| Metamath
Proof Explorer Theorem List (p. 284 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | zsbday 28301 | A surreal integer has a finite birthday. (Contributed by Scott Fenton, 26-May-2025.) |
| ⊢ (𝐴 ∈ ℤs → ( bday ‘𝐴) ∈ ω) | ||
| Theorem | zscut 28302 | A cut expression for surreal integers. (Contributed by Scott Fenton, 20-Aug-2025.) |
| ⊢ (𝐴 ∈ ℤs → 𝐴 = ({(𝐴 -s 1s )} |s {(𝐴 +s 1s )})) | ||
| Syntax | c2s 28303 | Declare the syntax for surreal two. |
| class 2s | ||
| Definition | df-2s 28304 | Define surreal two. This is the simplest number greater than one. See 1p1e2s 28309 for its addition version. (Contributed by Scott Fenton, 27-May-2025.) |
| ⊢ 2s = ({ 1s } |s ∅) | ||
| Syntax | cexps 28305 | Declare the syntax for surreal exponentiation. |
| class ↑s | ||
| Definition | df-exps 28306* | Define surreal exponentiation. Compare df-exp 14034. (Contributed by Scott Fenton, 27-May-2025.) |
| ⊢ ↑s = (𝑥 ∈ No , 𝑦 ∈ ℤs ↦ if(𝑦 = 0s , 1s , if( 0s <s 𝑦, (seqs 1s ( ·s , (ℕs × {𝑥}))‘𝑦), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝑥}))‘( -us ‘𝑦)))))) | ||
| Syntax | czs12 28307 | Define the syntax for the set of surreal dyadic fractions. |
| class ℤs[1/2] | ||
| Definition | df-zs12 28308* | Define the set of dyadic rationals. This is the set of rationals whose denominator is a power of two. Later we will prove that this is precisely the set of surreals with a finite birthday. (Contributed by Scott Fenton, 27-May-2025.) |
| ⊢ ℤs[1/2] = {𝑥 ∣ ∃𝑦 ∈ ℤs ∃𝑧 ∈ ℕ0s 𝑥 = (𝑦 /su (2s↑s𝑧))} | ||
| Theorem | 1p1e2s 28309 | One plus one is two. Surreal version. (Contributed by Scott Fenton, 27-May-2025.) |
| ⊢ ( 1s +s 1s ) = 2s | ||
| Theorem | no2times 28310 | Version of 2times 12324 for surreal numbers. (Contributed by Scott Fenton, 23-Jul-2025.) |
| ⊢ (𝐴 ∈ No → (2s ·s 𝐴) = (𝐴 +s 𝐴)) | ||
| Theorem | 2nns 28311 | Surreal two is a surreal natural. (Contributed by Scott Fenton, 23-Jul-2025.) |
| ⊢ 2s ∈ ℕs | ||
| Theorem | 2sno 28312 | Surreal two is a surreal number. (Contributed by Scott Fenton, 23-Jul-2025.) |
| ⊢ 2s ∈ No | ||
| Theorem | 2ne0s 28313 | Surreal two is non-zero. (Contributed by Scott Fenton, 23-Jul-2025.) |
| ⊢ 2s ≠ 0s | ||
| Theorem | n0seo 28314* | A non-negative surreal integer is either even or odd. (Contributed by Scott Fenton, 19-Aug-2025.) |
| ⊢ (𝑁 ∈ ℕ0s → (∃𝑥 ∈ ℕ0s 𝑁 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑁 = ((2s ·s 𝑥) +s 1s ))) | ||
| Theorem | zseo 28315* | A surreal integer is either even or odd. (Contributed by Scott Fenton, 19-Aug-2025.) |
| ⊢ (𝑁 ∈ ℤs → (∃𝑥 ∈ ℤs 𝑁 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs 𝑁 = ((2s ·s 𝑥) +s 1s ))) | ||
| Theorem | twocut 28316 | Two times the cut of zero and one is one. (Contributed by Scott Fenton, 5-Sep-2025.) |
| ⊢ (2s ·s ({ 0s } |s { 1s })) = 1s | ||
| Theorem | nohalf 28317 | An explicit expression for one half. This theorem avoids the axiom of infinity. (Contributed by Scott Fenton, 23-Jul-2025.) |
| ⊢ ( 1s /su 2s) = ({ 0s } |s { 1s }) | ||
| Theorem | expsval 28318 | The value of surreal exponentiation. (Contributed by Scott Fenton, 24-Jul-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ ℤs) → (𝐴↑s𝐵) = if(𝐵 = 0s , 1s , if( 0s <s 𝐵, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝐵), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us ‘𝐵)))))) | ||
| Theorem | expsnnval 28319 | Value of surreal exponentiation at a natural number. (Contributed by Scott Fenton, 25-Jul-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝑁 ∈ ℕs) → (𝐴↑s𝑁) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁)) | ||
| Theorem | exps0 28320 | Surreal exponentiation to zero. (Contributed by Scott Fenton, 24-Jul-2025.) |
| ⊢ (𝐴 ∈ No → (𝐴↑s 0s ) = 1s ) | ||
| Theorem | exps1 28321 | Surreal exponentiation to one. (Contributed by Scott Fenton, 24-Jul-2025.) |
| ⊢ (𝐴 ∈ No → (𝐴↑s 1s ) = 𝐴) | ||
| Theorem | expsp1 28322 | Value of a surreal number raised to a non-negative integer power plus one. (Contributed by Scott Fenton, 6-Aug-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝑁 ∈ ℕ0s) → (𝐴↑s(𝑁 +s 1s )) = ((𝐴↑s𝑁) ·s 𝐴)) | ||
| Theorem | expscllem 28323* | Lemma for proving non-negative surreal integer exponentiation closure. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ 𝐹 ⊆ No & ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝑥 ·s 𝑦) ∈ 𝐹) & ⊢ 1s ∈ 𝐹 ⇒ ⊢ ((𝐴 ∈ 𝐹 ∧ 𝑁 ∈ ℕ0s) → (𝐴↑s𝑁) ∈ 𝐹) | ||
| Theorem | expscl 28324 | Closure law for surreal exponentiation. (Contributed by Scott Fenton, 7-Aug-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝑁 ∈ ℕ0s) → (𝐴↑s𝑁) ∈ No ) | ||
| Theorem | n0expscl 28325 | Closure law for non-negative surreal integer exponentiation. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ ((𝐴 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) → (𝐴↑s𝑁) ∈ ℕ0s) | ||
| Theorem | nnexpscl 28326 | Closure law for positive surreal integer exponentiation. (Contributed by Scott Fenton, 8-Nov-2025.) |
| ⊢ ((𝐴 ∈ ℕs ∧ 𝑁 ∈ ℕ0s) → (𝐴↑s𝑁) ∈ ℕs) | ||
| Theorem | expadds 28327 | Sum of exponents law for surreals. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) → (𝐴↑s(𝑀 +s 𝑁)) = ((𝐴↑s𝑀) ·s (𝐴↑s𝑁))) | ||
| Theorem | expsne0 28328 | A non-negative surreal integer power is non-zero if its base is non-zero. (Contributed by Scott Fenton, 7-Aug-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐴 ≠ 0s ∧ 𝑁 ∈ ℕ0s) → (𝐴↑s𝑁) ≠ 0s ) | ||
| Theorem | expsgt0 28329 | A non-negative surreal integer power is positive if its base is positive. (Contributed by Scott Fenton, 7-Aug-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝑁 ∈ ℕ0s ∧ 0s <s 𝐴) → 0s <s (𝐴↑s𝑁)) | ||
| Theorem | pw2recs 28330* | Any power of two has a multiplicative inverse. Note that this theorem does not require the axiom of infinity. (Contributed by Scott Fenton, 5-Sep-2025.) |
| ⊢ (𝑁 ∈ ℕ0s → ∃𝑥 ∈ No ((2s↑s𝑁) ·s 𝑥) = 1s ) | ||
| Theorem | pw2divscld 28331 | Division closure for powers of two. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0s) ⇒ ⊢ (𝜑 → (𝐴 /su (2s↑s𝑁)) ∈ No ) | ||
| Theorem | pw2divsmuld 28332 | Relationship between surreal division and multiplication for powers of two. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0s) ⇒ ⊢ (𝜑 → ((𝐴 /su (2s↑s𝑁)) = 𝐵 ↔ ((2s↑s𝑁) ·s 𝐵) = 𝐴)) | ||
| Theorem | pw2divscan3d 28333 | Cancellation law for surreal division by powers of two. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0s) ⇒ ⊢ (𝜑 → (((2s↑s𝑁) ·s 𝐴) /su (2s↑s𝑁)) = 𝐴) | ||
| Theorem | pw2divscan2d 28334 | A cancellation law for surreal division by powers of two. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0s) ⇒ ⊢ (𝜑 → ((2s↑s𝑁) ·s (𝐴 /su (2s↑s𝑁))) = 𝐴) | ||
| Theorem | pw2gt0divsd 28335 | Division of a positive surreal by a power of two. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0s) ⇒ ⊢ (𝜑 → ( 0s <s 𝐴 ↔ 0s <s (𝐴 /su (2s↑s𝑁)))) | ||
| Theorem | pw2ge0divsd 28336 | Divison of a non-negative surreal by a power of two. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0s) ⇒ ⊢ (𝜑 → ( 0s ≤s 𝐴 ↔ 0s ≤s (𝐴 /su (2s↑s𝑁)))) | ||
| Theorem | pw2divsrecd 28337 | Relationship between surreal division and reciprocal for powers of two. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0s) ⇒ ⊢ (𝜑 → (𝐴 /su (2s↑s𝑁)) = (𝐴 ·s ( 1s /su (2s↑s𝑁)))) | ||
| Theorem | pw2divsdird 28338 | Distribution of surreal division over addition for powers of two. (Contributed by Scott Fenton, 7-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0s) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐵) /su (2s↑s𝑁)) = ((𝐴 /su (2s↑s𝑁)) +s (𝐵 /su (2s↑s𝑁)))) | ||
| Theorem | pw2divsnegd 28339 | Move negative sign inside of a power of two division. (Contributed by Scott Fenton, 8-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0s) ⇒ ⊢ (𝜑 → ( -us ‘(𝐴 /su (2s↑s𝑁))) = (( -us ‘𝐴) /su (2s↑s𝑁))) | ||
| Theorem | halfcut 28340 | Relate the cut of twice of two numbers to the cut of the numbers. Lemma 4.2 of [Gonshor] p. 28. (Contributed by Scott Fenton, 7-Aug-2025.) Avoid the axiom of infinity. (Proof modified by Scott Fenton, 6-Sep-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐴 <s 𝐵) & ⊢ (𝜑 → ({(2s ·s 𝐴)} |s {(2s ·s 𝐵)}) = (𝐴 +s 𝐵)) & ⊢ 𝐶 = ({𝐴} |s {𝐵}) ⇒ ⊢ (𝜑 → 𝐶 = ((𝐴 +s 𝐵) /su 2s)) | ||
