Detailed syntax breakdown of Definition df-rcl
| Step | Hyp | Ref
| Expression |
| 1 | | crcl 43685 |
. 2
class
r* |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | 2 | cv 1539 |
. . . . . . 7
class 𝑥 |
| 5 | | vz |
. . . . . . . 8
setvar 𝑧 |
| 6 | 5 | cv 1539 |
. . . . . . 7
class 𝑧 |
| 7 | 4, 6 | wss 3951 |
. . . . . 6
wff 𝑥 ⊆ 𝑧 |
| 8 | | cid 5577 |
. . . . . . . 8
class
I |
| 9 | 6 | cdm 5685 |
. . . . . . . . 9
class dom 𝑧 |
| 10 | 6 | crn 5686 |
. . . . . . . . 9
class ran 𝑧 |
| 11 | 9, 10 | cun 3949 |
. . . . . . . 8
class (dom
𝑧 ∪ ran 𝑧) |
| 12 | 8, 11 | cres 5687 |
. . . . . . 7
class ( I
↾ (dom 𝑧 ∪ ran
𝑧)) |
| 13 | 12, 6 | wss 3951 |
. . . . . 6
wff ( I ↾
(dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧 |
| 14 | 7, 13 | wa 395 |
. . . . 5
wff (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧) |
| 15 | 14, 5 | cab 2714 |
. . . 4
class {𝑧 ∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)} |
| 16 | 15 | cint 4946 |
. . 3
class ∩ {𝑧
∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)} |
| 17 | 2, 3, 16 | cmpt 5225 |
. 2
class (𝑥 ∈ V ↦ ∩ {𝑧
∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)}) |
| 18 | 1, 17 | wceq 1540 |
1
wff r* = (𝑥 ∈ V ↦ ∩ {𝑧
∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)}) |