Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-rcl Structured version   Visualization version   GIF version

Definition df-rcl 40775
 Description: Reflexive closure of a relation. This is the smallest superset which has the reflexive property. (Contributed by RP, 5-Jun-2020.)
Assertion
Ref Expression
df-rcl r* = (𝑥 ∈ V ↦ {𝑧 ∣ (𝑥𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)})
Distinct variable group:   𝑥,𝑧

Detailed syntax breakdown of Definition df-rcl
StepHypRef Expression
1 crcl 40774 . 2 class r*
2 vx . . 3 setvar 𝑥
3 cvv 3409 . . 3 class V
42cv 1537 . . . . . . 7 class 𝑥
5 vz . . . . . . . 8 setvar 𝑧
65cv 1537 . . . . . . 7 class 𝑧
74, 6wss 3860 . . . . . 6 wff 𝑥𝑧
8 cid 5432 . . . . . . . 8 class I
96cdm 5527 . . . . . . . . 9 class dom 𝑧
106crn 5528 . . . . . . . . 9 class ran 𝑧
119, 10cun 3858 . . . . . . . 8 class (dom 𝑧 ∪ ran 𝑧)
128, 11cres 5529 . . . . . . 7 class ( I ↾ (dom 𝑧 ∪ ran 𝑧))
1312, 6wss 3860 . . . . . 6 wff ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧
147, 13wa 399 . . . . 5 wff (𝑥𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)
1514, 5cab 2735 . . . 4 class {𝑧 ∣ (𝑥𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)}
1615cint 4841 . . 3 class {𝑧 ∣ (𝑥𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)}
172, 3, 16cmpt 5115 . 2 class (𝑥 ∈ V ↦ {𝑧 ∣ (𝑥𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)})
181, 17wceq 1538 1 wff r* = (𝑥 ∈ V ↦ {𝑧 ∣ (𝑥𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)})
 Colors of variables: wff setvar class This definition is referenced by:  dfrcl2  40776
 Copyright terms: Public domain W3C validator