| Theorem | addhalfcut 28341 | The cut of a surreal non-negative integer and its successor is the original number plus one half. Part of theorem 4.2 of [Gonshor] p. 30. (Contributed by Scott Fenton, 13-Aug-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ0s) ⇒ ⊢ (𝜑 → ({𝐴} |s {(𝐴 +s 1s )}) = (𝐴 +s ( 1s /su 2s))) | ||
| Theorem | pw2cut 28342 | Extend halfcut 28340 to arbitrary powers of two. Part of theorem 4.2 of [Gonshor] p. 28. (Contributed by Scott Fenton, 18-Aug-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0s) & ⊢ (𝜑 → 𝐴 <s 𝐵) & ⊢ (𝜑 → ({(2s ·s 𝐴)} |s {(2s ·s 𝐵)}) = (𝐴 +s 𝐵)) ⇒ ⊢ (𝜑 → ({(𝐴 /su (2s↑s𝑁))} |s {(𝐵 /su (2s↑s𝑁))}) = ((𝐴 +s 𝐵) /su (2s↑s(𝑁 +s 1s )))) | ||
| Theorem | pw2cutp1 28343 | Simplify pw2cut 28342 in the case of successors of surreal integers. (Contributed by Scott Fenton, 11-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤs) & ⊢ (𝜑 → 𝑁 ∈ ℕ0s) ⇒ ⊢ (𝜑 → ({(𝐴 /su (2s↑s𝑁))} |s {((𝐴 +s 1s ) /su (2s↑s𝑁))}) = (((2s ·s 𝐴) +s 1s ) /su (2s↑s(𝑁 +s 1s )))) | ||
| Theorem | elzs12 28344* | Membership in the dyadic fractions. (Contributed by Scott Fenton, 7-Aug-2025.) |
| ⊢ (𝐴 ∈ ℤs[1/2] ↔ ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2s↑s𝑦))) | ||
| Theorem | zs12ex 28345 | The class of dyadic fractions is a set. (Contributed by Scott Fenton, 7-Aug-2025.) |
| ⊢ ℤs[1/2] ∈ V | ||
| Theorem | zzs12 28346 | A surreal integer is a dyadic fraction. (Contributed by Scott Fenton, 7-Aug-2025.) |
| ⊢ (𝐴 ∈ ℤs → 𝐴 ∈ ℤs[1/2]) | ||
| Theorem | zs12negscl 28347 | The dyadics are closed under negation. (Contributed by Scott Fenton, 9-Nov-2025.) |
| ⊢ (𝐴 ∈ ℤs[1/2] → ( -us ‘𝐴) ∈ ℤs[1/2]) | ||
| Theorem | zs12negsclb 28348 | A surreal is a dyadic fraction iff its negative is. (Contributed by Scott Fenton, 9-Nov-2025.) |
| ⊢ (𝐴 ∈ No → (𝐴 ∈ ℤs[1/2] ↔ ( -us ‘𝐴) ∈ ℤs[1/2])) | ||
| Theorem | zs12ge0 28349* | An expression for non-negative dyadic rationals. (Contributed by Scott Fenton, 8-Nov-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 0s ≤s 𝐴) → (𝐴 ∈ ℤs[1/2] ↔ ∃𝑥 ∈ ℕ0s ∃𝑦 ∈ ℕ0s ∃𝑝 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su (2s↑s𝑝))) ∧ 𝑦 <s (2s↑s𝑝)))) | ||
| Theorem | zs12bday 28350 | A dyadic fraction has a finite birthday. (Contributed by Scott Fenton, 20-Aug-2025.) |
| ⊢ (𝐴 ∈ ℤs[1/2] → ( bday ‘𝐴) ∈ ω) | ||
| Syntax | creno 28351 | Declare the syntax for the surreal reals. |
| class ℝs | ||
| Definition | df-reno 28352* | Define the surreal reals. These are the finite numbers without any infintesimal parts. Definition from [Conway] p. 24. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ ℝs = {𝑥 ∈ No ∣ (∃𝑛 ∈ ℕs (( -us ‘𝑛) <s 𝑥 ∧ 𝑥 <s 𝑛) ∧ 𝑥 = ({𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (𝑥 -s ( 1s /su 𝑛))} |s {𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (𝑥 +s ( 1s /su 𝑛))}))} | ||
| Theorem | elreno 28353* | Membership in the set of surreal reals. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝐴 ∈ ℝs ↔ (𝐴 ∈ No ∧ (∃𝑛 ∈ ℕs (( -us ‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})))) | ||
| Theorem | recut 28354* | The cut involved in defining surreal reals is a genuine cut. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝐴 ∈ No → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} <<s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) | ||
| Theorem | 0reno 28355 | Surreal zero is a surreal real. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ 0s ∈ ℝs | ||
| Theorem | renegscl 28356 | The surreal reals are closed under negation. Part of theorem 13(ii) of [Conway] p. 24. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝐴 ∈ ℝs → ( -us ‘𝐴) ∈ ℝs) | ||
| Theorem | readdscl 28357 | The surreal reals are closed under addition. Part of theorem 13(ii) of [Conway] p. 24. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ ((𝐴 ∈ ℝs ∧ 𝐵 ∈ ℝs) → (𝐴 +s 𝐵) ∈ ℝs) | ||
| Theorem | remulscllem1 28358* | Lemma for remulscl 28360. Split a product of reciprocals of naturals. (Contributed by Scott Fenton, 16-Apr-2025.) |
| ⊢ (∃𝑝 ∈ ℕs ∃𝑞 ∈ ℕs 𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) ↔ ∃𝑛 ∈ ℕs 𝐴 = (𝐵𝐹( 1s /su 𝑛))) | ||
| Theorem | remulscllem2 28359* | Lemma for remulscl 28360. Bound 𝐴 and 𝐵 above and below. (Contributed by Scott Fenton, 16-Apr-2025.) |
| ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ((𝑁 ∈ ℕs ∧ 𝑀 ∈ ℕs) ∧ ((( -us ‘𝑁) <s 𝐴 ∧ 𝐴 <s 𝑁) ∧ (( -us ‘𝑀) <s 𝐵 ∧ 𝐵 <s 𝑀)))) → ∃𝑝 ∈ ℕs (( -us ‘𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝)) | ||
| Theorem | remulscl 28360 | The surreal reals are closed under multiplication. Part of theorem 13(ii) of [Conway] p. 24. (Contributed by Scott Fenton, 16-Apr-2025.) |
| ⊢ ((𝐴 ∈ ℝs ∧ 𝐵 ∈ ℝs) → (𝐴 ·s 𝐵) ∈ ℝs) | ||
This part develops elementary geometry based on Tarski's axioms, following [Schwabhauser]. Tarski's geometry is a first-order theory with one sort, the "points". It has two primitive notions, the ternary predicate of "betweenness" and the quaternary predicate of "congruence". To adapt this theory to the framework of set.mm, and to be able to talk of *a* Tarski structure as a space satisfying the given axioms, we use the following definition, stated informally: A Tarski structure 𝑓 is a set (of points) (Base‘𝑓) together with functions (Itv‘𝑓) and (dist‘𝑓) on ((Base‘𝑓) × (Base‘𝑓)) satisfying certain axioms (given in Definitions df-trkg 28387 et sequentes). This allows to treat a Tarski structure as a special kind of extensible structure (see df-struct 17124). The translation to and from Tarski's treatment is as follows (given, again, informally). Suppose that one is given an extensible structure 𝑓. One defines a betweenness ternary predicate Btw by positing that, for any 𝑥, 𝑦, 𝑧 ∈ (Base‘𝑓), one has "Btw 𝑥𝑦𝑧 " if and only if 𝑦 ∈ 𝑥(Itv‘𝑓)𝑧, and a congruence quaternary predicate Congr by positing that, for any 𝑥, 𝑦, 𝑧, 𝑡 ∈ (Base‘𝑓), one has "Congr 𝑥𝑦𝑧𝑡 " if and only if 𝑥(dist‘𝑓)𝑦 = 𝑧(dist‘𝑓)𝑡. It is easy to check that if 𝑓 satisfies our Tarski axioms, then Btw and Congr satisfy Tarski's Tarski axioms when (Base‘𝑓) is interpreted as the universe of discourse. Conversely, suppose that one is given a set 𝑎, a ternary predicate Btw, and a quaternary predicate Congr. One defines the extensible structure 𝑓 such that (Base‘𝑓) is 𝑎, and (Itv‘𝑓) is the function which associates with each 〈𝑥, 𝑦〉 ∈ (𝑎 × 𝑎) the set of points 𝑧 ∈ 𝑎 such that "Btw 𝑥𝑧𝑦", and (dist‘𝑓) is the function which associates with each 〈𝑥, 𝑦〉 ∈ (𝑎 × 𝑎) the set of ordered pairs 〈𝑧, 𝑡〉 ∈ (𝑎 × 𝑎) such that "Congr 𝑥𝑦𝑧𝑡". It is easy to check that if Btw and Congr satisfy Tarski's Tarski axioms when 𝑎 is interpreted as the universe of discourse, then 𝑓 satisfies our Tarski axioms. We intentionally choose to represent congruence (without loss of generality) as 𝑥(dist‘𝑓)𝑦 = 𝑧(dist‘𝑓)𝑡 instead of "Congr 𝑥𝑦𝑧𝑡", as it is more convenient. It is always possible to define dist for any particular geometry to produce equal results when congruence is desired, and in many cases there is an obvious interpretation of "distance" between two points that can be useful in other situations. Encoding congruence as an equality of distances makes it easier to use these theorems in cases where there is a preferred distance function. We prove that representing a congruence relationship using a distance in the form 𝑥(dist‘𝑓)𝑦 = 𝑧(dist‘𝑓)𝑡 causes no loss of generality in tgjustc1 28409 and tgjustc2 28410, which in turn are supported by tgjustf 28407 and tgjustr 28408. A similar representation of congruence (using a "distance" function) is used in Axiom A1 of [Beeson2016] p. 5, which discusses how a large number of formalized proofs were found in Tarskian Geometry using OTTER. Their detailed proofs in Tarski Geometry, along with other information, are available at https://www.michaelbeeson.com/research/FormalTarski/ 28408. Most theorems are in deduction form, as this is a very general, simple, and convenient format to use in Metamath. An assertion in deduction form can be easily converted into