Detailed syntax breakdown of Definition df-rcl
Step | Hyp | Ref
| Expression |
1 | | crcl 41280 |
. 2
class
r* |
2 | | vx |
. . 3
setvar 𝑥 |
3 | | cvv 3432 |
. . 3
class
V |
4 | 2 | cv 1538 |
. . . . . . 7
class 𝑥 |
5 | | vz |
. . . . . . . 8
setvar 𝑧 |
6 | 5 | cv 1538 |
. . . . . . 7
class 𝑧 |
7 | 4, 6 | wss 3887 |
. . . . . 6
wff 𝑥 ⊆ 𝑧 |
8 | | cid 5488 |
. . . . . . . 8
class
I |
9 | 6 | cdm 5589 |
. . . . . . . . 9
class dom 𝑧 |
10 | 6 | crn 5590 |
. . . . . . . . 9
class ran 𝑧 |
11 | 9, 10 | cun 3885 |
. . . . . . . 8
class (dom
𝑧 ∪ ran 𝑧) |
12 | 8, 11 | cres 5591 |
. . . . . . 7
class ( I
↾ (dom 𝑧 ∪ ran
𝑧)) |
13 | 12, 6 | wss 3887 |
. . . . . 6
wff ( I ↾
(dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧 |
14 | 7, 13 | wa 396 |
. . . . 5
wff (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧) |
15 | 14, 5 | cab 2715 |
. . . 4
class {𝑧 ∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)} |
16 | 15 | cint 4879 |
. . 3
class ∩ {𝑧
∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)} |
17 | 2, 3, 16 | cmpt 5157 |
. 2
class (𝑥 ∈ V ↦ ∩ {𝑧
∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)}) |
18 | 1, 17 | wceq 1539 |
1
wff r* = (𝑥 ∈ V ↦ ∩ {𝑧
∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)}) |