ ℤs)    &   (𝜑𝑁 ∈ ℕ0s)       (𝜑 → ({(𝐴 /su (2ss𝑁))} |s {((𝐴 +s 1s ) /su (2ss𝑁))}) = (((2s ·s 𝐴) +s 1s ) /su (2ss(𝑁 +s 1s ))))
 
Theorempw2cut2 28380 Cut expression for powers of two. Theorem 12 of [Conway] p. 12-13. (Contributed by Scott Fenton, 18-Jan-2026.)
((𝐴 ∈ ℤs𝑁 ∈ ℕ0s) → (𝐴 /su (2ss𝑁)) = ({((𝐴 -s 1s ) /su (2ss𝑁))} |s {((𝐴 +s 1s ) /su (2ss𝑁))}))
 
Theoremelzs12 28381* Membership in the dyadic fractions. (Contributed by Scott Fenton, 7-Aug-2025.)
(𝐴 ∈ ℤs[1/2] ↔ ∃𝑥 ∈ ℤs𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2ss𝑦)))
 
Theoremzs12ex 28382 The class of dyadic fractions is a set. (Contributed by Scott Fenton, 7-Aug-2025.)
s[1/2] ∈ V
 
Theoremzzs12 28383 A surreal integer is a dyadic fraction. (Contributed by Scott Fenton, 7-Aug-2025.)
(𝐴 ∈ ℤs𝐴 ∈ ℤs[1/2])
 
Theoremzs12no 28384 A dyadic is a surreal. (Contributed by Scott Fenton, 11-Dec-2025.)
(𝐴 ∈ ℤs[1/2] → 𝐴 No )
 
Theoremzs12addscl 28385 The dyadics are closed under addition. (Contributed by Scott Fenton, 11-Dec-2025.)
((𝐴 ∈ ℤs[1/2] ∧ 𝐵 ∈ ℤs[1/2]) → (𝐴 +s 𝐵) ∈ ℤs[1/2])
 
Theoremzs12negscl 28386 The dyadics are closed under negation. (Contributed by Scott Fenton, 9-Nov-2025.)
(𝐴 ∈ ℤs[1/2] → ( -us𝐴) ∈ ℤs[1/2])
 
Theoremzs12subscl 28387 The dyadics are closed under subtraction. (Contributed by Scott Fenton, 12-Dec-2025.)
((𝐴 ∈ ℤs[1/2] ∧ 𝐵 ∈ ℤs[1/2]) → (𝐴 -s 𝐵) ∈ ℤs[1/2])
 
Theoremzs12half 28388 Half of a dyadic is a dyadic. (Contributed by Scott Fenton, 11-Dec-2025.)
(𝐴 ∈ ℤs[1/2] → (𝐴 /su 2s) ∈ ℤs[1/2])
 
Theoremzs12negsclb 28389 A surreal is a dyadic fraction iff its negative is. (Contributed by Scott Fenton, 9-Nov-2025.)
(𝐴 No → (𝐴 ∈ ℤs[1/2] ↔ ( -us𝐴) ∈ ℤs[1/2]))
 
Theoremzs12zodd 28390* A dyadic fraction is either an integer or an odd number divided by a positive power of two. (Contributed by Scott Fenton, 5-Dec-2025.)
(𝐴 ∈ ℤs[1/2] → (𝐴 ∈ ℤs ∨ ∃𝑥 ∈ ℤs𝑦 ∈ ℕs 𝐴 = (((2s ·s 𝑥) +s 1s ) /su (2ss𝑦))))
 
Theoremzs12ge0 28391* An expression for non-negative dyadic rationals. (Contributed by Scott Fenton, 8-Nov-2025.)
((𝐴 No ∧ 0s ≤s 𝐴) → (𝐴 ∈ ℤs[1/2] ↔ ∃𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s𝑝 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝))))
 
Theoremzs12bday 28392 A dyadic fraction has a finite birthday. (Contributed by Scott Fenton, 20-Aug-2025.)
(𝐴 ∈ ℤs[1/2] → ( bday 𝐴) ∈ ω)
 
15.6.6  Real numbers
 
Syntaxcreno 28393 Declare the syntax for the surreal reals.
class s
 
Definitiondf-reno 28394* Define the surreal reals. These are the finite numbers without any infintesimal parts. Definition from [Conway] p. 24. (Contributed by Scott Fenton, 15-Apr-2025.)
s = {𝑥 No ∣ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝑥𝑥 <s 𝑛) ∧ 𝑥 = ({𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (𝑥 -s ( 1s /su 𝑛))} |s {𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (𝑥 +s ( 1s /su 𝑛))}))}
 
Theoremelreno 28395* Membership in the set of surreal reals. (Contributed by Scott Fenton, 15-Apr-2025.)
(𝐴 ∈ ℝs ↔ (𝐴 No ∧ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))))
 
Theoremrecut 28396* The cut involved in defining surreal reals is a genuine cut. (Contributed by Scott Fenton, 15-Apr-2025.)
(𝐴 No → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} <<s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})
 
Theorem0reno 28397 Surreal zero is a surreal real. (Contributed by Scott Fenton, 15-Apr-2025.)
0s ∈ ℝs
 
Theoremrenegscl 28398 The surreal reals are closed under negation. Part of theorem 13(ii) of [Conway] p. 24. (Contributed by Scott Fenton, 15-Apr-2025.)
(𝐴 ∈ ℝs → ( -us𝐴) ∈ ℝs)
 
Theoremreaddscl 28399 The surreal reals are closed under addition. Part of theorem 13(ii) of [Conway] p. 24. (Contributed by Scott Fenton, 15-Apr-2025.)
((𝐴 ∈ ℝs𝐵 ∈ ℝs) → (𝐴 +s 𝐵) ∈ ℝs)
 
Theoremremulscllem1 28400* Lemma for remulscl 28402. Split a product of reciprocals of naturals. (Contributed by Scott Fenton, 16-Apr-2025.)
(∃𝑝 ∈ ℕs𝑞 ∈ ℕs 𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) ↔ ∃𝑛 ∈ ℕs 𝐴 = (𝐵𝐹( 1s /su 𝑛)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48100 482 48101-48200 483 48201-48300 484 48301-48400 485 48401-48500 486 48501-48600 487 48601-48700 488 48701-48800 489 48801-48900 490 48901-49000 491 49001-49100 492 49101-49200 493 49201-49300 494 49301-49400 495 49401-49500 496 49501-49600 497 49601-49700 498 49701-49800 499 49801-49836
  Copyright terms: Public domain < Previous  Next >