![]() |
Metamath
Proof Explorer Theorem List (p. 284 of 437) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28351) |
![]() (28352-29876) |
![]() (29877-43667) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | cnbn 28301 | The set of complex numbers is a complex Banach space. (Contributed by Steve Rodriguez, 4-Jan-2007.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 + , · 〉, abs〉 ⇒ ⊢ 𝑈 ∈ CBan | ||
Theorem | ubthlem1 28302* | Lemma for ubth 28305. The function 𝐴 exhibits a countable collection of sets that are closed, being the inverse image under 𝑡 of the closed ball of radius 𝑘, and by assumption they cover 𝑋. Thus, by the Baire Category theorem bcth2 23540, for some 𝑛 the set 𝐴‘𝑛 has an interior, meaning that there is a closed ball {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} in the set. (Contributed by Mario Carneiro, 11-Jan-2014.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑊) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝑈 ∈ CBan & ⊢ 𝑊 ∈ NrmCVec & ⊢ (𝜑 → 𝑇 ⊆ (𝑈 BLnOp 𝑊)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∃𝑐 ∈ ℝ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑐) & ⊢ 𝐴 = (𝑘 ∈ ℕ ↦ {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑘}) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ℕ ∃𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴‘𝑛)) | ||
Theorem | ubthlem2 28303* | Lemma for ubth 28305. Given that there is a closed ball 𝐵(𝑃, 𝑅) in 𝐴‘𝐾, for any 𝑥 ∈ 𝐵(0, 1), we have 𝑃 + 𝑅 · 𝑥 ∈ 𝐵(𝑃, 𝑅) and 𝑃 ∈ 𝐵(𝑃, 𝑅), so both of these have norm(𝑡(𝑧)) ≤ 𝐾 and so norm(𝑡(𝑥 )) ≤ (norm(𝑡(𝑃)) + norm(𝑡(𝑃 + 𝑅 · 𝑥))) / 𝑅 ≤ ( 𝐾 + 𝐾) / 𝑅, which is our desired uniform bound. (Contributed by Mario Carneiro, 11-Jan-2014.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑊) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝑈 ∈ CBan & ⊢ 𝑊 ∈ NrmCVec & ⊢ (𝜑 → 𝑇 ⊆ (𝑈 BLnOp 𝑊)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∃𝑐 ∈ ℝ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑐) & ⊢ 𝐴 = (𝑘 ∈ ℕ ↦ {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑘}) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → {𝑧 ∈ 𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ⊆ (𝐴‘𝐾)) ⇒ ⊢ (𝜑 → ∃𝑑 ∈ ℝ ∀𝑡 ∈ 𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑) | ||
Theorem | ubthlem3 28304* | Lemma for ubth 28305. Prove the reverse implication, using nmblolbi 28231. (Contributed by Mario Carneiro, 11-Jan-2014.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑊) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝑈 ∈ CBan & ⊢ 𝑊 ∈ NrmCVec & ⊢ (𝜑 → 𝑇 ⊆ (𝑈 BLnOp 𝑊)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝑋 ∃𝑐 ∈ ℝ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡 ∈ 𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) | ||
Theorem | ubth 28305* | Uniform Boundedness Theorem, also called the Banach-Steinhaus Theorem. Let 𝑇 be a collection of bounded linear operators on a Banach space. If, for every vector 𝑥, the norms of the operators' values are bounded, then the operators' norms are also bounded. Theorem 4.7-3 of [Kreyszig] p. 249. See also http://en.wikipedia.org/wiki/Uniform_boundedness_principle. (Contributed by NM, 7-Nov-2007.) (Proof shortened by Mario Carneiro, 11-Jan-2014.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑊) & ⊢ 𝑀 = (𝑈 normOpOLD 𝑊) ⇒ ⊢ ((𝑈 ∈ CBan ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ⊆ (𝑈 BLnOp 𝑊)) → (∀𝑥 ∈ 𝑋 ∃𝑐 ∈ ℝ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡 ∈ 𝑇 (𝑀‘𝑡) ≤ 𝑑)) | ||
