MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  israg Structured version   Visualization version   GIF version

Theorem israg 26962
Description: Property for 3 points A, B, C to form a right angle. Definition 8.1 of [Schwabhauser] p. 57. (Contributed by Thierry Arnoux, 25-Aug-2019.)
Hypotheses
Ref Expression
israg.p 𝑃 = (Base‘𝐺)
israg.d = (dist‘𝐺)
israg.i 𝐼 = (Itv‘𝐺)
israg.l 𝐿 = (LineG‘𝐺)
israg.s 𝑆 = (pInvG‘𝐺)
israg.g (𝜑𝐺 ∈ TarskiG)
israg.a (𝜑𝐴𝑃)
israg.b (𝜑𝐵𝑃)
israg.c (𝜑𝐶𝑃)
Assertion
Ref Expression
israg (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝐴 𝐶) = (𝐴 ((𝑆𝐵)‘𝐶))))

Proof of Theorem israg
Dummy variables 𝑔 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 israg.a . . . 4 (𝜑𝐴𝑃)
2 israg.b . . . 4 (𝜑𝐵𝑃)
3 israg.c . . . 4 (𝜑𝐶𝑃)
41, 2, 3s3cld 14513 . . 3 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃)
5 fveqeq2 6765 . . . . 5 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → ((♯‘𝑤) = 3 ↔ (♯‘⟨“𝐴𝐵𝐶”⟩) = 3))
6 fveq1 6755 . . . . . . 7 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → (𝑤‘0) = (⟨“𝐴𝐵𝐶”⟩‘0))
7 fveq1 6755 . . . . . . 7 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → (𝑤‘2) = (⟨“𝐴𝐵𝐶”⟩‘2))
86, 7oveq12d 7273 . . . . . 6 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → ((𝑤‘0) (𝑤‘2)) = ((⟨“𝐴𝐵𝐶”⟩‘0) (⟨“𝐴𝐵𝐶”⟩‘2)))
9 fveq1 6755 . . . . . . . . 9 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → (𝑤‘1) = (⟨“𝐴𝐵𝐶”⟩‘1))
109fveq2d 6760 . . . . . . . 8 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → (𝑆‘(𝑤‘1)) = (𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1)))
1110, 7fveq12d 6763 . . . . . . 7 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → ((𝑆‘(𝑤‘1))‘(𝑤‘2)) = ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2)))
126, 11oveq12d 7273 . . . . . 6 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))) = ((⟨“𝐴𝐵𝐶”⟩‘0) ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2))))
138, 12eqeq12d 2754 . . . . 5 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → (((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))) ↔ ((⟨“𝐴𝐵𝐶”⟩‘0) (⟨“𝐴𝐵𝐶”⟩‘2)) = ((⟨“𝐴𝐵𝐶”⟩‘0) ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2)))))
145, 13anbi12d 630 . . . 4 (𝑤 = ⟨“𝐴𝐵𝐶”⟩ → (((♯‘𝑤) = 3 ∧ ((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2)))) ↔ ((♯‘⟨“𝐴𝐵𝐶”⟩) = 3 ∧ ((⟨“𝐴𝐵𝐶”⟩‘0) (⟨“𝐴𝐵𝐶”⟩‘2)) = ((⟨“𝐴𝐵𝐶”⟩‘0) ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2))))))
1514elrab3 3618 . . 3 (⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 → (⟨“𝐴𝐵𝐶”⟩ ∈ {𝑤 ∈ Word 𝑃 ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))))} ↔ ((♯‘⟨“𝐴𝐵𝐶”⟩) = 3 ∧ ((⟨“𝐴𝐵𝐶”⟩‘0) (⟨“𝐴𝐵𝐶”⟩‘2)) = ((⟨“𝐴𝐵𝐶”⟩‘0) ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2))))))
164, 15syl 17 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ {𝑤 ∈ Word 𝑃 ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))))} ↔ ((♯‘⟨“𝐴𝐵𝐶”⟩) = 3 ∧ ((⟨“𝐴𝐵𝐶”⟩‘0) (⟨“𝐴𝐵𝐶”⟩‘2)) = ((⟨“𝐴𝐵𝐶”⟩‘0) ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2))))))
17 df-rag 26959 . . . 4 ∟G = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Base‘𝑔) ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2))))})
18 simpr 484 . . . . . . . 8 ((𝜑𝑔 = 𝐺) → 𝑔 = 𝐺)
1918fveq2d 6760 . . . . . . 7 ((𝜑𝑔 = 𝐺) → (Base‘𝑔) = (Base‘𝐺))
20 israg.p . . . . . . 7 𝑃 = (Base‘𝐺)
2119, 20eqtr4di 2797 . . . . . 6 ((𝜑𝑔 = 𝐺) → (Base‘𝑔) = 𝑃)
22 wrdeq 14167 . . . . . 6 ((Base‘𝑔) = 𝑃 → Word (Base‘𝑔) = Word 𝑃)
2321, 22syl 17 . . . . 5 ((𝜑𝑔 = 𝐺) → Word (Base‘𝑔) = Word 𝑃)
2418fveq2d 6760 . . . . . . . . 9 ((𝜑𝑔 = 𝐺) → (dist‘𝑔) = (dist‘𝐺))
25 israg.d . . . . . . . . 9 = (dist‘𝐺)
2624, 25eqtr4di 2797 . . . . . . . 8 ((𝜑𝑔 = 𝐺) → (dist‘𝑔) = )
2726oveqd 7272 . . . . . . 7 ((𝜑𝑔 = 𝐺) → ((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0) (𝑤‘2)))
28 eqidd 2739 . . . . . . . 8 ((𝜑𝑔 = 𝐺) → (𝑤‘0) = (𝑤‘0))
2918fveq2d 6760 . . . . . . . . . . 11 ((𝜑𝑔 = 𝐺) → (pInvG‘𝑔) = (pInvG‘𝐺))
30 israg.s . . . . . . . . . . 11 𝑆 = (pInvG‘𝐺)
3129, 30eqtr4di 2797 . . . . . . . . . 10 ((𝜑𝑔 = 𝐺) → (pInvG‘𝑔) = 𝑆)
3231fveq1d 6758 . . . . . . . . 9 ((𝜑𝑔 = 𝐺) → ((pInvG‘𝑔)‘(𝑤‘1)) = (𝑆‘(𝑤‘1)))
3332fveq1d 6758 . . . . . . . 8 ((𝜑𝑔 = 𝐺) → (((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2)) = ((𝑆‘(𝑤‘1))‘(𝑤‘2)))
3426, 28, 33oveq123d 7276 . . . . . . 7 ((𝜑𝑔 = 𝐺) → ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2))) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))))
3527, 34eqeq12d 2754 . . . . . 6 ((𝜑𝑔 = 𝐺) → (((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2))) ↔ ((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2)))))
3635anbi2d 628 . . . . 5 ((𝜑𝑔 = 𝐺) → (((♯‘𝑤) = 3 ∧ ((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2)))) ↔ ((♯‘𝑤) = 3 ∧ ((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))))))
3723, 36rabeqbidv 3410 . . . 4 ((𝜑𝑔 = 𝐺) → {𝑤 ∈ Word (Base‘𝑔) ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2))))} = {𝑤 ∈ Word 𝑃 ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))))})
38 israg.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
3938elexd 3442 . . . 4 (𝜑𝐺 ∈ V)
4020fvexi 6770 . . . . . . 7 𝑃 ∈ V
4140wrdexi 14157 . . . . . 6 Word 𝑃 ∈ V
4241rabex 5251 . . . . 5 {𝑤 ∈ Word 𝑃 ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))))} ∈ V
4342a1i 11 . . . 4 (𝜑 → {𝑤 ∈ Word 𝑃 ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))))} ∈ V)
4417, 37, 39, 43fvmptd2 6865 . . 3 (𝜑 → (∟G‘𝐺) = {𝑤 ∈ Word 𝑃 ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))))})
4544eleq2d 2824 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ {𝑤 ∈ Word 𝑃 ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0) (𝑤‘2)) = ((𝑤‘0) ((𝑆‘(𝑤‘1))‘(𝑤‘2))))}))
46 s3fv0 14532 . . . . . . 7 (𝐴𝑃 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
471, 46syl 17 . . . . . 6 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
4847eqcomd 2744 . . . . 5 (𝜑𝐴 = (⟨“𝐴𝐵𝐶”⟩‘0))
49 s3fv2 14534 . . . . . . 7 (𝐶𝑃 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
503, 49syl 17 . . . . . 6 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
5150eqcomd 2744 . . . . 5 (𝜑𝐶 = (⟨“𝐴𝐵𝐶”⟩‘2))
5248, 51oveq12d 7273 . . . 4 (𝜑 → (𝐴 𝐶) = ((⟨“𝐴𝐵𝐶”⟩‘0) (⟨“𝐴𝐵𝐶”⟩‘2)))
53 s3fv1 14533 . . . . . . . . 9 (𝐵𝑃 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
542, 53syl 17 . . . . . . . 8 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
5554eqcomd 2744 . . . . . . 7 (𝜑𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1))
5655fveq2d 6760 . . . . . 6 (𝜑 → (𝑆𝐵) = (𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1)))
5756, 51fveq12d 6763 . . . . 5 (𝜑 → ((𝑆𝐵)‘𝐶) = ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2)))
5848, 57oveq12d 7273 . . . 4 (𝜑 → (𝐴 ((𝑆𝐵)‘𝐶)) = ((⟨“𝐴𝐵𝐶”⟩‘0) ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2))))
5952, 58eqeq12d 2754 . . 3 (𝜑 → ((𝐴 𝐶) = (𝐴 ((𝑆𝐵)‘𝐶)) ↔ ((⟨“𝐴𝐵𝐶”⟩‘0) (⟨“𝐴𝐵𝐶”⟩‘2)) = ((⟨“𝐴𝐵𝐶”⟩‘0) ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2)))))
60 s3len 14535 . . . . 5 (♯‘⟨“𝐴𝐵𝐶”⟩) = 3
6160a1i 11 . . . 4 (𝜑 → (♯‘⟨“𝐴𝐵𝐶”⟩) = 3)
6261biantrurd 532 . . 3 (𝜑 → (((⟨“𝐴𝐵𝐶”⟩‘0) (⟨“𝐴𝐵𝐶”⟩‘2)) = ((⟨“𝐴𝐵𝐶”⟩‘0) ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2))) ↔ ((♯‘⟨“𝐴𝐵𝐶”⟩) = 3 ∧ ((⟨“𝐴𝐵𝐶”⟩‘0) (⟨“𝐴𝐵𝐶”⟩‘2)) = ((⟨“𝐴𝐵𝐶”⟩‘0) ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2))))))
6359, 62bitrd 278 . 2 (𝜑 → ((𝐴 𝐶) = (𝐴 ((𝑆𝐵)‘𝐶)) ↔ ((♯‘⟨“𝐴𝐵𝐶”⟩) = 3 ∧ ((⟨“𝐴𝐵𝐶”⟩‘0) (⟨“𝐴𝐵𝐶”⟩‘2)) = ((⟨“𝐴𝐵𝐶”⟩‘0) ((𝑆‘(⟨“𝐴𝐵𝐶”⟩‘1))‘(⟨“𝐴𝐵𝐶”⟩‘2))))))
6416, 45, 633bitr4d 310 1 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝐴 𝐶) = (𝐴 ((𝑆𝐵)‘𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {crab 3067  Vcvv 3422  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803  2c2 11958  3c3 11959  chash 13972  Word cword 14145  ⟨“cs3 14483  Basecbs 16840  distcds 16897  TarskiGcstrkg 26693  Itvcitv 26699  LineGclng 26700  pInvGcmir 26917  ∟Gcrag 26958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-s2 14489  df-s3 14490  df-rag 26959
This theorem is referenced by:  ragcom  26963  ragcol  26964  ragmir  26965  mirrag  26966  ragtrivb  26967  ragflat2  26968  ragflat  26969  ragcgr  26972  footexALT  26983  footexlem1  26984  footexlem2  26985  colperpexlem1  26995  colperpexlem3  26997  mideulem2  26999  opphllem  27000  lmiisolem  27061  hypcgrlem1  27064  hypcgrlem2  27065  trgcopyeulem  27070
  Copyright terms: Public domain W3C validator