an assertion in inference form (removing the antecedents 𝜑 →) by insert a ⊤ → in each hypothesis, using a1i 11, then using mptru 1547 to remove the final ⊤ → prefix. In some cases we represent, without loss of generality, an implication antecedent in [Schwabhauser] as a hypothesis. The implication can be retrieved from the by using simpr 484, the theorem as stated, and ex 412. For descriptions of individual axioms, we refer to the specific definitions below. A particular feature of Tarski's axioms is modularity, so by using various subsets of the set of axioms, we can define the classes of "absolute dimensionless Tarski structures" (df-trkg 28387), of "Euclidean dimensionless Tarski structures" (df-trkge 28385) and of "Tarski structures of dimension no less than N" (df-trkgld 28386). In this system, angles are not a primitive notion, but instead a derived notion (see df-cgra 28742 and iscgra 28743). To maintain its simplicity, in this system congruence between shapes (a finite sequence of points) is the case where corresponding segments between all corresponding points are congruent. This includes triangles (a shape of 3 distinct points). Note that this definition has no direct regard for angles. For more details and rationale, see df-cgrg 28445. The first section is devoted to the definitions of these various structures. The second section ("Tarskian geometry") develops the synthetic treatment of geometry. The remaining sections prove that real Euclidean spaces and complex Hilbert spaces, with intended interpretations, are Euclidean Tarski structures. Most of the work in this part is due to Thierry Arnoux, with earlier work by Mario Carneiro and Scott Fenton. See also the credits in the comment of each statement. | ||
| Syntax | cstrkg 28361 | Extends class notation with the class of Tarski geometries. |
| class TarskiG | ||
| Syntax | cstrkgc 28362 | Extends class notation with the class of geometries fulfilling the congruence axioms. |
| class TarskiGC | ||
| Syntax | cstrkgb 28363 | Extends class notation with the class of geometries fulfilling the betweenness axioms. |
| class TarskiGB | ||
| Syntax | cstrkgcb 28364 | Extends class notation with the class of geometries fulfilling the congruence and betweenness axioms. |
| class TarskiGCB | ||
| Syntax | cstrkgld 28365 | Extends class notation with the relation for geometries fulfilling the lower dimension axioms. |
| class DimTarskiG≥ | ||
| Syntax | cstrkge 28366 | Extends class notation with the class of geometries fulfilling Euclid's axiom. |
| class TarskiGE | ||
| Syntax | citv 28367 | Declare the syntax for the Interval (segment) index extractor. |
| class Itv | ||
| Syntax | clng 28368 | Declare the syntax for the Line function. |
| class LineG | ||
| Definition | df-itv 28369 | Define the Interval (segment) index extractor for Tarski geometries. (Contributed by Thierry Arnoux, 24-Aug-2017.) Use its index-independent form itvid 28373 instead. (New usage is discouraged.) |
| ⊢ Itv = Slot ;16 | ||
| Definition | df-lng 28370 | Define the line index extractor for geometries. (Contributed by Thierry Arnoux, 27-Mar-2019.) Use its index-independent form lngid 28374 instead. (New usage is discouraged.) |
| ⊢ LineG = Slot ;17 | ||
| Theorem | itvndx 28371 | Index value of the Interval (segment) slot. Use ndxarg 17173. (Contributed by Thierry Arnoux, 24-Aug-2017.) (New usage is discouraged.) |
| ⊢ (Itv‘ndx) = ;16 | ||
| Theorem | lngndx 28372 | Index value of the "line" slot. Use ndxarg 17173. (Contributed by Thierry Arnoux, 27-Mar-2019.) (New usage is discouraged.) |
| ⊢ (LineG‘ndx) = ;17 | ||
| Theorem | itvid 28373 | Utility theorem: index-independent form of df-itv 28369. (Contributed by Thierry Arnoux, 24-Aug-2017.) |
| ⊢ Itv = Slot (Itv‘ndx) | ||
| Theorem | lngid 28374 | Utility theorem: index-independent form of df-lng 28370. (Contributed by Thierry Arnoux, 27-Mar-2019.) |
| ⊢ LineG = Slot (LineG‘ndx) | ||