Theorem | minvecolem1 28306* | Lemma for minveco 28316. The set of all distances from points of 𝑌 to 𝐴 are a nonempty set of nonnegative reals. (Contributed by Mario Carneiro, 8-May-2014.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) & ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) ⇒ ⊢ (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) | ||
Theorem | minvecolem2 28307* | Lemma for minveco 28316. Any two points 𝐾 and 𝐿 in 𝑌 are close to each other if they are close to the infimum of distance to 𝐴. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) & ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) & ⊢ (𝜑 → 𝐾 ∈ 𝑌) & ⊢ (𝜑 → 𝐿 ∈ 𝑌) & ⊢ (𝜑 → ((𝐴𝐷𝐾)↑2) ≤ ((𝑆↑2) + 𝐵)) & ⊢ (𝜑 → ((𝐴𝐷𝐿)↑2) ≤ ((𝑆↑2) + 𝐵)) ⇒ ⊢ (𝜑 → ((𝐾𝐷𝐿)↑2) ≤ (4 · 𝐵)) | ||
Theorem | minvecolem3 28308* | Lemma for minveco 28316. The sequence formed by taking elements successively closer to the infimum is Cauchy. (Contributed by Mario Carneiro, 8-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) & ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) & ⊢ (𝜑 → 𝐹:ℕ⟶𝑌) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))) ⇒ ⊢ (𝜑 → 𝐹 ∈ (Cau‘𝐷)) | ||
Theorem | minvecolem4a 28309* | Lemma for minveco 28316. 𝐹 is convergent in the subspace topology on 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) & ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) & ⊢ (𝜑 → 𝐹:ℕ⟶𝑌) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))) ⇒ ⊢ (𝜑 → 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)) | ||
Theorem | minvecolem4b 28310* | Lemma for minveco 28316. The convergent point of the cauchy sequence 𝐹 is a member of the base space. (Contributed by Mario Carneiro, 16-Jun-2014.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) & ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) & ⊢ (𝜑 → 𝐹:ℕ⟶𝑌) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))) ⇒ ⊢ (𝜑 → ((⇝𝑡‘𝐽)‘𝐹) ∈ 𝑋) | ||
Theorem | minvecolem4c 28311* | Lemma for minveco 28316. The infimum of the distances to 𝐴 is a real number. (Contributed by Mario Carneiro, 16-Jun-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) & ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) & ⊢ (𝜑 → 𝐹:ℕ⟶𝑌) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))) ⇒ ⊢ (𝜑 → 𝑆 ∈ ℝ) | ||
Theorem | minvecolem4 28312* | Lemma for minveco 28316. The convergent point of the cauchy sequence 𝐹 attains the minimum distance, and so is closer to 𝐴 than any other point in 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) & ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) & ⊢ (𝜑 → 𝐹:ℕ⟶𝑌) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))) & ⊢ 𝑇 = (1 / (((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))) | ||
Theorem | minvecolem5 28313* | Lemma for minveco 28316. Discharge the assumption about the sequence 𝐹 by applying countable choice ax-cc 9594. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) & ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))) | ||
Theorem | minvecolem6 28314* | Lemma for minveco 28316. Any minimal point is less than 𝑆 away from 𝐴. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) & ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))) | ||
Theorem | minvecolem7 28315* | Lemma for minveco 28316. Since any two minimal points are distance zero away from each other, the minimal point is unique. (Contributed by Mario Carneiro, 9-May-2014.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) & ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))) | ||
Theorem | minveco 28316* | Minimizing vector theorem, or the Hilbert projection theorem. There is exactly one vector in a complete subspace 𝑊 that minimizes the distance to an arbitrary vector 𝐴 in a parent inner product space. Theorem 3.3-1 of [Kreyszig] p. 144, specialized to subspaces instead of convex subsets. (Contributed by NM, 11-Apr-2008.) (Proof shortened by Mario Carneiro, 9-May-2014.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) & ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))) | ||
Syntax | chlo 28317 | Extend class notation with the class of all complex Hilbert spaces. |
class CHilOLD | ||
Definition | df-hlo 28318 | Define the class of all complex Hilbert spaces. A Hilbert space is a Banach space which is also an inner product space. (Contributed by Steve Rodriguez, 28-Apr-2007.) (New usage is discouraged.) |
⊢ CHilOLD = (CBan ∩ CPreHilOLD) | ||
Theorem | ishlo 28319 | The predicate "is a complex Hilbert space." A Hilbert space is a Banach space which is also an inner product space, i.e. whose norm satisfies the parallelogram law. (Contributed by Steve Rodriguez, 28-Apr-2007.) (New usage is discouraged.) |
⊢ (𝑈 ∈ CHilOLD ↔ (𝑈 ∈ CBan ∧ 𝑈 ∈ CPreHilOLD)) | ||
Theorem | hlobn 28320 | Every complex Hilbert space is a complex Banach space. (Contributed by Steve Rodriguez, 28-Apr-2007.) (New usage is discouraged.) |
⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ CBan) | ||
Theorem | hlph 28321 | Every complex Hilbert space is an inner product space (also called a pre-Hilbert space). (Contributed by NM, 28-Apr-2007.) (New usage is discouraged.) |
⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ CPreHilOLD) | ||
Theorem | hlrel 28322 | The class of all complex Hilbert spaces is a relation. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.) |
⊢ Rel CHilOLD | ||
Theorem | hlnv 28323 | Every complex Hilbert space is a normed complex vector space. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.) |
⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ NrmCVec) | ||
Theorem | hlnvi 28324 | Every complex Hilbert space is a normed complex vector space. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ 𝑈 ∈ NrmCVec | ||
Theorem | hlvc 28325 | Every complex Hilbert space is a complex vector space. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑊 = (1st ‘𝑈) ⇒ ⊢ (𝑈 ∈ CHilOLD → 𝑊 ∈ CVecOLD) | ||
Theorem | hlcmet 28326 | The induced metric on a complex Hilbert space is complete. (Contributed by NM, 8-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ (𝑈 ∈ CHilOLD → 𝐷 ∈ (CMet‘𝑋)) | ||
Theorem | hlmet 28327 | The induced metric on a complex Hilbert space. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ (𝑈 ∈ CHilOLD → 𝐷 ∈ (Met‘𝑋)) | ||
Theorem | hlpar2 28328 | The parallelogram law satisfied by Hilbert space vectors. (Contributed by Steve Rodriguez, 28-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝑀𝐵))↑2)) = (2 · (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2)))) | ||
Theorem | hlpar 28329 | The parallelogram law satisfied by Hilbert space vectors. (Contributed by Steve Rodriguez, 28-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2)))) | ||
Theorem | hlex 28330 | The base set of a Hilbert space is a set. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) ⇒ ⊢ 𝑋 ∈ V | ||
Theorem | hladdf 28331 | Mapping for Hilbert space vector addition. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) ⇒ ⊢ (𝑈 ∈ CHilOLD → 𝐺:(𝑋 × 𝑋)⟶𝑋) | ||
Theorem | hlcom 28332 | Hilbert space vector addition is commutative. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴)) | ||
Theorem | hlass 28333 | Hilbert space vector addition is associative. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = (𝐴𝐺(𝐵𝐺𝐶))) | ||
Theorem | hl0cl 28334 | The Hilbert space zero vector. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) ⇒ ⊢ (𝑈 ∈ CHilOLD → 𝑍 ∈ 𝑋) | ||
Theorem | hladdid 28335 | Hilbert space addition with the zero vector. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝑍) = 𝐴) | ||
Theorem | hlmulf 28336 | Mapping for Hilbert space scalar multiplication. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) ⇒ ⊢ (𝑈 ∈ CHilOLD → 𝑆:(ℂ × 𝑋)⟶𝑋) | ||
Theorem | hlmulid 28337 | Hilbert space scalar multiplication by one. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋) → (1𝑆𝐴) = 𝐴) | ||
Theorem | hlmulass 28338 | Hilbert space scalar multiplication associative law. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋)) → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶))) | ||
Theorem | hldi 28339 | Hilbert space scalar multiplication distributive law. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑆(𝐵𝐺𝐶)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝐶))) | ||
Theorem | hldir 28340 | Hilbert space scalar multiplication distributive law. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋)) → ((𝐴 + 𝐵)𝑆𝐶) = ((𝐴𝑆𝐶)𝐺(𝐵𝑆𝐶))) | ||
Theorem | hlmul0 28341 | Hilbert space scalar multiplication by zero. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋) → (0𝑆𝐴) = 𝑍) | ||
Theorem | hlipf 28342 | Mapping for Hilbert space inner product. (Contributed by NM, 19-Nov-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ (𝑈 ∈ CHilOLD → 𝑃:(𝑋 × 𝑋)⟶ℂ) | ||
Theorem | hlipcj 28343 | Conjugate law for Hilbert space inner product. (Contributed by NM, 8-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) = (∗‘(𝐵𝑃𝐴))) | ||
Theorem | hlipdir 28344 | Distributive law for Hilbert space inner product. (Contributed by NM, 8-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶))) | ||
Theorem | hlipass 28345 | Associative law for Hilbert space inner product. (Contributed by NM, 8-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶))) | ||
Theorem | hlipgt0 28346 | The inner product of a Hilbert space vector by itself is positive. (Contributed by NM, 8-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ≠ 𝑍) → 0 < (𝐴𝑃𝐴)) | ||
Theorem | hlcompl 28347 | Completeness of a Hilbert space. (Contributed by NM, 8-Sep-2007.) (Revised by Mario Carneiro, 9-May-2014.) (New usage is discouraged.) |
⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝐹 ∈ dom (⇝𝑡‘𝐽)) | ||
Theorem | cnchl 28348 | The set of complex numbers is a complex Hilbert space. (Contributed by Steve Rodriguez, 28-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 + , · 〉, abs〉 ⇒ ⊢ 𝑈 ∈ CHilOLD | ||
Theorem | ssphlOLD 28349 | Obsolete version of cphssphl 23581 as of 6-Oct-2022. A Banach subspace of an inner product space is a Hilbert space. (Contributed by NM, 11-Apr-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐻 = (SubSp‘𝑈) ⇒ ⊢ ((𝑈 ∈ CPreHilOLD ∧ 𝑊 ∈ 𝐻 ∧ 𝑊 ∈ CBan) → 𝑊 ∈ CHilOLD) | ||
Theorem | htthlem 28350* | Lemma for htth 28351. The collection 𝐾, which consists of functions 𝐹(𝑧)(𝑤) = 〈𝑤 ∣ 𝑇(𝑧)〉 = 〈𝑇(𝑤) ∣ 𝑧〉 for each 𝑧 in the unit ball, is a collection of bounded linear functions by ipblnfi 28287, so by the Uniform Boundedness theorem ubth 28305, there is a uniform bound 𝑦 on ∥ 𝐹(𝑥) ∥ for all 𝑥 in the unit ball. Then ∣ 𝑇(𝑥) ∣ ↑2 = 〈𝑇(𝑥) ∣ 𝑇(𝑥)〉 = 𝐹(𝑥)( 𝑇(𝑥)) ≤ 𝑦 ∣ 𝑇(𝑥) ∣, so ∣ 𝑇(𝑥) ∣ ≤ 𝑦 and 𝑇 is bounded. (Contributed by NM, 11-Jan-2008.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝐿 = (𝑈 LnOp 𝑈) & ⊢ 𝐵 = (𝑈 BLnOp 𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑈 ∈ CHilOLD & ⊢ 𝑊 = 〈〈 + , · 〉, abs〉 & ⊢ (𝜑 → 𝑇 ∈ 𝐿) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑃(𝑇‘𝑦)) = ((𝑇‘𝑥)𝑃𝑦)) & ⊢ 𝐹 = (𝑧 ∈ 𝑋 ↦ (𝑤 ∈ 𝑋 ↦ (𝑤𝑃(𝑇‘𝑧)))) & ⊢ 𝐾 = (𝐹 “ {𝑧 ∈ 𝑋 ∣ (𝑁‘𝑧) ≤ 1}) ⇒ ⊢ (𝜑 → 𝑇 ∈ 𝐵) | ||
Theorem | htth 28351* | Hellinger-Toeplitz Theorem: any self-adjoint linear operator defined on all of Hilbert space is bounded. Theorem 10.1-1 of [Kreyszig] p. 525. Discovered by E. Hellinger and O. Toeplitz in 1910, "it aroused both admiration and puzzlement since the theorem establishes a relation between properties of two different kinds, namely, the properties of being defined everywhere and being bounded." (Contributed by NM, 11-Jan-2008.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝐿 = (𝑈 LnOp 𝑈) & ⊢ 𝐵 = (𝑈 BLnOp 𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ 𝑇 ∈ 𝐿 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑃(𝑇‘𝑦)) = ((𝑇‘𝑥)𝑃𝑦)) → 𝑇 ∈ 𝐵) | ||
This part contains the definitions and theorems used by the Hilbert Space Explorer (HSE), mmhil.html. Because it axiomatizes a single complex Hilbert space whose existence is assumed, its usefulness is limited. For example, it cannot work with real or quaternion Hilbert spaces and it cannot study relationships between two Hilbert spaces. More information can be found on the Hilbert Space Explorer page. Future development should instead work with general Hilbert spaces as defined by df-hil 20451; note that df-hil 20451 uses extensible structures. The intent is for this deprecated section to be deleted once all its theorems have been translated into extensible structure versions (or are not useful). Many of the theorems in this section have already been translated to extensible structure versions, but there is still a lot in this section that might be useful for future reference. It is much easier to translate these by hand from this section than to start from scratch from textbook proofs, since the HSE omits no details. | ||
Syntax | chba 28352 | Extend class notation with Hilbert vector space. |
class ℋ | ||
Syntax | cva 28353 | Extend class notation with vector addition in Hilbert space. In the literature, the subscript "v" is omitted, but we need it to avoid ambiguity with complex number addition + caddc 10277. |
class +ℎ | ||
Syntax | csm 28354 | Extend class notation with scalar multiplication in Hilbert space. In the literature scalar multiplication is usually indicated by juxtaposition, but we need an explicit symbol to prevent ambiguity. |
class ·ℎ | ||
Syntax | csp 28355 | Extend class notation with inner (scalar) product in Hilbert space. In the literature, the inner product of 𝐴 and 𝐵 is usually written 〈𝐴, 𝐵〉 but our operation notation allows us to use existing theorems about operations and also eliminates ambiguity with the definition of an ordered pair df-op 4405. |
class ·ih | ||
Syntax | cno 28356 | Extend class notation with the norm function in Hilbert space. In the literature, the norm of 𝐴 is usually written "|| 𝐴 ||", but we use function notation to take advantage of our existing theorems about functions. |
class normℎ | ||
Syntax | c0v 28357 | Extend class notation with zero vector in Hilbert space. |
class 0ℎ | ||
Syntax | cmv 28358 | Extend class notation with vector subtraction in Hilbert space. |
class −ℎ | ||
Syntax | ccauold 28359 | Extend class notation with set of Cauchy sequences in Hilbert space. |
class Cauchy | ||
Syntax | chli 28360 | Extend class notation with convergence relation in Hilbert space. |
class ⇝𝑣 | ||
Syntax | csh 28361 | Extend class notation with set of subspaces of a Hilbert space. |
class Sℋ | ||
Syntax | cch 28362 | Extend class notation with set of closed subspaces of a Hilbert space. |
class Cℋ | ||
Syntax | cort 28363 | Extend class notation with orthogonal complement in Cℋ. |
class ⊥ | ||
Syntax | cph 28364 | Extend class notation with subspace sum in Cℋ. |
class +ℋ | ||
Syntax | cspn 28365 | Extend class notation with subspace span in Cℋ. |
class span | ||
Syntax | chj 28366 | Extend class notation with join in Cℋ. |
class ∨ℋ | ||
Syntax | chsup 28367 | Extend class notation with supremum of a collection in Cℋ. |
class ∨ℋ | ||
Syntax | c0h 28368 | Extend class notation with zero of Cℋ. |
class 0ℋ | ||
Syntax | ccm 28369 | Extend class notation with the commutes relation on a Hilbert lattice. |
class 𝐶ℋ | ||
Syntax | cpjh 28370 | Extend class notation with set of projections on a Hilbert space. |
class projℎ | ||
Syntax | chos 28371 | Extend class notation with sum of Hilbert space operators. |
class +op | ||
Syntax | chot 28372 | Extend class notation with scalar product of a Hilbert space operator. |
class ·op | ||
Syntax | chod 28373 | Extend class notation with difference of Hilbert space operators. |
class −op | ||
Syntax | chfs 28374 | Extend class notation with sum of Hilbert space functionals. |
class +fn | ||
Syntax | chft 28375 | Extend class notation with scalar product of Hilbert space functional. |
class ·fn | ||
Syntax | ch0o 28376 | Extend class notation with the Hilbert space zero operator. |
class 0hop | ||
Syntax | chio 28377 | Extend class notation with Hilbert space identity operator. |
class Iop | ||
Syntax | cnop 28378 | Extend class notation with the operator norm function. |
class normop | ||
Syntax | ccop 28379 | Extend class notation with set of continuous Hilbert space operators. |
class ContOp | ||
Syntax | clo 28380 | Extend class notation with set of linear Hilbert space operators. |
class LinOp | ||
Syntax | cbo 28381 | Extend class notation with set of bounded linear operators. |
class BndLinOp | ||
Syntax | cuo 28382 | Extend class notation with set of unitary Hilbert space operators. |
class UniOp | ||
Syntax | cho 28383 | Extend class notation with set of Hermitian Hilbert space operators. |
class HrmOp | ||
Syntax | cnmf 28384 | Extend class notation with the functional norm function. |
class normfn | ||
Syntax | cnl 28385 | Extend class notation with the functional nullspace function. |
class null | ||
Syntax | ccnfn 28386 | Extend class notation with set of continuous Hilbert space functionals. |
class ContFn | ||
Syntax | clf 28387 | Extend class notation with set of linear Hilbert space functionals. |
class LinFn | ||
Syntax | cado 28388 | Extend class notation with Hilbert space adjoint function. |
class adjℎ | ||
Syntax | cbr 28389 | Extend class notation with the bra of a vector in Dirac bra-ket notation. |
class bra | ||
Syntax | ck 28390 | Extend class notation with the outer product of two vectors in Dirac bra-ket notation. |
class ketbra | ||
Syntax | cleo 28391 | Extend class notation with positive operator ordering. |
class ≤op | ||
Syntax | cei 28392 | Extend class notation with Hilbert space eigenvector function. |
class eigvec | ||
Syntax | cel 28393 | Extend class notation with Hilbert space eigenvalue function. |
class eigval | ||
Syntax | cspc 28394 | Extend class notation with the spectrum of an operator. |
class Lambda | ||
Syntax | cst 28395 | Extend class notation with set of states on a Hilbert lattice. |
class States | ||
Syntax | chst 28396 | Extend class notation with set of Hilbert-space-valued states on a Hilbert lattice. |
class CHStates | ||
Syntax | ccv 28397 | Extend class notation with the covers relation on a Hilbert lattice. |
class ⋖ℋ | ||
Syntax | cat 28398 | Extend class notation with set of atoms on a Hilbert lattice. |
class HAtoms | ||
Syntax | cmd 28399 | Extend class notation with the modular pair relation on a Hilbert lattice. |
class 𝑀ℋ | ||
Syntax | cdmd 28400 | Extend class notation with the dual modular pair relation on a Hilbert lattice. |
class 𝑀ℋ* |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |