MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  israg Structured version   Visualization version   GIF version

Theorem israg 28624
Description: Property for 3 points A, B, C to form a right angle. Definition 8.1 of [Schwabhauser] p. 57. (Contributed by Thierry Arnoux, 25-Aug-2019.)
Hypotheses
Ref Expression
israg.p 𝑃 = (Base‘𝐺)
israg.d = (dist‘𝐺)
israg.i 𝐼 = (Itv‘𝐺)
israg.l 𝐿 = (LineG‘𝐺)
israg.s 𝑆 = (pInvG‘𝐺)
israg.g (𝜑𝐺 ∈ TarskiG)
israg.a (𝜑𝐴𝑃)
israg.b (𝜑𝐵𝑃)
israg.c (𝜑𝐶𝑃)
Assertion
Ref Expression
israg (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝐴 𝐶) = (𝐴 ((𝑆𝐵)‘𝐶))))

Proof of Theorem israg
Dummy variables 𝑔 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 israg.a . . . 4 (𝜑𝐴𝑃)
2 israg.b . . . 4 (𝜑𝐵𝑃)
3 israg.c . . . 4 (𝜑𝐶𝑃)
41, 2, 3s3cld 14838 . . 3 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃)
5 fveqeq2 6867 . . . . 5 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → ((♯‘𝑤) = 3 ↔ (♯‘⟨“𝐴𝐵𝐶”⟩) = 3))
6 fveq1 6857 . . . . . . 7 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → (𝑤‘0) = (⟨“𝐴𝐵𝐶”⟩‘0))
7 fveq1 6857 . . . . . . 7 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → (𝑤‘2) = (⟨“𝐴𝐵𝐶”⟩‘2))
86, 7oveq12d 7405 . . . . . 6 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → ((𝑤‘0) (𝑤‘2)) = ((⟨“𝐴𝐵𝐶”⟩‘0) (⟨“𝐴𝐵𝐶”⟩‘2)))
9 fveq1 6857 . . . . . . . . 9 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → (𝑤‘1) = (⟨“𝐴𝐵𝐶”⟩‘1))
109fveq2d 6862 . . . . . . . 8 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → (𝑆‘(𝑤‘1)) = (𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1)))
1110, 7fveq12d 6865 . . . . . . 7 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → ((𝑆‘(𝑤‘1))‘(𝑤‘2)) = ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2)))
126, 11oveq12d 7405 . . . . . 6 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))) = ((⟨“𝐴𝐵𝐶”⟩‘0) ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2))))
138, 12eqeq12d 2745 . . . . 5 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → (((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))) ↔ ((⟨“𝐴𝐵𝐶”⟩‘0) (⟨“𝐴𝐵𝐶”⟩‘2)) = ((⟨“𝐴𝐵𝐶”⟩‘0) ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2)))))
145, 13anbi12d 632 . . . 4 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → (((♯‘𝑤) = 3 ∧ ((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2)))) ↔ ((♯‘⟨“𝐴𝐵𝐶”⟩) = 3 ∧ ((⟨“𝐴𝐵𝐶”⟩‘0) (⟨“𝐴𝐵𝐶”⟩‘2)) = ((⟨“𝐴𝐵𝐶”⟩‘0) ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2))))))
1514elrab3 3660 . . 3 (⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 → (⟨“𝐴𝐵𝐶”⟩ ∈ {𝑤 ∈ Word 𝑃 ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))))} ↔ ((♯‘⟨“𝐴𝐵𝐶”⟩) = 3 ∧ ((⟨“𝐴𝐵𝐶”⟩‘0) (⟨“𝐴𝐵𝐶”⟩‘2)) = ((⟨“𝐴𝐵𝐶”⟩‘0) ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2))))))
164, 15syl 17 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ {𝑤 ∈ Word 𝑃 ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))))} ↔ ((♯‘⟨“𝐴𝐵𝐶”⟩) = 3 ∧ ((⟨“𝐴𝐵𝐶”⟩‘0) (⟨“𝐴𝐵𝐶”⟩‘2)) = ((⟨“𝐴𝐵𝐶”⟩‘0) ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2))))))
17 df-rag 28621 . . . 4 ∟G = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Base‘𝑔) ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2))))})
18 simpr 484 . . . . . . . 8 ((𝜑𝑔 = 𝐺) → 𝑔 = 𝐺)
1918fveq2d 6862 . . . . . . 7 ((𝜑𝑔 = 𝐺) → (Base‘𝑔) = (Base‘𝐺))
20 israg.p . . . . . . 7 𝑃 = (Base‘𝐺)
2119, 20eqtr4di 2782 . . . . . 6 ((𝜑𝑔 = 𝐺) → (Base‘𝑔) = 𝑃)
22 wrdeq 14501 . . . . . 6 ((Base‘𝑔) = 𝑃 → Word (Base‘𝑔) = Word 𝑃)
2321, 22syl 17 . . . . 5 ((𝜑𝑔 = 𝐺) → Word (Base‘𝑔) = Word 𝑃)
2418fveq2d 6862 . . . . . . . . 9 ((𝜑𝑔 = 𝐺) → (dist‘𝑔) = (dist‘𝐺))
25 israg.d . . . . . . . . 9 = (dist‘𝐺)
2624, 25eqtr4di 2782 . . . . . . . 8 ((𝜑𝑔 = 𝐺) → (dist‘𝑔) = )
2726oveqd 7404 . . . . . . 7 ((𝜑𝑔 = 𝐺) → ((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0) (𝑤‘2)))
28 eqidd 2730 . . . . . . . 8 ((𝜑𝑔 = 𝐺) → (𝑤‘0) = (𝑤‘0))
2918fveq2d 6862 . . . . . . . . . . 11 ((𝜑𝑔 = 𝐺) → (pInvG‘𝑔) = (pInvG‘𝐺))
30 israg.s . . . . . . . . . . 11 𝑆 = (pInvG‘𝐺)
3129, 30eqtr4di 2782 . . . . . . . . . 10 ((𝜑𝑔 = 𝐺) → (pInvG‘𝑔) = 𝑆)
3231fveq1d 6860 . . . . . . . . 9 ((𝜑𝑔 = 𝐺) → ((pInvG‘𝑔)‘(𝑤‘1)) = (𝑆‘(𝑤‘1)))
3332fveq1d 6860 . . . . . . . 8 ((𝜑𝑔 = 𝐺) → (((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2)) = ((𝑆‘(𝑤‘1))‘(𝑤‘2)))
3426, 28, 33oveq123d 7408 . . . . . . 7 ((𝜑𝑔 = 𝐺) → ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2))) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))))
3527, 34eqeq12d 2745 . . . . . 6 ((𝜑𝑔 = 𝐺) → (((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2))) ↔ ((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2)))))
3635anbi2d 630 . . . . 5 ((𝜑𝑔 = 𝐺) → (((♯‘𝑤) = 3 ∧ ((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2)))) ↔ ((♯‘𝑤) = 3 ∧ ((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))))))
3723, 36rabeqbidv 3424 . . . 4 ((𝜑𝑔 = 𝐺) → {𝑤 ∈ Word (Base‘𝑔) ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2))))} = {𝑤 ∈ Word 𝑃 ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))))})
38 israg.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
3938elexd 3471 . . . 4 (𝜑𝐺 ∈ V)
4020fvexi 6872 . . . . . . 7 𝑃 ∈ V
4140wrdexi 14491 . . . . . 6 Word 𝑃 ∈ V
4241rabex 5294 . . . . 5 {𝑤 ∈ Word 𝑃 ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))))} ∈ V
4342a1i 11 . . . 4 (𝜑 → {𝑤 ∈ Word 𝑃 ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))))} ∈ V)
4417, 37, 39, 43fvmptd2 6976 . . 3 (𝜑 → (∟G‘𝐺) = {𝑤 ∈ Word 𝑃 ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))))})
4544eleq2d 2814 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ {𝑤 ∈ Word 𝑃 ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))))}))
46 s3fv0 14857 . . . . . . 7 (𝐴𝑃 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
471, 46syl 17 . . . . . 6 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
4847eqcomd 2735 . . . . 5 (𝜑𝐴 = (⟨“𝐴𝐵𝐶”⟩‘0))
49 s3fv2 14859 . . . . . . 7 (𝐶𝑃 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
503, 49syl 17 . . . . . 6 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
5150eqcomd 2735 . . . . 5 (𝜑𝐶 = (⟨“𝐴𝐵𝐶”⟩‘2))
5248, 51oveq12d 7405 . . . 4 (𝜑 → (𝐴 𝐶) = ((⟨“𝐴𝐵𝐶”⟩‘0) (⟨“𝐴𝐵𝐶”⟩‘2)))
53 s3fv1 14858 . . . . . . . . 9 (𝐵𝑃 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
542, 53syl 17 . . . . . . . 8 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
5554eqcomd 2735 . . . . . . 7 (𝜑𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1))
5655fveq2d 6862 . . . . . 6 (𝜑 → (𝑆𝐵) = (𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1)))
5756, 51fveq12d 6865 . . . . 5 (𝜑 → ((𝑆𝐵)‘𝐶) = ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2)))
5848, 57oveq12d 7405 . . . 4 (𝜑 → (𝐴 ((𝑆𝐵)‘𝐶)) = ((⟨“𝐴𝐵𝐶”⟩‘0) ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2))))
5952, 58eqeq12d 2745 . . 3 (𝜑 → ((𝐴 𝐶) = (𝐴 ((𝑆𝐵)‘𝐶)) ↔ ((⟨“𝐴𝐵𝐶”⟩‘0) (⟨“𝐴𝐵𝐶”⟩‘2)) = ((⟨“𝐴𝐵𝐶”⟩‘0) ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2)))))
60 s3len 14860 . . . . 5 (♯‘⟨“𝐴𝐵𝐶”⟩) = 3
6160a1i 11 . . . 4 (𝜑 → (♯‘⟨“𝐴𝐵𝐶”⟩) = 3)
6261biantrurd 532 . . 3 (𝜑 → (((⟨“𝐴𝐵𝐶”⟩‘0) (⟨“𝐴𝐵𝐶”⟩‘2)) = ((⟨“𝐴𝐵𝐶”⟩‘0) ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2))) ↔ ((♯‘⟨“𝐴𝐵𝐶”⟩) = 3 ∧ ((⟨“𝐴𝐵𝐶”⟩‘0) (⟨“𝐴𝐵𝐶”⟩‘2)) = ((⟨“𝐴𝐵𝐶”⟩‘0) ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2))))))
6359, 62bitrd 279 . 2 (𝜑 → ((𝐴 𝐶) = (𝐴 ((𝑆𝐵)‘𝐶)) ↔ ((♯‘⟨“𝐴𝐵𝐶”⟩) = 3 ∧ ((⟨“𝐴𝐵𝐶”⟩‘0) (⟨“𝐴𝐵𝐶”⟩‘2)) = ((⟨“𝐴𝐵𝐶”⟩‘0) ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2))))))
6416, 45, 633bitr4d 311 1 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝐴 𝐶) = (𝐴 ((𝑆𝐵)‘𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069  2c2 12241  3c3 12242  chash 14295  Word cword 14478  ⟨“cs3 14808  Basecbs 17179  distcds 17229  TarskiGcstrkg 28354  Itvcitv 28360  LineGclng 28361  pInvGcmir 28579  ∟Gcrag 28620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-concat 14536  df-s1 14561  df-s2 14814  df-s3 14815  df-rag 28621
This theorem is referenced by:  ragcom  28625  ragcol  28626  ragmir  28627  mirrag  28628  ragtrivb  28629  ragflat2  28630  ragflat  28631  ragcgr  28634  footexALT  28645  footexlem1  28646  footexlem2  28647  colperpexlem1  28657  colperpexlem3  28659  mideulem2  28661  opphllem  28662  lmiisolem  28723  hypcgrlem1  28726  hypcgrlem2  28727  trgcopyeulem  28732
  Copyright terms: Public domain W3C validator