| Theorem | slotsinbpsd 28375 | The slots Base, +g, ·𝑠 and dist are different from the slot Itv. Formerly part of ttglem 28810 and proofs using it. (Contributed by AV, 29-Oct-2024.) |
| ⊢ (((Itv‘ndx) ≠ (Base‘ndx) ∧ (Itv‘ndx) ≠ (+g‘ndx)) ∧ ((Itv‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (Itv‘ndx) ≠ (dist‘ndx))) | ||
| Theorem | slotslnbpsd 28376 | The slots Base, +g, ·𝑠 and dist are different from the slot LineG. Formerly part of ttglem 28810 and proofs using it. (Contributed by AV, 29-Oct-2024.) |
| ⊢ (((LineG‘ndx) ≠ (Base‘ndx) ∧ (LineG‘ndx) ≠ (+g‘ndx)) ∧ ((LineG‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (LineG‘ndx) ≠ (dist‘ndx))) | ||
| Theorem | lngndxnitvndx 28377 | The slot for the line is not the slot for the Interval (segment) in an extensible structure. Formerly part of proof for ttgval 28809. (Contributed by AV, 9-Nov-2024.) |
| ⊢ (LineG‘ndx) ≠ (Itv‘ndx) | ||
| Theorem | trkgstr 28378 | Functionality of a Tarski geometry. (Contributed by Thierry Arnoux, 24-Aug-2017.) |
| ⊢ 𝑊 = {〈(Base‘ndx), 𝑈〉, 〈(dist‘ndx), 𝐷〉, 〈(Itv‘ndx), 𝐼〉} ⇒ ⊢ 𝑊 Struct 〈1, ;16〉 | ||
| Theorem | trkgbas 28379 | The base set of a Tarski geometry. (Contributed by Thierry Arnoux, 24-Aug-2017.) |
| ⊢ 𝑊 = {〈(Base‘ndx), 𝑈〉, 〈(dist‘ndx), 𝐷〉, 〈(Itv‘ndx), 𝐼〉} ⇒ ⊢ (𝑈 ∈ 𝑉 → 𝑈 = (Base‘𝑊)) | ||
| Theorem | trkgdist 28380 | The measure of a distance in a Tarski geometry. (Contributed by Thierry Arnoux, 24-Aug-2017.) |
| ⊢ 𝑊 = {〈(Base‘ndx), 𝑈〉, 〈(dist‘ndx), 𝐷〉, 〈(Itv‘ndx), 𝐼〉} ⇒ ⊢ (𝐷 ∈ 𝑉 → 𝐷 = (dist‘𝑊)) | ||
| Theorem | trkgitv 28381 | The congruence relation in a Tarski geometry. (Contributed by Thierry Arnoux, 24-Aug-2017.) |
| ⊢ 𝑊 = {〈(Base‘ndx), 𝑈〉, 〈(dist‘ndx), 𝐷〉, 〈(Itv‘ndx), 𝐼〉} ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐼 = (Itv‘𝑊)) | ||
| Definition | df-trkgc 28382* | Define the class of geometries fulfilling the congruence axioms of reflexivity, identity and transitivity. These are axioms A1 to A3 of [Schwabhauser] p. 10. With our distance based notation for congruence, transitivity of congruence boils down to transitivity of equality and is already given by eqtr 2750, so it is not listed in this definition. (Contributed by Thierry Arnoux, 24-Aug-2017.) |
| ⊢ TarskiGC = {𝑓 ∣ [(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑](∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦))} | ||
| Definition | df-trkgb 28383* | Define the class of geometries fulfilling the 3 betweenness axioms in Tarski's Axiomatization of Geometry: identity, Axiom A6 of [Schwabhauser] p. 11, axiom of Pasch, Axiom A7 of [Schwabhauser] p. 12, and continuity, Axiom A11 of [Schwabhauser] p. 13. (Contributed by Thierry Arnoux, 24-Aug-2017.) |
| ⊢ TarskiGB = {𝑓 ∣ [(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 (𝑦 ∈ (𝑥𝑖𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((𝑢 ∈ (𝑥𝑖𝑧) ∧ 𝑣 ∈ (𝑦𝑖𝑧)) → ∃𝑎 ∈ 𝑝 (𝑎 ∈ (𝑢𝑖𝑦) ∧ 𝑎 ∈ (𝑣𝑖𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑝∀𝑡 ∈ 𝒫 𝑝(∃𝑎 ∈ 𝑝 ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑥 ∈ (𝑎𝑖𝑦) → ∃𝑏 ∈ 𝑝 ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑏 ∈ (𝑥𝑖𝑦)))} | ||
| Definition | df-trkgcb 28384* | Define the class of geometries fulfilling the five segment axiom, Axiom A5 of [Schwabhauser] p. 11, and segment construction axiom, Axiom A4 of [Schwabhauser] p. 11. (Contributed by Thierry Arnoux, 14-Mar-2019.) |
| ⊢ TarskiGCB = {𝑓 ∣ [(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑][(Itv‘𝑓) / 𝑖](∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∀𝑐 ∈ 𝑝 ∀𝑣 ∈ 𝑝 (((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) ∧ (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)))) → (𝑧𝑑𝑢) = (𝑐𝑑𝑣)) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∃𝑧 ∈ 𝑝 (𝑦 ∈ (𝑥𝑖𝑧) ∧ (𝑦𝑑𝑧) = (𝑎𝑑𝑏)))} | ||
| Definition | df-trkge 28385* | Define the class of geometries fulfilling Euclid's axiom, Axiom A10 of [Schwabhauser] p. 13. (Contributed by Thierry Arnoux, 14-Mar-2019.) |
| ⊢ TarskiGE = {𝑓 ∣ [(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖]∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((𝑢 ∈ (𝑥𝑖𝑣) ∧ 𝑢 ∈ (𝑦𝑖𝑧) ∧ 𝑥 ≠ 𝑢) → ∃𝑎 ∈ 𝑝 ∃𝑏 ∈ 𝑝 (𝑦 ∈ (𝑥𝑖𝑎) ∧ 𝑧 ∈ (𝑥𝑖𝑏) ∧ 𝑣 ∈ (𝑎𝑖𝑏)))} | ||
| Definition | df-trkgld 28386* | Define the class of geometries fulfilling the lower dimension axiom for dimension 𝑛. For such geometries, there are three non-colinear points that are equidistant from 𝑛 − 1 distinct points. Derived from remarks in Tarski's System of Geometry, Alfred Tarski and Steven Givant, Bulletin of Symbolic Logic, Volume 5, Number 2 (1999), 175-214. (Contributed by Scott Fenton, 22-Apr-2013.) (Revised by Thierry Arnoux, 23-Nov-2019.) |
| ⊢ DimTarskiG≥ = {〈𝑔, 𝑛〉 ∣ [(Base‘𝑔) / 𝑝][(dist‘𝑔) / 𝑑][(Itv‘𝑔) / 𝑖]∃𝑓(𝑓:(1..^𝑛)–1-1→𝑝 ∧ ∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 (∀𝑗 ∈ (2..^𝑛)(((𝑓‘1)𝑑𝑥) = ((𝑓‘𝑗)𝑑𝑥) ∧ ((𝑓‘1)𝑑𝑦) = ((𝑓‘𝑗)𝑑𝑦) ∧ ((𝑓‘1)𝑑𝑧) = ((𝑓‘𝑗)𝑑𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))))} | ||
| Definition | df-trkg 28387* |
Define the class of Tarski geometries. A Tarski geometry is a set of
points, equipped with a betweenness relation (denoting that a point lies
on a line segment between two other points) and a congruence relation
(denoting equality of line segment lengths).
Here, we are using the following:
Tarski originally had more axioms, but later reduced his list to 11:
So our definition of a Tarskian Geometry includes the 3 axioms for the quaternary congruence relation (A1, A2, A3), the 3 axioms for the ternary betweenness relation (A6, A7, A11), and the 2 axioms of compatibility of the congruence and the betweenness relations (A4,A5). It does not include Euclid's axiom A10, nor the 2-dimensional axioms A8 (Lower dimension axiom) and A9 (Upper dimension axiom) so the number of dimensions of the geometry it formalizes is not constrained. Considering A2 as one of the 3 axioms for the quaternary congruence relation is somewhat conventional, because the transitivity of the congruence relation is automatically given by our choice to take the distance as this congruence relation in our definition of Tarski geometries. (Contributed by Thierry Arnoux, 24-Aug-2017.) (Revised by Thierry Arnoux, 27-Apr-2019.) |
| ⊢ TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓 ∣ [(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥 ∈ 𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) | ||
| Theorem | istrkgc 28388* | Property of being a Tarski geometry - congruence part. (Contributed by Thierry Arnoux, 14-Mar-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) ⇒ ⊢ (𝐺 ∈ TarskiGC ↔ (𝐺 ∈ V ∧ (∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 (𝑥 − 𝑦) = (𝑦 − 𝑥) ∧ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 ((𝑥 − 𝑦) = (𝑧 − 𝑧) → 𝑥 = 𝑦)))) | ||
| Theorem | istrkgb 28389* | Property of being a Tarski geometry - betweenness part. (Contributed by Thierry Arnoux, 14-Mar-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) ⇒ ⊢ (𝐺 ∈ TarskiGB ↔ (𝐺 ∈ V ∧ (∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 ∀𝑢 ∈ 𝑃 ∀𝑣 ∈ 𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎 ∈ 𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑃∀𝑡 ∈ 𝒫 𝑃(∃𝑎 ∈ 𝑃 ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏 ∈ 𝑃 ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑏 ∈ (𝑥𝐼𝑦))))) | ||
| Theorem | istrkgcb 28390* | Property of being a Tarski geometry - congruence and betweenness part. (Contributed by Thierry Arnoux, 14-Mar-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) ⇒ ⊢ (𝐺 ∈ TarskiGCB ↔ (𝐺 ∈ V ∧ (∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 ∀𝑢 ∈ 𝑃 ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ∀𝑐 ∈ 𝑃 ∀𝑣 ∈ 𝑃 (((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝐼𝑧) ∧ 𝑏 ∈ (𝑎𝐼𝑐)) ∧ (((𝑥 − 𝑦) = (𝑎 − 𝑏) ∧ (𝑦 − 𝑧) = (𝑏 − 𝑐)) ∧ ((𝑥 − 𝑢) = (𝑎 − 𝑣) ∧ (𝑦 − 𝑢) = (𝑏 − 𝑣)))) → (𝑧 − 𝑢) = (𝑐 − 𝑣)) ∧ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ∃𝑧 ∈ 𝑃 (𝑦 ∈ (𝑥𝐼𝑧) ∧ (𝑦 − 𝑧) = (𝑎 − 𝑏))))) | ||
| Theorem | istrkge 28391* | Property of fulfilling Euclid's axiom. (Contributed by Thierry Arnoux, 14-Mar-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) ⇒ ⊢ (𝐺 ∈ TarskiGE ↔ (𝐺 ∈ V ∧ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 ∀𝑢 ∈ 𝑃 ∀𝑣 ∈ 𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥 ≠ 𝑢) → ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))))) | ||
| Theorem | istrkgl 28392* | Building lines from the segment property. (Contributed by Thierry Arnoux, 14-Mar-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) ⇒ ⊢ (𝐺 ∈ {𝑓 ∣ [(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥 ∈ 𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})} ↔ (𝐺 ∈ V ∧ (LineG‘𝐺) = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))) | ||
| Theorem | istrkgld 28393* | Property of fulfilling the lower dimension 𝑁 axiom. (Contributed by Thierry Arnoux, 20-Nov-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝐺DimTarskiG≥𝑁 ↔ ∃𝑓(𝑓:(1..^𝑁)–1-1→𝑃 ∧ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 (∀𝑗 ∈ (2..^𝑁)(((𝑓‘1) − 𝑥) = ((𝑓‘𝑗) − 𝑥) ∧ ((𝑓‘1) − 𝑦) = ((𝑓‘𝑗) − 𝑦) ∧ ((𝑓‘1) − 𝑧) = ((𝑓‘𝑗) − 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))) | ||
| Theorem | istrkg2ld 28394* | Property of fulfilling the lower dimension 2 axiom. (Contributed by Thierry Arnoux, 20-Nov-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑉 → (𝐺DimTarskiG≥2 ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) | ||
| Theorem | istrkg3ld 28395* | Property of fulfilling the lower dimension 3 axiom. (Contributed by Thierry Arnoux, 12-Jul-2020.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑉 → (𝐺DimTarskiG≥3 ↔ ∃𝑢 ∈ 𝑃 ∃𝑣 ∈ 𝑃 (𝑢 ≠ 𝑣 ∧ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 (((𝑢 − 𝑥) = (𝑣 − 𝑥) ∧ (𝑢 − 𝑦) = (𝑣 − 𝑦) ∧ (𝑢 − 𝑧) = (𝑣 − 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))) | ||
| Theorem | axtgcgrrflx 28396 | Axiom of reflexivity of congruence, Axiom A1 of [Schwabhauser] p. 10. (Contributed by Thierry Arnoux, 14-Mar-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝑋 − 𝑌) = (𝑌 − 𝑋)) | ||
| Theorem | axtgcgrid 28397 | Axiom of identity of congruence, Axiom A3 of [Schwabhauser] p. 10. (Contributed by Thierry Arnoux, 14-Mar-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → (𝑋 − 𝑌) = (𝑍 − 𝑍)) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
| Theorem | axtgsegcon 28398* | Axiom of segment construction, Axiom A4 of [Schwabhauser] p. 11. As discussed in Axiom 4 of [Tarski1999] p. 178, "The intuitive content [is that] given any line segment 𝐴𝐵, one can construct a line segment congruent to it, starting at any point 𝑌 and going in the direction of any ray containing 𝑌. The ray is determined by the point 𝑌 and a second point 𝑋, the endpoint of the ray. The other endpoint of the line segment to be constructed is just the point 𝑧 whose existence is asserted." (Contributed by Thierry Arnoux, 15-Mar-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑃 (𝑌 ∈ (𝑋𝐼𝑧) ∧ (𝑌 − 𝑧) = (𝐴 − 𝐵))) | ||
| Theorem | axtg5seg 28399 | Five segments axiom, Axiom A5 of [Schwabhauser] p. 11. Take two triangles 𝑋𝑍𝑈 and 𝐴𝐶𝑉, a point 𝑌 on 𝑋𝑍, and a point 𝐵 on 𝐴𝐶. If all corresponding line segments except for 𝑍𝑈 and 𝐶𝑉 are congruent ( i.e., 𝑋𝑌 ∼ 𝐴𝐵, 𝑌𝑍 ∼ 𝐵𝐶, 𝑋𝑈 ∼ 𝐴𝑉, and 𝑌𝑈 ∼ 𝐵𝑉), then 𝑍𝑈 and 𝐶𝑉 are also congruent. As noted in Axiom 5 of [Tarski1999] p. 178, "this axiom is similar in character to the well-known theorems of Euclidean geometry that allow one to conclude, from hypotheses about the congruence of certain corresponding sides and angles in two triangles, the congruence of other corresponding sides and angles." (Contributed by Thierry Arnoux, 14-Mar-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝑈 ∈ 𝑃) & ⊢ (𝜑 → 𝑉 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) & ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼𝑍)) & ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) & ⊢ (𝜑 → (𝑋 − 𝑌) = (𝐴 − 𝐵)) & ⊢ (𝜑 → (𝑌 − 𝑍) = (𝐵 − 𝐶)) & ⊢ (𝜑 → (𝑋 − 𝑈) = (𝐴 − 𝑉)) & ⊢ (𝜑 → (𝑌 − 𝑈) = (𝐵 − 𝑉)) ⇒ ⊢ (𝜑 → (𝑍 − 𝑈) = (𝐶 − 𝑉)) | ||
| Theorem | axtgbtwnid 28400 | Identity of Betweenness. Axiom A6 of [Schwabhauser] p. 11. (Contributed by Thierry Arnoux, 15-Mar-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼𝑋)) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |