MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  israg Structured version   Visualization version   GIF version

Theorem israg 28673
Description: Property for 3 points A, B, C to form a right angle. Definition 8.1 of [Schwabhauser] p. 57. (Contributed by Thierry Arnoux, 25-Aug-2019.)
Hypotheses
Ref Expression
israg.p 𝑃 = (Base‘𝐺)
israg.d = (dist‘𝐺)
israg.i 𝐼 = (Itv‘𝐺)
israg.l 𝐿 = (LineG‘𝐺)
israg.s 𝑆 = (pInvG‘𝐺)
israg.g (𝜑𝐺 ∈ TarskiG)
israg.a (𝜑𝐴𝑃)
israg.b (𝜑𝐵𝑃)
israg.c (𝜑𝐶𝑃)
Assertion
Ref Expression
israg (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝐴 𝐶) = (𝐴 ((𝑆𝐵)‘𝐶))))

Proof of Theorem israg
Dummy variables 𝑔 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 israg.a . . . 4 (𝜑𝐴𝑃)
2 israg.b . . . 4 (𝜑𝐵𝑃)
3 israg.c . . . 4 (𝜑𝐶𝑃)
41, 2, 3s3cld 14776 . . 3 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃)
5 fveqeq2 6831 . . . . 5 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → ((♯‘𝑤) = 3 ↔ (♯‘⟨“𝐴𝐵𝐶”⟩) = 3))
6 fveq1 6821 . . . . . . 7 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → (𝑤‘0) = (⟨“𝐴𝐵𝐶”⟩‘0))
7 fveq1 6821 . . . . . . 7 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → (𝑤‘2) = (⟨“𝐴𝐵𝐶”⟩‘2))
86, 7oveq12d 7364 . . . . . 6 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → ((𝑤‘0) (𝑤‘2)) = ((⟨“𝐴𝐵𝐶”⟩‘0) (⟨“𝐴𝐵𝐶”⟩‘2)))
9 fveq1 6821 . . . . . . . . 9 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → (𝑤‘1) = (⟨“𝐴𝐵𝐶”⟩‘1))
109fveq2d 6826 . . . . . . . 8 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → (𝑆‘(𝑤‘1)) = (𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1)))
1110, 7fveq12d 6829 . . . . . . 7 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → ((𝑆‘(𝑤‘1))‘(𝑤‘2)) = ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2)))
126, 11oveq12d 7364 . . . . . 6 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))) = ((⟨“𝐴𝐵𝐶”⟩‘0) ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2))))
138, 12eqeq12d 2747 . . . . 5 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → (((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))) ↔ ((⟨“𝐴𝐵𝐶”⟩‘0) (⟨“𝐴𝐵𝐶”⟩‘2)) = ((⟨“𝐴𝐵𝐶”⟩‘0) ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2)))))
145, 13anbi12d 632 . . . 4 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → (((♯‘𝑤) = 3 ∧ ((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2)))) ↔ ((♯‘⟨“𝐴𝐵𝐶”⟩) = 3 ∧ ((⟨“𝐴𝐵𝐶”⟩‘0) (⟨“𝐴𝐵𝐶”⟩‘2)) = ((⟨“𝐴𝐵𝐶”⟩‘0) ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2))))))
1514elrab3 3648 . . 3 (⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 → (⟨“𝐴𝐵𝐶”⟩ ∈ {𝑤 ∈ Word 𝑃 ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))))} ↔ ((♯‘⟨“𝐴𝐵𝐶”⟩) = 3 ∧ ((⟨“𝐴𝐵𝐶”⟩‘0) (⟨“𝐴𝐵𝐶”⟩‘2)) = ((⟨“𝐴𝐵𝐶”⟩‘0) ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2))))))
164, 15syl 17 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ {𝑤 ∈ Word 𝑃 ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))))} ↔ ((♯‘⟨“𝐴𝐵𝐶”⟩) = 3 ∧ ((⟨“𝐴𝐵𝐶”⟩‘0) (⟨“𝐴𝐵𝐶”⟩‘2)) = ((⟨“𝐴𝐵𝐶”⟩‘0) ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2))))))
17 df-rag 28670 . . . 4 ∟G = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Base‘𝑔) ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2))))})
18 simpr 484 . . . . . . . 8 ((𝜑𝑔 = 𝐺) → 𝑔 = 𝐺)
1918fveq2d 6826 . . . . . . 7 ((𝜑𝑔 = 𝐺) → (Base‘𝑔) = (Base‘𝐺))
20 israg.p . . . . . . 7 𝑃 = (Base‘𝐺)
2119, 20eqtr4di 2784 . . . . . 6 ((𝜑𝑔 = 𝐺) → (Base‘𝑔) = 𝑃)
22 wrdeq 14440 . . . . . 6 ((Base‘𝑔) = 𝑃 → Word (Base‘𝑔) = Word 𝑃)
2321, 22syl 17 . . . . 5 ((𝜑𝑔 = 𝐺) → Word (Base‘𝑔) = Word 𝑃)
2418fveq2d 6826 . . . . . . . . 9 ((𝜑𝑔 = 𝐺) → (dist‘𝑔) = (dist‘𝐺))
25 israg.d . . . . . . . . 9 = (dist‘𝐺)
2624, 25eqtr4di 2784 . . . . . . . 8 ((𝜑𝑔 = 𝐺) → (dist‘𝑔) = )
2726oveqd 7363 . . . . . . 7 ((𝜑𝑔 = 𝐺) → ((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0) (𝑤‘2)))
28 eqidd 2732 . . . . . . . 8 ((𝜑𝑔 = 𝐺) → (𝑤‘0) = (𝑤‘0))
2918fveq2d 6826 . . . . . . . . . . 11 ((𝜑𝑔 = 𝐺) → (pInvG‘𝑔) = (pInvG‘𝐺))
30 israg.s . . . . . . . . . . 11 𝑆 = (pInvG‘𝐺)
3129, 30eqtr4di 2784 . . . . . . . . . 10 ((𝜑𝑔 = 𝐺) → (pInvG‘𝑔) = 𝑆)
3231fveq1d 6824 . . . . . . . . 9 ((𝜑𝑔 = 𝐺) → ((pInvG‘𝑔)‘(𝑤‘1)) = (𝑆‘(𝑤‘1)))
3332fveq1d 6824 . . . . . . . 8 ((𝜑𝑔 = 𝐺) → (((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2)) = ((𝑆‘(𝑤‘1))‘(𝑤‘2)))
3426, 28, 33oveq123d 7367 . . . . . . 7 ((𝜑𝑔 = 𝐺) → ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2))) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))))
3527, 34eqeq12d 2747 . . . . . 6 ((𝜑𝑔 = 𝐺) → (((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2))) ↔ ((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2)))))
3635anbi2d 630 . . . . 5 ((𝜑𝑔 = 𝐺) → (((♯‘𝑤) = 3 ∧ ((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2)))) ↔ ((♯‘𝑤) = 3 ∧ ((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))))))
3723, 36rabeqbidv 3413 . . . 4 ((𝜑𝑔 = 𝐺) → {𝑤 ∈ Word (Base‘𝑔) ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2))))} = {𝑤 ∈ Word 𝑃 ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))))})
38 israg.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
3938elexd 3460 . . . 4 (𝜑𝐺 ∈ V)
4020fvexi 6836 . . . . . . 7 𝑃 ∈ V
4140wrdexi 14430 . . . . . 6 Word 𝑃 ∈ V
4241rabex 5277 . . . . 5 {𝑤 ∈ Word 𝑃 ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))))} ∈ V
4342a1i 11 . . . 4 (𝜑 → {𝑤 ∈ Word 𝑃 ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))))} ∈ V)
4417, 37, 39, 43fvmptd2 6937 . . 3 (𝜑 → (∟G‘𝐺) = {𝑤 ∈ Word 𝑃 ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))))})
4544eleq2d 2817 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ {𝑤 ∈ Word 𝑃 ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))))}))
46 s3fv0 14795 . . . . . . 7 (𝐴𝑃 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
471, 46syl 17 . . . . . 6 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
4847eqcomd 2737 . . . . 5 (𝜑𝐴 = (⟨“𝐴𝐵𝐶”⟩‘0))
49 s3fv2 14797 . . . . . . 7 (𝐶𝑃 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
503, 49syl 17 . . . . . 6 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
5150eqcomd 2737 . . . . 5 (𝜑𝐶 = (⟨“𝐴𝐵𝐶”⟩‘2))
5248, 51oveq12d 7364 . . . 4 (𝜑 → (𝐴 𝐶) = ((⟨“𝐴𝐵𝐶”⟩‘0) (⟨“𝐴𝐵𝐶”⟩‘2)))
53 s3fv1 14796 . . . . . . . . 9 (𝐵𝑃 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
542, 53syl 17 . . . . . . . 8 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
5554eqcomd 2737 . . . . . . 7 (𝜑𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1))
5655fveq2d 6826 . . . . . 6 (𝜑 → (𝑆𝐵) = (𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1)))
5756, 51fveq12d 6829 . . . . 5 (𝜑 → ((𝑆𝐵)‘𝐶) = ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2)))
5848, 57oveq12d 7364 . . . 4 (𝜑 → (𝐴 ((𝑆𝐵)‘𝐶)) = ((⟨“𝐴𝐵𝐶”⟩‘0) ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2))))
5952, 58eqeq12d 2747 . . 3 (𝜑 → ((𝐴 𝐶) = (𝐴 ((𝑆𝐵)‘𝐶)) ↔ ((⟨“𝐴𝐵𝐶”⟩‘0) (⟨“𝐴𝐵𝐶”⟩‘2)) = ((⟨“𝐴𝐵𝐶”⟩‘0) ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2)))))
60 s3len 14798 . . . . 5 (♯‘⟨“𝐴𝐵𝐶”⟩) = 3
6160a1i 11 . . . 4 (𝜑 → (♯‘⟨“𝐴𝐵𝐶”⟩) = 3)
6261biantrurd 532 . . 3 (𝜑 → (((⟨“𝐴𝐵𝐶”⟩‘0) (⟨“𝐴𝐵𝐶”⟩‘2)) = ((⟨“𝐴𝐵𝐶”⟩‘0) ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2))) ↔ ((♯‘⟨“𝐴𝐵𝐶”⟩) = 3 ∧ ((⟨“𝐴𝐵𝐶”⟩‘0) (⟨“𝐴𝐵𝐶”⟩‘2)) = ((⟨“𝐴𝐵𝐶”⟩‘0) ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2))))))
6359, 62bitrd 279 . 2 (𝜑 → ((𝐴 𝐶) = (𝐴 ((𝑆𝐵)‘𝐶)) ↔ ((♯‘⟨“𝐴𝐵𝐶”⟩) = 3 ∧ ((⟨“𝐴𝐵𝐶”⟩‘0) (⟨“𝐴𝐵𝐶”⟩‘2)) = ((⟨“𝐴𝐵𝐶”⟩‘0) ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2))))))
6416, 45, 633bitr4d 311 1 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝐴 𝐶) = (𝐴 ((𝑆𝐵)‘𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  cfv 6481  (class class class)co 7346  0cc0 11003  1c1 11004  2c2 12177  3c3 12178  chash 14234  Word cword 14417  ⟨“cs3 14746  Basecbs 17117  distcds 17167  TarskiGcstrkg 28403  Itvcitv 28409  LineGclng 28410  pInvGcmir 28628  ∟Gcrag 28669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-n0 12379  df-z 12466  df-uz 12730  df-fz 13405  df-fzo 13552  df-hash 14235  df-word 14418  df-concat 14475  df-s1 14501  df-s2 14752  df-s3 14753  df-rag 28670
This theorem is referenced by:  ragcom  28674  ragcol  28675  ragmir  28676  mirrag  28677  ragtrivb  28678  ragflat2  28679  ragflat  28680  ragcgr  28683  footexALT  28694  footexlem1  28695  footexlem2  28696  colperpexlem1  28706  colperpexlem3  28708  mideulem2  28710  opphllem  28711  lmiisolem  28772  hypcgrlem1  28775  hypcgrlem2  28776  trgcopyeulem  28781
  Copyright terms: Public domain W3C validator