Home | Metamath
Proof Explorer Theorem List (p. 284 of 470) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29567) |
Hilbert Space Explorer
(29568-31090) |
Users' Mathboxes
(31091-46927) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | uspgr2wlkeq 28301* | Conditions for two walks within the same simple pseudograph being the same. It is sufficient that the vertices (in the same order) are identical. (Contributed by AV, 3-Jul-2018.) (Revised by AV, 14-Apr-2021.) |
⊢ ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st ‘𝐴))) → (𝐴 = 𝐵 ↔ (𝑁 = (♯‘(1st ‘𝐵)) ∧ ∀𝑦 ∈ (0...𝑁)((2nd ‘𝐴)‘𝑦) = ((2nd ‘𝐵)‘𝑦)))) | ||
Theorem | uspgr2wlkeq2 28302 | Conditions for two walks within the same simple pseudograph to be identical. It is sufficient that the vertices (in the same order) are identical. (Contributed by Alexander van der Vekens, 25-Aug-2018.) (Revised by AV, 14-Apr-2021.) |
⊢ (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐴)) = 𝑁) ∧ (𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐵)) = 𝑁)) → ((2nd ‘𝐴) = (2nd ‘𝐵) → 𝐴 = 𝐵)) | ||
Theorem | uspgr2wlkeqi 28303 | Conditions for two walks within the same simple pseudograph to be identical. It is sufficient that the vertices (in the same order) are identical. (Contributed by AV, 6-May-2021.) |
⊢ ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)) → 𝐴 = 𝐵) | ||
Theorem | umgrwlknloop 28304* | In a multigraph, each walk has no loops! (Contributed by Alexander van der Vekens, 7-Nov-2017.) (Revised by AV, 3-Jan-2021.) |
⊢ ((𝐺 ∈ UMGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) | ||
Theorem | wlkResOLD 28305* | Obsolete version of opabresex2 7393 as of 13-Dec-2024. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 30-Dec-2020.) (Proof shortened by AV, 15-Jan-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝑓(𝑊‘𝐺)𝑝 → 𝑓(Walks‘𝐺)𝑝) ⇒ ⊢ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑊‘𝐺)𝑝 ∧ 𝜑)} ∈ V | ||
Theorem | wlkv0 28306 | If there is a walk in the null graph (a class without vertices), it would be the pair consisting of empty sets. (Contributed by Alexander van der Vekens, 2-Sep-2018.) (Revised by AV, 5-Mar-2021.) |
⊢ (((Vtx‘𝐺) = ∅ ∧ 𝑊 ∈ (Walks‘𝐺)) → ((1st ‘𝑊) = ∅ ∧ (2nd ‘𝑊) = ∅)) | ||
Theorem | g0wlk0 28307 | There is no walk in a null graph (a class without vertices). (Contributed by Alexander van der Vekens, 2-Sep-2018.) (Revised by AV, 5-Mar-2021.) |
⊢ ((Vtx‘𝐺) = ∅ → (Walks‘𝐺) = ∅) | ||
Theorem | 0wlk0 28308 | There is no walk for the empty set, i.e. in a null graph. (Contributed by Alexander van der Vekens, 2-Sep-2018.) (Revised by AV, 5-Mar-2021.) |
⊢ (Walks‘∅) = ∅ | ||
Theorem | wlk0prc 28309 | There is no walk in a null graph (a class without vertices). (Contributed by Alexander van der Vekens, 2-Sep-2018.) (Revised by AV, 5-Mar-2021.) |
⊢ ((𝑆 ∉ V ∧ (Vtx‘𝑆) = (Vtx‘𝐺)) → (Walks‘𝐺) = ∅) | ||
Theorem | wlklenvclwlk 28310 | The number of vertices in a walk equals the length of the walk after it is "closed" (i.e. enhanced by an edge from its last vertex to its first vertex). (Contributed by Alexander van der Vekens, 29-Jun-2018.) (Revised by AV, 2-May-2021.) (Revised by JJ, 14-Jan-2024.) |
⊢ (𝑊 ∈ Word (Vtx‘𝐺) → (〈𝐹, (𝑊 ++ 〈“(𝑊‘0)”〉)〉 ∈ (Walks‘𝐺) → (♯‘𝐹) = (♯‘𝑊))) | ||
Theorem | wlkson 28311* | The set of walks between two vertices. (Contributed by Alexander van der Vekens, 12-Dec-2017.) (Revised by AV, 30-Dec-2020.) (Revised by AV, 22-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(WalksOn‘𝐺)𝐵) = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(♯‘𝑓)) = 𝐵)}) | ||
Theorem | iswlkon 28312 | Properties of a pair of functions to be a walk between two given vertices (in an undirected graph). (Contributed by Alexander van der Vekens, 2-Nov-2017.) (Revised by AV, 31-Dec-2020.) (Revised by AV, 22-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍)) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))) | ||
