| Step | Hyp | Ref
| Expression |
| 1 | | israg.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| 2 | | israg.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| 3 | | israg.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| 4 | 1, 2, 3 | s3cld 14911 |
. . 3
⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ Word 𝑃) |
| 5 | | fveqeq2 6915 |
. . . . 5
⊢ (𝑤 = 〈“𝐴𝐵𝐶”〉 → ((♯‘𝑤) = 3 ↔
(♯‘〈“𝐴𝐵𝐶”〉) = 3)) |
| 6 | | fveq1 6905 |
. . . . . . 7
⊢ (𝑤 = 〈“𝐴𝐵𝐶”〉 → (𝑤‘0) = (〈“𝐴𝐵𝐶”〉‘0)) |
| 7 | | fveq1 6905 |
. . . . . . 7
⊢ (𝑤 = 〈“𝐴𝐵𝐶”〉 → (𝑤‘2) = (〈“𝐴𝐵𝐶”〉‘2)) |
| 8 | 6, 7 | oveq12d 7449 |
. . . . . 6
⊢ (𝑤 = 〈“𝐴𝐵𝐶”〉 → ((𝑤‘0) − (𝑤‘2)) = ((〈“𝐴𝐵𝐶”〉‘0) − (〈“𝐴𝐵𝐶”〉‘2))) |
| 9 | | fveq1 6905 |
. . . . . . . . 9
⊢ (𝑤 = 〈“𝐴𝐵𝐶”〉 → (𝑤‘1) = (〈“𝐴𝐵𝐶”〉‘1)) |
| 10 | 9 | fveq2d 6910 |
. . . . . . . 8
⊢ (𝑤 = 〈“𝐴𝐵𝐶”〉 → (𝑆‘(𝑤‘1)) = (𝑆‘(〈“𝐴𝐵𝐶”〉‘1))) |
| 11 | 10, 7 | fveq12d 6913 |
. . . . . . 7
⊢ (𝑤 = 〈“𝐴𝐵𝐶”〉 → ((𝑆‘(𝑤‘1))‘(𝑤‘2)) = ((𝑆‘(〈“𝐴𝐵𝐶”〉‘1))‘(〈“𝐴𝐵𝐶”〉‘2))) |
| 12 | 6, 11 | oveq12d 7449 |
. . . . . 6
⊢ (𝑤 = 〈“𝐴𝐵𝐶”〉 → ((𝑤‘0) − ((𝑆‘(𝑤‘1))‘(𝑤‘2))) = ((〈“𝐴𝐵𝐶”〉‘0) − ((𝑆‘(〈“𝐴𝐵𝐶”〉‘1))‘(〈“𝐴𝐵𝐶”〉‘2)))) |
| 13 | 8, 12 | eqeq12d 2753 |
. . . . 5
⊢ (𝑤 = 〈“𝐴𝐵𝐶”〉 → (((𝑤‘0) − (𝑤‘2)) = ((𝑤‘0) − ((𝑆‘(𝑤‘1))‘(𝑤‘2))) ↔ ((〈“𝐴𝐵𝐶”〉‘0) − (〈“𝐴𝐵𝐶”〉‘2)) =
((〈“𝐴𝐵𝐶”〉‘0) − ((𝑆‘(〈“𝐴𝐵𝐶”〉‘1))‘(〈“𝐴𝐵𝐶”〉‘2))))) |
| 14 | 5, 13 | anbi12d 632 |
. . . 4
⊢ (𝑤 = 〈“𝐴𝐵𝐶”〉 → (((♯‘𝑤) = 3 ∧ ((𝑤‘0) − (𝑤‘2)) = ((𝑤‘0) − ((𝑆‘(𝑤‘1))‘(𝑤‘2)))) ↔
((♯‘〈“𝐴𝐵𝐶”〉) = 3 ∧
((〈“𝐴𝐵𝐶”〉‘0) − (〈“𝐴𝐵𝐶”〉‘2)) =
((〈“𝐴𝐵𝐶”〉‘0) − ((𝑆‘(〈“𝐴𝐵𝐶”〉‘1))‘(〈“𝐴𝐵𝐶”〉‘2)))))) |
| 15 | 14 | elrab3 3693 |
. . 3
⊢
(〈“𝐴𝐵𝐶”〉 ∈ Word 𝑃 → (〈“𝐴𝐵𝐶”〉 ∈ {𝑤 ∈ Word 𝑃 ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0) − (𝑤‘2)) = ((𝑤‘0) − ((𝑆‘(𝑤‘1))‘(𝑤‘2))))} ↔
((♯‘〈“𝐴𝐵𝐶”〉) = 3 ∧
((〈“𝐴𝐵𝐶”〉‘0) − (〈“𝐴𝐵𝐶”〉‘2)) =
((〈“𝐴𝐵𝐶”〉‘0) − ((𝑆‘(〈“𝐴𝐵𝐶”〉‘1))‘(〈“𝐴𝐵𝐶”〉‘2)))))) |
| 16 | 4, 15 | syl 17 |
. 2
⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉 ∈ {𝑤 ∈ Word 𝑃 ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0) − (𝑤‘2)) = ((𝑤‘0) − ((𝑆‘(𝑤‘1))‘(𝑤‘2))))} ↔
((♯‘〈“𝐴𝐵𝐶”〉) = 3 ∧
((〈“𝐴𝐵𝐶”〉‘0) − (〈“𝐴𝐵𝐶”〉‘2)) =
((〈“𝐴𝐵𝐶”〉‘0) − ((𝑆‘(〈“𝐴𝐵𝐶”〉‘1))‘(〈“𝐴𝐵𝐶”〉‘2)))))) |
| 17 | | df-rag 28702 |
. . . 4
⊢ ∟G
= (𝑔 ∈ V ↦
{𝑤 ∈ Word
(Base‘𝑔) ∣
((♯‘𝑤) = 3
∧ ((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2))))}) |
| 18 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → 𝑔 = 𝐺) |
| 19 | 18 | fveq2d 6910 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (Base‘𝑔) = (Base‘𝐺)) |
| 20 | | israg.p |
. . . . . . 7
⊢ 𝑃 = (Base‘𝐺) |
| 21 | 19, 20 | eqtr4di 2795 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (Base‘𝑔) = 𝑃) |
| 22 | | wrdeq 14574 |
. . . . . 6
⊢
((Base‘𝑔) =
𝑃 → Word
(Base‘𝑔) = Word 𝑃) |
| 23 | 21, 22 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → Word (Base‘𝑔) = Word 𝑃) |
| 24 | 18 | fveq2d 6910 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (dist‘𝑔) = (dist‘𝐺)) |
| 25 | | israg.d |
. . . . . . . . 9
⊢ − =
(dist‘𝐺) |
| 26 | 24, 25 | eqtr4di 2795 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (dist‘𝑔) = − ) |
| 27 | 26 | oveqd 7448 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → ((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0) − (𝑤‘2))) |
| 28 | | eqidd 2738 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (𝑤‘0) = (𝑤‘0)) |
| 29 | 18 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (pInvG‘𝑔) = (pInvG‘𝐺)) |
| 30 | | israg.s |
. . . . . . . . . . 11
⊢ 𝑆 = (pInvG‘𝐺) |
| 31 | 29, 30 | eqtr4di 2795 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (pInvG‘𝑔) = 𝑆) |
| 32 | 31 | fveq1d 6908 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → ((pInvG‘𝑔)‘(𝑤‘1)) = (𝑆‘(𝑤‘1))) |
| 33 | 32 | fveq1d 6908 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2)) = ((𝑆‘(𝑤‘1))‘(𝑤‘2))) |
| 34 | 26, 28, 33 | oveq123d 7452 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2))) = ((𝑤‘0) − ((𝑆‘(𝑤‘1))‘(𝑤‘2)))) |
| 35 | 27, 34 | eqeq12d 2753 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2))) ↔ ((𝑤‘0) − (𝑤‘2)) = ((𝑤‘0) − ((𝑆‘(𝑤‘1))‘(𝑤‘2))))) |
| 36 | 35 | anbi2d 630 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (((♯‘𝑤) = 3 ∧ ((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2)))) ↔ ((♯‘𝑤) = 3 ∧ ((𝑤‘0) − (𝑤‘2)) = ((𝑤‘0) − ((𝑆‘(𝑤‘1))‘(𝑤‘2)))))) |
| 37 | 23, 36 | rabeqbidv 3455 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → {𝑤 ∈ Word (Base‘𝑔) ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2))))} = {𝑤 ∈ Word 𝑃 ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0) − (𝑤‘2)) = ((𝑤‘0) − ((𝑆‘(𝑤‘1))‘(𝑤‘2))))}) |
| 38 | | israg.g |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| 39 | 38 | elexd 3504 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ V) |
| 40 | 20 | fvexi 6920 |
. . . . . . 7
⊢ 𝑃 ∈ V |
| 41 | 40 | wrdexi 14564 |
. . . . . 6
⊢ Word
𝑃 ∈ V |
| 42 | 41 | rabex 5339 |
. . . . 5
⊢ {𝑤 ∈ Word 𝑃 ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0) − (𝑤‘2)) = ((𝑤‘0) − ((𝑆‘(𝑤‘1))‘(𝑤‘2))))} ∈ V |
| 43 | 42 | a1i 11 |
. . . 4
⊢ (𝜑 → {𝑤 ∈ Word 𝑃 ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0) − (𝑤‘2)) = ((𝑤‘0) − ((𝑆‘(𝑤‘1))‘(𝑤‘2))))} ∈ V) |
| 44 | 17, 37, 39, 43 | fvmptd2 7024 |
. . 3
⊢ (𝜑 → (∟G‘𝐺) = {𝑤 ∈ Word 𝑃 ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0) − (𝑤‘2)) = ((𝑤‘0) − ((𝑆‘(𝑤‘1))‘(𝑤‘2))))}) |
| 45 | 44 | eleq2d 2827 |
. 2
⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺) ↔ 〈“𝐴𝐵𝐶”〉 ∈ {𝑤 ∈ Word 𝑃 ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0) − (𝑤‘2)) = ((𝑤‘0) − ((𝑆‘(𝑤‘1))‘(𝑤‘2))))})) |
| 46 | | s3fv0 14930 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑃 → (〈“𝐴𝐵𝐶”〉‘0) = 𝐴) |
| 47 | 1, 46 | syl 17 |
. . . . . 6
⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉‘0) = 𝐴) |
| 48 | 47 | eqcomd 2743 |
. . . . 5
⊢ (𝜑 → 𝐴 = (〈“𝐴𝐵𝐶”〉‘0)) |
| 49 | | s3fv2 14932 |
. . . . . . 7
⊢ (𝐶 ∈ 𝑃 → (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) |
| 50 | 3, 49 | syl 17 |
. . . . . 6
⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) |
| 51 | 50 | eqcomd 2743 |
. . . . 5
⊢ (𝜑 → 𝐶 = (〈“𝐴𝐵𝐶”〉‘2)) |
| 52 | 48, 51 | oveq12d 7449 |
. . . 4
⊢ (𝜑 → (𝐴 − 𝐶) = ((〈“𝐴𝐵𝐶”〉‘0) − (〈“𝐴𝐵𝐶”〉‘2))) |
| 53 | | s3fv1 14931 |
. . . . . . . . 9
⊢ (𝐵 ∈ 𝑃 → (〈“𝐴𝐵𝐶”〉‘1) = 𝐵) |
| 54 | 2, 53 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉‘1) = 𝐵) |
| 55 | 54 | eqcomd 2743 |
. . . . . . 7
⊢ (𝜑 → 𝐵 = (〈“𝐴𝐵𝐶”〉‘1)) |
| 56 | 55 | fveq2d 6910 |
. . . . . 6
⊢ (𝜑 → (𝑆‘𝐵) = (𝑆‘(〈“𝐴𝐵𝐶”〉‘1))) |
| 57 | 56, 51 | fveq12d 6913 |
. . . . 5
⊢ (𝜑 → ((𝑆‘𝐵)‘𝐶) = ((𝑆‘(〈“𝐴𝐵𝐶”〉‘1))‘(〈“𝐴𝐵𝐶”〉‘2))) |
| 58 | 48, 57 | oveq12d 7449 |
. . . 4
⊢ (𝜑 → (𝐴 − ((𝑆‘𝐵)‘𝐶)) = ((〈“𝐴𝐵𝐶”〉‘0) − ((𝑆‘(〈“𝐴𝐵𝐶”〉‘1))‘(〈“𝐴𝐵𝐶”〉‘2)))) |
| 59 | 52, 58 | eqeq12d 2753 |
. . 3
⊢ (𝜑 → ((𝐴 − 𝐶) = (𝐴 − ((𝑆‘𝐵)‘𝐶)) ↔ ((〈“𝐴𝐵𝐶”〉‘0) − (〈“𝐴𝐵𝐶”〉‘2)) =
((〈“𝐴𝐵𝐶”〉‘0) − ((𝑆‘(〈“𝐴𝐵𝐶”〉‘1))‘(〈“𝐴𝐵𝐶”〉‘2))))) |
| 60 | | s3len 14933 |
. . . . 5
⊢
(♯‘〈“𝐴𝐵𝐶”〉) = 3 |
| 61 | 60 | a1i 11 |
. . . 4
⊢ (𝜑 →
(♯‘〈“𝐴𝐵𝐶”〉) = 3) |
| 62 | 61 | biantrurd 532 |
. . 3
⊢ (𝜑 → (((〈“𝐴𝐵𝐶”〉‘0) − (〈“𝐴𝐵𝐶”〉‘2)) =
((〈“𝐴𝐵𝐶”〉‘0) − ((𝑆‘(〈“𝐴𝐵𝐶”〉‘1))‘(〈“𝐴𝐵𝐶”〉‘2))) ↔
((♯‘〈“𝐴𝐵𝐶”〉) = 3 ∧ ((〈“𝐴𝐵𝐶”〉‘0) − (〈“𝐴𝐵𝐶”〉‘2)) = ((〈“𝐴𝐵𝐶”〉‘0) − ((𝑆‘(〈“𝐴𝐵𝐶”〉‘1))‘(〈“𝐴𝐵𝐶”〉‘2)))))) |
| 63 | 59, 62 | bitrd 279 |
. 2
⊢ (𝜑 → ((𝐴 − 𝐶) = (𝐴 − ((𝑆‘𝐵)‘𝐶)) ↔ ((♯‘〈“𝐴𝐵𝐶”〉) = 3 ∧
((〈“𝐴𝐵𝐶”〉‘0) − (〈“𝐴𝐵𝐶”〉‘2)) =
((〈“𝐴𝐵𝐶”〉‘0) − ((𝑆‘(〈“𝐴𝐵𝐶”〉‘1))‘(〈“𝐴𝐵𝐶”〉‘2)))))) |
| 64 | 16, 45, 63 | 3bitr4d 311 |
1
⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺) ↔ (𝐴 − 𝐶) = (𝐴 − ((𝑆‘𝐵)‘𝐶)))) |