Theorem | wlkonprop 28313 | Properties of a walk between two vertices. (Contributed by Alexander van der Vekens, 12-Dec-2017.) (Revised by AV, 31-Dec-2020.) (Proof shortened by AV, 16-Jan-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))) | ||
Theorem | wlkpvtx 28314 | A walk connects vertices. (Contributed by AV, 22-Feb-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝑁 ∈ (0...(♯‘𝐹)) → (𝑃‘𝑁) ∈ 𝑉)) | ||
Theorem | wlkepvtx 28315 | The endpoints of a walk are vertices. (Contributed by AV, 31-Jan-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐹(Walks‘𝐺)𝑃 → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘(♯‘𝐹)) ∈ 𝑉)) | ||
Theorem | wlkoniswlk 28316 | A walk between two vertices is a walk. (Contributed by Alexander van der Vekens, 12-Dec-2017.) (Revised by AV, 2-Jan-2021.) |
⊢ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → 𝐹(Walks‘𝐺)𝑃) | ||
Theorem | wlkonwlk 28317 | A walk is a walk between its endpoints. (Contributed by Alexander van der Vekens, 2-Nov-2017.) (Revised by AV, 2-Jan-2021.) (Proof shortened by AV, 31-Jan-2021.) |
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹((𝑃‘0)(WalksOn‘𝐺)(𝑃‘(♯‘𝐹)))𝑃) | ||
Theorem | wlkonwlk1l 28318 | A walk is a walk from its first vertex to its last vertex. (Contributed by AV, 7-Feb-2021.) (Revised by AV, 22-Mar-2021.) |
⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) ⇒ ⊢ (𝜑 → 𝐹((𝑃‘0)(WalksOn‘𝐺)(lastS‘𝑃))𝑃) | ||
Theorem | wlksoneq1eq2 28319 | Two walks with identical sequences of vertices start and end at the same vertices. (Contributed by AV, 14-May-2021.) |
⊢ ((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ∧ 𝐻(𝐶(WalksOn‘𝐺)𝐷)𝑃) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
Theorem | wlkonl1iedg 28320* | If there is a walk between two vertices 𝐴 and 𝐵 at least of length 1, then the start vertex 𝐴 is incident with an edge. (Contributed by AV, 4-Apr-2021.) |
⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ∧ (♯‘𝐹) ≠ 0) → ∃𝑒 ∈ ran 𝐼 𝐴 ∈ 𝑒) | ||
Theorem | wlkon2n0 28321 | The length of a walk between two different vertices is not 0 (i.e. is at least 1). (Contributed by AV, 3-Apr-2021.) |
⊢ ((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ∧ 𝐴 ≠ 𝐵) → (♯‘𝐹) ≠ 0) | ||
Theorem | 2wlklem 28322* | Lemma for theorems for walks of length 2. (Contributed by Alexander van der Vekens, 1-Feb-2018.) |
⊢ (∀𝑘 ∈ {0, 1} (𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) | ||
Theorem | upgr2wlk 28323 | Properties of a pair of functions to be a walk of length 2 in a pseudograph. Note that the vertices need not to be distinct and the edges can be loops or multiedges. (Contributed by Alexander van der Vekens, 16-Feb-2018.) (Revised by AV, 3-Jan-2021.) (Revised by AV, 28-Oct-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UPGraph → ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 2) ↔ (𝐹:(0..^2)⟶dom 𝐼 ∧ 𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})))) | ||
Theorem | wlkreslem 28324 | Lemma for wlkres 28325. (Contributed by AV, 5-Mar-2021.) (Revised by AV, 30-Nov-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) & ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) ⇒ ⊢ (𝜑 → 𝑆 ∈ V) | ||
Theorem | wlkres 28325 | The restriction 〈𝐻, 𝑄〉 of a walk 〈𝐹, 𝑃〉 to an initial segment of the walk (of length 𝑁) forms a walk on the subgraph 𝑆 consisting of the edges in the initial segment. Formerly proven directly for Eulerian paths, see eupthres 28866. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 5-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) & ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) & ⊢ 𝐻 = (𝐹 prefix 𝑁) & ⊢ 𝑄 = (𝑃 ↾ (0...𝑁)) ⇒ ⊢ (𝜑 → 𝐻(Walks‘𝑆)𝑄) | ||
Theorem | redwlklem 28326 | Lemma for redwlk 28327. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 29-Jan-2021.) |
⊢ ((𝐹 ∈ Word 𝑆 ∧ 1 ≤ (♯‘𝐹) ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) → (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶𝑉) | ||
Theorem | redwlk 28327 | A walk ending at the last but one vertex of the walk is a walk. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 29-Jan-2021.) |
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹)))) | ||
Theorem | wlkp1lem1 28328 | Lemma for wlkp1 28336. (Contributed by AV, 6-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) & ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) & ⊢ 𝑁 = (♯‘𝐹) ⇒ ⊢ (𝜑 → ¬ (𝑁 + 1) ∈ dom 𝑃) | ||
Theorem | wlkp1lem2 28329 | Lemma for wlkp1 28336. (Contributed by AV, 6-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) & ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) & ⊢ 𝑁 = (♯‘𝐹) & ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) & ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) & ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) & ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) ⇒ ⊢ (𝜑 → (♯‘𝐻) = (𝑁 + 1)) | ||
Theorem | wlkp1lem3 28330 | Lemma for wlkp1 28336. (Contributed by AV, 6-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) & ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) & ⊢ 𝑁 = (♯‘𝐹) & ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) & ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) & ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) & ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) ⇒ ⊢ (𝜑 → ((iEdg‘𝑆)‘(𝐻‘𝑁)) = ((𝐼 ∪ {〈𝐵, 𝐸〉})‘𝐵)) | ||
Theorem | wlkp1lem4 28331 | Lemma for wlkp1 28336. (Contributed by AV, 6-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) & ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) & ⊢ 𝑁 = (♯‘𝐹) & ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) & ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) & ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) & ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) & ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) & ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) ⇒ ⊢ (𝜑 → (𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V)) | ||
Theorem | wlkp1lem5 28332* | Lemma for wlkp1 28336. (Contributed by AV, 6-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) & ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) & ⊢ 𝑁 = (♯‘𝐹) & ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) & ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) & ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) & ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) & ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) & ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝑄‘𝑘) = (𝑃‘𝑘)) | ||
Theorem | wlkp1lem6 28333* | Lemma for wlkp1 28336. (Contributed by AV, 6-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) & ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) & ⊢ 𝑁 = (♯‘𝐹) & ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) & ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) & ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) & ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) & ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) & ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑁)((𝑄‘𝑘) = (𝑃‘𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻‘𝑘)) = (𝐼‘(𝐹‘𝑘)))) | ||
Theorem | wlkp1lem7 28334 | Lemma for wlkp1 28336. (Contributed by AV, 6-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) & ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) & ⊢ 𝑁 = (♯‘𝐹) & ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) & ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) & ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) & ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) & ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) & ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) ⇒ ⊢ (𝜑 → {(𝑄‘𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑁))) | ||
Theorem | wlkp1lem8 28335* | Lemma for wlkp1 28336. (Contributed by AV, 6-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) & ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) & ⊢ 𝑁 = (♯‘𝐹) & ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) & ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) & ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) & ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) & ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) & ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) & ⊢ ((𝜑 ∧ 𝐶 = (𝑃‘𝑁)) → 𝐸 = {𝐶}) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐻))if-((𝑄‘𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑘)) = {(𝑄‘𝑘)}, {(𝑄‘𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑘)))) | ||
Theorem | wlkp1 28336 | Append one path segment (edge) 𝐸 from vertex (𝑃‘𝑁) to a vertex 𝐶 to a walk 〈𝐹, 𝑃〉 to become a walk 〈𝐻, 𝑄〉 of the supergraph 𝑆 obtained by adding the new edge to the graph 𝐺. Formerly proven directly for Eulerian paths (for pseudographs), see eupthp1 28867. (Contributed by Mario Carneiro, 7-Apr-2015.) (Revised by AV, 6-Mar-2021.) (Proof shortened by AV, 18-Apr-2021.) (Revised by AV, 8-Apr-2024.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) & ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) & ⊢ 𝑁 = (♯‘𝐹) & ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) & ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) & ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) & ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) & ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) & ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) & ⊢ ((𝜑 ∧ 𝐶 = (𝑃‘𝑁)) → 𝐸 = {𝐶}) ⇒ ⊢ (𝜑 → 𝐻(Walks‘𝑆)𝑄) | ||
Theorem | wlkdlem1 28337* | Lemma 1 for wlkd 28341. (Contributed by AV, 7-Feb-2021.) |
⊢ (𝜑 → 𝑃 ∈ Word V) & ⊢ (𝜑 → 𝐹 ∈ Word V) & ⊢ (𝜑 → (♯‘𝑃) = ((♯‘𝐹) + 1)) & ⊢ (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃‘𝑘) ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝑃:(0...(♯‘𝐹))⟶𝑉) | ||
Theorem | wlkdlem2 28338* | Lemma 2 for wlkd 28341. (Contributed by AV, 7-Feb-2021.) |
⊢ (𝜑 → 𝑃 ∈ Word V) & ⊢ (𝜑 → 𝐹 ∈ Word V) & ⊢ (𝜑 → (♯‘𝑃) = ((♯‘𝐹) + 1)) & ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → (((♯‘𝐹) ∈ ℕ → (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ∈ (𝐼‘(𝐹‘𝑘)))) | ||
Theorem | wlkdlem3 28339* | Lemma 3 for wlkd 28341. (Contributed by Alexander van der Vekens, 10-Nov-2017.) (Revised by AV, 7-Feb-2021.) |
⊢ (𝜑 → 𝑃 ∈ Word V) & ⊢ (𝜑 → 𝐹 ∈ Word V) & ⊢ (𝜑 → (♯‘𝑃) = ((♯‘𝐹) + 1)) & ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → 𝐹 ∈ Word dom 𝐼) | ||
Theorem | wlkdlem4 28340* | Lemma 4 for wlkd 28341. (Contributed by Alexander van der Vekens, 1-Feb-2018.) (Revised by AV, 23-Jan-2021.) |
⊢ (𝜑 → 𝑃 ∈ Word V) & ⊢ (𝜑 → 𝐹 ∈ Word V) & ⊢ (𝜑 → (♯‘𝑃) = ((♯‘𝐹) + 1)) & ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) & ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) | ||
Theorem | wlkd 28341* | Two words representing a walk in a graph. (Contributed by AV, 7-Feb-2021.) |
⊢ (𝜑 → 𝑃 ∈ Word V) & ⊢ (𝜑 → 𝐹 ∈ Word V) & ⊢ (𝜑 → (♯‘𝑃) = ((♯‘𝐹) + 1)) & ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) & ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃‘𝑘) ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) | ||
Theorem | lfgrwlkprop 28342* | Two adjacent vertices in a walk are different in a loop-free graph. (Contributed by AV, 28-Jan-2021.) |
⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) | ||
Theorem | lfgriswlk 28343* | Conditions for a pair of functions to be a walk in a loop-free graph. (Contributed by AV, 28-Jan-2021.) |
⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) | ||
Theorem | lfgrwlknloop 28344* | In a loop-free graph, each walk has no loops! (Contributed by AV, 2-Feb-2021.) |
⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) | ||
Syntax | ctrls 28345 | Extend class notation with trails (within a graph). |
class Trails | ||
Syntax | ctrlson 28346 | Extend class notation with trails between two vertices (within a graph). |
class TrailsOn | ||
Definition | df-trls 28347* |
Define the set of all Trails (in an undirected graph).
According to Wikipedia ("Path (graph theory)", https://en.wikipedia.org/wiki/Path_(graph_theory), 3-Oct-2017): "A trail is a walk in which all edges are distinct. According to Bollobas: "... walk is called a trail if all its edges are distinct.", see Definition of [Bollobas] p. 5. Therefore, a trail can be represented by an injective mapping f from { 1 , ... , n } and a mapping p from { 0 , ... , n }, where f enumerates the (indices of the) different edges, and p enumerates the vertices. So the trail is also represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017.) (Revised by AV, 28-Dec-2020.) |
⊢ Trails = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝑔)𝑝 ∧ Fun ◡𝑓)}) | ||
Definition | df-trlson 28348* | Define the collection of trails with particular endpoints (in an undirected graph). (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017.) (Revised by AV, 28-Dec-2020.) |
⊢ TrailsOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑎(WalksOn‘𝑔)𝑏)𝑝 ∧ 𝑓(Trails‘𝑔)𝑝)})) | ||
Theorem | reltrls 28349 | The set (Trails‘𝐺) of all trails on 𝐺 is a set of pairs by our definition of a trail, and so is a relation. (Contributed by AV, 29-Oct-2021.) |
⊢ Rel (Trails‘𝐺) | ||
Theorem | trlsfval 28350* | The set of trails (in an undirected graph). (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 28-Dec-2020.) (Revised by AV, 29-Oct-2021.) |
⊢ (Trails‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun ◡𝑓)} | ||
Theorem | istrl 28351 | Conditions for a pair of classes/functions to be a trail (in an undirected graph). (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 28-Dec-2020.) (Revised by AV, 29-Oct-2021.) |
⊢ (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝐹)) | ||
Theorem | trliswlk 28352 | A trail is a walk. (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 7-Jan-2021.) (Proof shortened by AV, 29-Oct-2021.) |
⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | ||
Theorem | trlf1 28353 | The enumeration 𝐹 of a trail 〈𝐹, 𝑃〉 is injective. (Contributed by AV, 20-Feb-2021.) (Proof shortened by AV, 29-Oct-2021.) |
⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼) | ||
Theorem | trlreslem 28354 | Lemma for trlres 28355. Formerly part of proof of eupthres 28866. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 6-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) & ⊢ 𝐻 = (𝐹 prefix 𝑁) ⇒ ⊢ (𝜑 → 𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))) | ||
Theorem | trlres 28355 | The restriction 〈𝐻, 𝑄〉 of a trail 〈𝐹, 𝑃〉 to an initial segment of the trail (of length 𝑁) forms a trail on the subgraph 𝑆 consisting of the edges in the initial segment. (Contributed by AV, 6-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) & ⊢ 𝐻 = (𝐹 prefix 𝑁) & ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) & ⊢ 𝑄 = (𝑃 ↾ (0...𝑁)) ⇒ ⊢ (𝜑 → 𝐻(Trails‘𝑆)𝑄) | ||
Theorem | upgrtrls 28356* | The set of trails in a pseudograph, definition of walks expanded. (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 7-Jan-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UPGraph → (Trails‘𝐺) = {〈𝑓, 𝑝〉 ∣ ((𝑓 ∈ Word dom 𝐼 ∧ Fun ◡𝑓) ∧ 𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) | ||
Theorem | upgristrl 28357* | Properties of a pair of functions to be a trail in a pseudograph, definition of walks expanded. (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 7-Jan-2021.) (Revised by AV, 29-Oct-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UPGraph → (𝐹(Trails‘𝐺)𝑃 ↔ ((𝐹 ∈ Word dom 𝐼 ∧ Fun ◡𝐹) ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) | ||
Theorem | upgrf1istrl 28358* | Properties of a pair of a one-to-one function into the set of indices of edges and a function into the set of vertices to be a trail in a pseudograph. (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 7-Jan-2021.) (Revised by AV, 29-Oct-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UPGraph → (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) | ||
Theorem | wksonproplem 28359* | Lemma for theorems for properties of walks between two vertices, e.g., trlsonprop 28363. (Contributed by AV, 16-Jan-2021.) Remove is-walk hypothesis. (Revised by SN, 13-Dec-2024.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(𝑊‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(𝑂‘𝐺)𝐵)𝑃 ∧ 𝐹(𝑄‘𝐺)𝑃))) & ⊢ 𝑊 = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑎(𝑂‘𝑔)𝑏)𝑝 ∧ 𝑓(𝑄‘𝑔)𝑝)})) ⇒ ⊢ (𝐹(𝐴(𝑊‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(𝑂‘𝐺)𝐵)𝑃 ∧ 𝐹(𝑄‘𝐺)𝑃))) | ||
Theorem | wksonproplemOLD 28360* | Obsolete version of wksonproplem 28359 as of 13-Dec-2024. (Contributed by AV, 16-Jan-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(𝑊‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(𝑂‘𝐺)𝐵)𝑃 ∧ 𝐹(𝑄‘𝐺)𝑃))) & ⊢ 𝑊 = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑎(𝑂‘𝑔)𝑏)𝑝 ∧ 𝑓(𝑄‘𝑔)𝑝)})) & ⊢ (((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝑓(𝑄‘𝐺)𝑝) → 𝑓(Walks‘𝐺)𝑝) ⇒ ⊢ (𝐹(𝐴(𝑊‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(𝑂‘𝐺)𝐵)𝑃 ∧ 𝐹(𝑄‘𝐺)𝑃))) | ||
Theorem | trlsonfval 28361* | The set of trails between two vertices. (Contributed by Alexander van der Vekens, 4-Nov-2017.) (Revised by AV, 7-Jan-2021.) (Proof shortened by AV, 15-Jan-2021.) (Revised by AV, 21-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(TrailsOn‘𝐺)𝐵) = {〈𝑓, 𝑝〉 ∣ (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑝 ∧ 𝑓(Trails‘𝐺)𝑝)}) | ||
Theorem | istrlson 28362 | Properties of a pair of functions to be a trail between two given vertices. (Contributed by Alexander van der Vekens, 3-Nov-2017.) (Revised by AV, 7-Jan-2021.) (Revised by AV, 21-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍)) → (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ∧ 𝐹(Trails‘𝐺)𝑃))) | ||
Theorem | trlsonprop 28363 | Properties of a trail between two vertices. (Contributed by Alexander van der Vekens, 5-Nov-2017.) (Revised by AV, 7-Jan-2021.) (Proof shortened by AV, 16-Jan-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ∧ 𝐹(Trails‘𝐺)𝑃))) | ||
Theorem | trlsonistrl 28364 | A trail between two vertices is a trail. (Contributed by Alexander van der Vekens, 12-Dec-2017.) (Revised by AV, 7-Jan-2021.) |
⊢ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 → 𝐹(Trails‘𝐺)𝑃) | ||
Theorem | trlsonwlkon 28365 | A trail between two vertices is a walk between these vertices. (Contributed by Alexander van der Vekens, 5-Nov-2017.) (Revised by AV, 7-Jan-2021.) |
⊢ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 → 𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃) | ||
Theorem | trlontrl 28366 | A trail is a trail between its endpoints. (Contributed by AV, 31-Jan-2021.) |
⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹((𝑃‘0)(TrailsOn‘𝐺)(𝑃‘(♯‘𝐹)))𝑃) | ||
Syntax | cpths 28367 | Extend class notation with paths (of a graph). |
class Paths | ||
Syntax | cspths 28368 | Extend class notation with simple paths (of a graph). |
class SPaths | ||
Syntax | cpthson 28369 | Extend class notation with paths between two vertices (within a graph). |
class PathsOn | ||
Syntax | cspthson 28370 | Extend class notation with simple paths between two vertices (within a graph). |
class SPathsOn | ||
Definition | df-pths 28371* |
Define the set of all paths (in an undirected graph).
According to Wikipedia ("Path (graph theory)", https://en.wikipedia.org/wiki/Path_(graph_theory), 3-Oct-2017): "A path is a trail in which all vertices (except possibly the first and last) are distinct. ... use the term simple path to refer to a path which contains no repeated vertices." According to Bollobas: "... a path is a walk with distinct vertices.", see Notation of [Bollobas] p. 5. (A walk with distinct vertices is actually a simple path, see upgrwlkdvspth 28394). Therefore, a path can be represented by an injective mapping f from { 1 , ... , n } and a mapping p from { 0 , ... , n }, which is injective restricted to the set { 1 , ... , n }, where f enumerates the (indices of the) different edges, and p enumerates the vertices. So the path is also represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017.) (Revised by AV, 9-Jan-2021.) |
⊢ Paths = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝑔)𝑝 ∧ Fun ◡(𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅)}) | ||
Definition | df-spths 28372* |
Define the set of all simple paths (in an undirected graph).
According to Wikipedia ("Path (graph theory)", https://en.wikipedia.org/wiki/Path_(graph_theory), 3-Oct-2017): "A path is a trail in which all vertices (except possibly the first and last) are distinct. ... use the term simple path to refer to a path which contains no repeated vertices." Therefore, a simple path can be represented by an injective mapping f from { 1 , ... , n } and an injective mapping p from { 0 , ... , n }, where f enumerates the (indices of the) different edges, and p enumerates the vertices. So the simple path is also represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 9-Jan-2021.) |
⊢ SPaths = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝑔)𝑝 ∧ Fun ◡𝑝)}) | ||
Definition | df-pthson 28373* | Define the collection of paths with particular endpoints (in an undirected graph). (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017.) (Revised by AV, 9-Jan-2021.) |
⊢ PathsOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑎(TrailsOn‘𝑔)𝑏)𝑝 ∧ 𝑓(Paths‘𝑔)𝑝)})) | ||
Definition | df-spthson 28374* | Define the collection of simple paths with particular endpoints (in an undirected graph). (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 9-Jan-2021.) |
⊢ SPathsOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑎(TrailsOn‘𝑔)𝑏)𝑝 ∧ 𝑓(SPaths‘𝑔)𝑝)})) | ||
Theorem | relpths 28375 | The set (Paths‘𝐺) of all paths on 𝐺 is a set of pairs by our definition of a path, and so is a relation. (Contributed by AV, 30-Oct-2021.) |
⊢ Rel (Paths‘𝐺) | ||
Theorem | pthsfval 28376* | The set of paths (in an undirected graph). (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 9-Jan-2021.) (Revised by AV, 29-Oct-2021.) |
⊢ (Paths‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝐺)𝑝 ∧ Fun ◡(𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅)} | ||
Theorem | spthsfval 28377* | The set of simple paths (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017.) (Revised by AV, 9-Jan-2021.) (Revised by AV, 29-Oct-2021.) |
⊢ (SPaths‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝐺)𝑝 ∧ Fun ◡𝑝)} | ||
Theorem | ispth 28378 | Conditions for a pair of classes/functions to be a path (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017.) (Revised by AV, 9-Jan-2021.) (Revised by AV, 29-Oct-2021.) |
⊢ (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)) | ||
Theorem | isspth 28379 | Conditions for a pair of classes/functions to be a simple path (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017.) (Revised by AV, 9-Jan-2021.) (Revised by AV, 29-Oct-2021.) |
⊢ (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃)) | ||
Theorem | pthistrl 28380 | A path is a trail (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017.) (Revised by AV, 9-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.) |
⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹(Trails‘𝐺)𝑃) | ||
Theorem | spthispth 28381 | A simple path is a path (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017.) (Revised by AV, 9-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.) |
⊢ (𝐹(SPaths‘𝐺)𝑃 → 𝐹(Paths‘𝐺)𝑃) | ||
Theorem | pthiswlk 28382 | A path is a walk (in an undirected graph). (Contributed by AV, 6-Feb-2021.) |
⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | ||
Theorem | spthiswlk 28383 | A simple path is a walk (in an undirected graph). (Contributed by AV, 16-May-2021.) |
⊢ (𝐹(SPaths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | ||
Theorem | pthdivtx 28384 | The inner vertices of a path are distinct from all other vertices. (Contributed by AV, 5-Feb-2021.) (Proof shortened by AV, 31-Oct-2021.) |
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (0...(♯‘𝐹)) ∧ 𝐼 ≠ 𝐽)) → (𝑃‘𝐼) ≠ (𝑃‘𝐽)) | ||
Theorem | pthdadjvtx 28385 | The adjacent vertices of a path of length at least 2 are distinct. (Contributed by AV, 5-Feb-2021.) |
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹) ∧ 𝐼 ∈ (0..^(♯‘𝐹))) → (𝑃‘𝐼) ≠ (𝑃‘(𝐼 + 1))) | ||
Theorem | 2pthnloop 28386* | A path of length at least 2 does not contain a loop. In contrast, a path of length 1 can contain/be a loop, see lppthon 28802. (Contributed by AV, 6-Feb-2021.) |
⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹‘𝑖)))) | ||
Theorem | upgr2pthnlp 28387* | A path of length at least 2 in a pseudograph does not contain a loop. (Contributed by AV, 6-Feb-2021.) |
⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))(♯‘(𝐼‘(𝐹‘𝑖))) = 2) | ||
Theorem | spthdifv 28388 | The vertices of a simple path are distinct, so the vertex function is one-to-one. (Contributed by Alexander van der Vekens, 26-Jan-2018.) (Revised by AV, 5-Jun-2021.) (Proof shortened by AV, 30-Oct-2021.) |
⊢ (𝐹(SPaths‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺)) | ||
Theorem | spthdep 28389 | A simple path (at least of length 1) has different start and end points (in an undirected graph). (Contributed by AV, 31-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.) |
⊢ ((𝐹(SPaths‘𝐺)𝑃 ∧ (♯‘𝐹) ≠ 0) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) | ||
Theorem | pthdepisspth 28390 | A path with different start and end points is a simple path (in an undirected graph). (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by AV, 12-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.) |
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → 𝐹(SPaths‘𝐺)𝑃) | ||
Theorem | upgrwlkdvdelem 28391* | Lemma for upgrwlkdvde 28392. (Contributed by Alexander van der Vekens, 27-Oct-2017.) (Proof shortened by AV, 17-Jan-2021.) |
⊢ ((𝑃:(0...(♯‘𝐹))–1-1→𝑉 ∧ 𝐹 ∈ Word dom 𝐼) → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} → Fun ◡𝐹)) | ||
Theorem | upgrwlkdvde 28392 | In a pseudograph, all edges of a walk consisting of different vertices are different. Notice that this theorem would not hold for arbitrary hypergraphs, see the counterexample given in the comment of upgrspthswlk 28393. (Contributed by AV, 17-Jan-2021.) |
⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝑃) → Fun ◡𝐹) | ||
Theorem | upgrspthswlk 28393* | The set of simple paths in a pseudograph, expressed as walk. Notice that this theorem would not hold for arbitrary hypergraphs, since a walk with distinct vertices does not need to be a trail: let E = { p0, p1, p2 } be a hyperedge, then ( p0, e, p1, e, p2 ) is walk with distinct vertices, but not with distinct edges. Therefore, E is not a trail and, by definition, also no path. (Contributed by AV, 11-Jan-2021.) (Proof shortened by AV, 17-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.) |
⊢ (𝐺 ∈ UPGraph → (SPaths‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun ◡𝑝)}) | ||
Theorem | upgrwlkdvspth 28394 | A walk consisting of different vertices is a simple path. Notice that this theorem would not hold for arbitrary hypergraphs, see the counterexample given in the comment of upgrspthswlk 28393. (Contributed by Alexander van der Vekens, 27-Oct-2017.) (Revised by AV, 17-Jan-2021.) |
⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝑃) → 𝐹(SPaths‘𝐺)𝑃) | ||
Theorem | pthsonfval 28395* | The set of paths between two vertices (in an undirected graph). (Contributed by Alexander van der Vekens, 8-Nov-2017.) (Revised by AV, 16-Jan-2021.) (Revised by AV, 21-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(PathsOn‘𝐺)𝐵) = {〈𝑓, 𝑝〉 ∣ (𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑝 ∧ 𝑓(Paths‘𝐺)𝑝)}) | ||
Theorem | spthson 28396* | The set of simple paths between two vertices (in an undirected graph). (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 16-Jan-2021.) (Revised by AV, 21-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(SPathsOn‘𝐺)𝐵) = {〈𝑓, 𝑝〉 ∣ (𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑝 ∧ 𝑓(SPaths‘𝐺)𝑝)}) | ||
Theorem | ispthson 28397 | Properties of a pair of functions to be a path between two given vertices. (Contributed by Alexander van der Vekens, 8-Nov-2017.) (Revised by AV, 16-Jan-2021.) (Revised by AV, 21-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍)) → (𝐹(𝐴(PathsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ∧ 𝐹(Paths‘𝐺)𝑃))) | ||
Theorem | isspthson 28398 | Properties of a pair of functions to be a simple path between two given vertices. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 16-Jan-2021.) (Revised by AV, 21-Mar-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍)) → (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ∧ 𝐹(SPaths‘𝐺)𝑃))) | ||
Theorem | pthsonprop 28399 | Properties of a path between two vertices. (Contributed by Alexander van der Vekens, 12-Dec-2017.) (Revised by AV, 16-Jan-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐹(𝐴(PathsOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ∧ 𝐹(Paths‘𝐺)𝑃))) | ||
Theorem | spthonprop 28400 | Properties of a simple path between two vertices. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 16-Jan-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ∧ 𝐹(SPaths‘𝐺)𝑃))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |