Step | Hyp | Ref
| Expression |
1 | | df-rcl 41234 |
. 2
⊢ r* =
(𝑥 ∈ V ↦ ∩ {𝑧
∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)}) |
2 | | rabab 3458 |
. . . . . . . 8
⊢ {𝑧 ∈ V ∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)} = {𝑧 ∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)} |
3 | 2 | eqcomi 2748 |
. . . . . . 7
⊢ {𝑧 ∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)} = {𝑧 ∈ V ∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)} |
4 | 3 | inteqi 4888 |
. . . . . 6
⊢ ∩ {𝑧
∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)} = ∩ {𝑧 ∈ V ∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)} |
5 | 4 | a1i 11 |
. . . . 5
⊢ (𝑥 ∈ V → ∩ {𝑧
∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)} = ∩ {𝑧 ∈ V ∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)}) |
6 | | vex 3434 |
. . . . . . . . . . 11
⊢ 𝑥 ∈ V |
7 | 6 | dmex 7745 |
. . . . . . . . . 10
⊢ dom 𝑥 ∈ V |
8 | 6 | rnex 7746 |
. . . . . . . . . 10
⊢ ran 𝑥 ∈ V |
9 | 7, 8 | unex 7587 |
. . . . . . . . 9
⊢ (dom
𝑥 ∪ ran 𝑥) ∈ V |
10 | | resiexg 7748 |
. . . . . . . . 9
⊢ ((dom
𝑥 ∪ ran 𝑥) ∈ V → ( I ↾
(dom 𝑥 ∪ ran 𝑥)) ∈ V) |
11 | 9, 10 | ax-mp 5 |
. . . . . . . 8
⊢ ( I
↾ (dom 𝑥 ∪ ran
𝑥)) ∈
V |
12 | 11, 6 | unex 7587 |
. . . . . . 7
⊢ (( I
↾ (dom 𝑥 ∪ ran
𝑥)) ∪ 𝑥) ∈ V |
13 | 12 | a1i 11 |
. . . . . 6
⊢ (𝑥 ∈ V → (( I ↾
(dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ∈ V) |
14 | | ssun2 4111 |
. . . . . . 7
⊢ 𝑥 ⊆ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) |
15 | | dmun 5816 |
. . . . . . . . . . . 12
⊢ dom (( I
↾ (dom 𝑥 ∪ ran
𝑥)) ∪ 𝑥) = (dom ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ dom 𝑥) |
16 | | dmresi 5958 |
. . . . . . . . . . . . 13
⊢ dom ( I
↾ (dom 𝑥 ∪ ran
𝑥)) = (dom 𝑥 ∪ ran 𝑥) |
17 | 16 | uneq1i 4097 |
. . . . . . . . . . . 12
⊢ (dom ( I
↾ (dom 𝑥 ∪ ran
𝑥)) ∪ dom 𝑥) = ((dom 𝑥 ∪ ran 𝑥) ∪ dom 𝑥) |
18 | | un23 4106 |
. . . . . . . . . . . . 13
⊢ ((dom
𝑥 ∪ ran 𝑥) ∪ dom 𝑥) = ((dom 𝑥 ∪ dom 𝑥) ∪ ran 𝑥) |
19 | | unidm 4090 |
. . . . . . . . . . . . . 14
⊢ (dom
𝑥 ∪ dom 𝑥) = dom 𝑥 |
20 | 19 | uneq1i 4097 |
. . . . . . . . . . . . 13
⊢ ((dom
𝑥 ∪ dom 𝑥) ∪ ran 𝑥) = (dom 𝑥 ∪ ran 𝑥) |
21 | 18, 20 | eqtri 2767 |
. . . . . . . . . . . 12
⊢ ((dom
𝑥 ∪ ran 𝑥) ∪ dom 𝑥) = (dom 𝑥 ∪ ran 𝑥) |
22 | 15, 17, 21 | 3eqtri 2771 |
. . . . . . . . . . 11
⊢ dom (( I
↾ (dom 𝑥 ∪ ran
𝑥)) ∪ 𝑥) = (dom 𝑥 ∪ ran 𝑥) |
23 | | rnun 6046 |
. . . . . . . . . . . 12
⊢ ran (( I
↾ (dom 𝑥 ∪ ran
𝑥)) ∪ 𝑥) = (ran ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ ran 𝑥) |
24 | | rnresi 5980 |
. . . . . . . . . . . . 13
⊢ ran ( I
↾ (dom 𝑥 ∪ ran
𝑥)) = (dom 𝑥 ∪ ran 𝑥) |
25 | 24 | uneq1i 4097 |
. . . . . . . . . . . 12
⊢ (ran ( I
↾ (dom 𝑥 ∪ ran
𝑥)) ∪ ran 𝑥) = ((dom 𝑥 ∪ ran 𝑥) ∪ ran 𝑥) |
26 | | unass 4104 |
. . . . . . . . . . . . 13
⊢ ((dom
𝑥 ∪ ran 𝑥) ∪ ran 𝑥) = (dom 𝑥 ∪ (ran 𝑥 ∪ ran 𝑥)) |
27 | | unidm 4090 |
. . . . . . . . . . . . . 14
⊢ (ran
𝑥 ∪ ran 𝑥) = ran 𝑥 |
28 | 27 | uneq2i 4098 |
. . . . . . . . . . . . 13
⊢ (dom
𝑥 ∪ (ran 𝑥 ∪ ran 𝑥)) = (dom 𝑥 ∪ ran 𝑥) |
29 | 26, 28 | eqtri 2767 |
. . . . . . . . . . . 12
⊢ ((dom
𝑥 ∪ ran 𝑥) ∪ ran 𝑥) = (dom 𝑥 ∪ ran 𝑥) |
30 | 23, 25, 29 | 3eqtri 2771 |
. . . . . . . . . . 11
⊢ ran (( I
↾ (dom 𝑥 ∪ ran
𝑥)) ∪ 𝑥) = (dom 𝑥 ∪ ran 𝑥) |
31 | 22, 30 | uneq12i 4099 |
. . . . . . . . . 10
⊢ (dom (( I
↾ (dom 𝑥 ∪ ran
𝑥)) ∪ 𝑥) ∪ ran (( I ↾ (dom
𝑥 ∪ ran 𝑥)) ∪ 𝑥)) = ((dom 𝑥 ∪ ran 𝑥) ∪ (dom 𝑥 ∪ ran 𝑥)) |
32 | | unidm 4090 |
. . . . . . . . . 10
⊢ ((dom
𝑥 ∪ ran 𝑥) ∪ (dom 𝑥 ∪ ran 𝑥)) = (dom 𝑥 ∪ ran 𝑥) |
33 | 31, 32 | eqtri 2767 |
. . . . . . . . 9
⊢ (dom (( I
↾ (dom 𝑥 ∪ ran
𝑥)) ∪ 𝑥) ∪ ran (( I ↾ (dom
𝑥 ∪ ran 𝑥)) ∪ 𝑥)) = (dom 𝑥 ∪ ran 𝑥) |
34 | 33 | reseq2i 5885 |
. . . . . . . 8
⊢ ( I
↾ (dom (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ∪ ran (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥))) = ( I ↾ (dom 𝑥 ∪ ran 𝑥)) |
35 | | ssun1 4110 |
. . . . . . . 8
⊢ ( I
↾ (dom 𝑥 ∪ ran
𝑥)) ⊆ (( I ↾
(dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) |
36 | 34, 35 | eqsstri 3959 |
. . . . . . 7
⊢ ( I
↾ (dom (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ∪ ran (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥))) ⊆ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) |
37 | 14, 36 | pm3.2i 470 |
. . . . . 6
⊢ (𝑥 ⊆ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ∧ ( I ↾ (dom (( I ↾ (dom
𝑥 ∪ ran 𝑥)) ∪ 𝑥) ∪ ran (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥))) ⊆ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥)) |
38 | | dmeq 5809 |
. . . . . . . . . . 11
⊢ (𝑧 = (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) → dom 𝑧 = dom (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥)) |
39 | | rneq 5842 |
. . . . . . . . . . 11
⊢ (𝑧 = (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) → ran 𝑧 = ran (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥)) |
40 | 38, 39 | uneq12d 4102 |
. . . . . . . . . 10
⊢ (𝑧 = (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) → (dom 𝑧 ∪ ran 𝑧) = (dom (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ∪ ran (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥))) |
41 | 40 | reseq2d 5888 |
. . . . . . . . 9
⊢ (𝑧 = (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) → ( I ↾ (dom 𝑧 ∪ ran 𝑧)) = ( I ↾ (dom (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ∪ ran (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥)))) |
42 | | id 22 |
. . . . . . . . 9
⊢ (𝑧 = (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) → 𝑧 = (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥)) |
43 | 41, 42 | sseq12d 3958 |
. . . . . . . 8
⊢ (𝑧 = (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) → (( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧 ↔ ( I ↾ (dom (( I ↾ (dom
𝑥 ∪ ran 𝑥)) ∪ 𝑥) ∪ ran (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥))) ⊆ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥))) |
44 | 43 | cleq2lem 41169 |
. . . . . . 7
⊢ (𝑧 = (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) → ((𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧) ↔ (𝑥 ⊆ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ∧ ( I ↾ (dom (( I ↾ (dom
𝑥 ∪ ran 𝑥)) ∪ 𝑥) ∪ ran (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥))) ⊆ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥)))) |
45 | 44 | intminss 4910 |
. . . . . 6
⊢ (((( I
↾ (dom 𝑥 ∪ ran
𝑥)) ∪ 𝑥) ∈ V ∧ (𝑥 ⊆ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ∧ ( I ↾ (dom (( I ↾ (dom
𝑥 ∪ ran 𝑥)) ∪ 𝑥) ∪ ran (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥))) ⊆ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥))) → ∩
{𝑧 ∈ V ∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)} ⊆ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥)) |
46 | 13, 37, 45 | sylancl 585 |
. . . . 5
⊢ (𝑥 ∈ V → ∩ {𝑧
∈ V ∣ (𝑥 ⊆
𝑧 ∧ ( I ↾ (dom
𝑧 ∪ ran 𝑧)) ⊆ 𝑧)} ⊆ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥)) |
47 | 5, 46 | eqsstrd 3963 |
. . . 4
⊢ (𝑥 ∈ V → ∩ {𝑧
∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)} ⊆ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥)) |
48 | | dmss 5808 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ⊆ 𝑧 → dom 𝑥 ⊆ dom 𝑧) |
49 | | rnss 5845 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ⊆ 𝑧 → ran 𝑥 ⊆ ran 𝑧) |
50 | | unss12 4120 |
. . . . . . . . . . . . . . . 16
⊢ ((dom
𝑥 ⊆ dom 𝑧 ∧ ran 𝑥 ⊆ ran 𝑧) → (dom 𝑥 ∪ ran 𝑥) ⊆ (dom 𝑧 ∪ ran 𝑧)) |
51 | 48, 49, 50 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ⊆ 𝑧 → (dom 𝑥 ∪ ran 𝑥) ⊆ (dom 𝑧 ∪ ran 𝑧)) |
52 | | dfss 3909 |
. . . . . . . . . . . . . . 15
⊢ ((dom
𝑥 ∪ ran 𝑥) ⊆ (dom 𝑧 ∪ ran 𝑧) ↔ (dom 𝑥 ∪ ran 𝑥) = ((dom 𝑥 ∪ ran 𝑥) ∩ (dom 𝑧 ∪ ran 𝑧))) |
53 | 51, 52 | sylib 217 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ⊆ 𝑧 → (dom 𝑥 ∪ ran 𝑥) = ((dom 𝑥 ∪ ran 𝑥) ∩ (dom 𝑧 ∪ ran 𝑧))) |
54 | | incom 4139 |
. . . . . . . . . . . . . 14
⊢ ((dom
𝑥 ∪ ran 𝑥) ∩ (dom 𝑧 ∪ ran 𝑧)) = ((dom 𝑧 ∪ ran 𝑧) ∩ (dom 𝑥 ∪ ran 𝑥)) |
55 | 53, 54 | eqtrdi 2795 |
. . . . . . . . . . . . 13
⊢ (𝑥 ⊆ 𝑧 → (dom 𝑥 ∪ ran 𝑥) = ((dom 𝑧 ∪ ran 𝑧) ∩ (dom 𝑥 ∪ ran 𝑥))) |
56 | 55 | reseq2d 5888 |
. . . . . . . . . . . 12
⊢ (𝑥 ⊆ 𝑧 → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) = ( I ↾ ((dom 𝑧 ∪ ran 𝑧) ∩ (dom 𝑥 ∪ ran 𝑥)))) |
57 | | resres 5901 |
. . . . . . . . . . . 12
⊢ (( I
↾ (dom 𝑧 ∪ ran
𝑧)) ↾ (dom 𝑥 ∪ ran 𝑥)) = ( I ↾ ((dom 𝑧 ∪ ran 𝑧) ∩ (dom 𝑥 ∪ ran 𝑥))) |
58 | 56, 57 | eqtr4di 2797 |
. . . . . . . . . . 11
⊢ (𝑥 ⊆ 𝑧 → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) = (( I ↾ (dom 𝑧 ∪ ran 𝑧)) ↾ (dom 𝑥 ∪ ran 𝑥))) |
59 | | resss 5913 |
. . . . . . . . . . . 12
⊢ (( I
↾ (dom 𝑧 ∪ ran
𝑧)) ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) |
60 | 59 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑥 ⊆ 𝑧 → (( I ↾ (dom 𝑧 ∪ ran 𝑧)) ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ ( I ↾ (dom 𝑧 ∪ ran 𝑧))) |
61 | 58, 60 | eqsstrd 3963 |
. . . . . . . . . 10
⊢ (𝑥 ⊆ 𝑧 → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ ( I ↾ (dom 𝑧 ∪ ran 𝑧))) |
62 | 61 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧) → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ ( I ↾ (dom 𝑧 ∪ ran 𝑧))) |
63 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧) → ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧) |
64 | 62, 63 | sstrd 3935 |
. . . . . . . 8
⊢ ((𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧) → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧) |
65 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧) → 𝑥 ⊆ 𝑧) |
66 | 64, 65 | unssd 4124 |
. . . . . . 7
⊢ ((𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧) → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ⊆ 𝑧) |
67 | 66 | ax-gen 1801 |
. . . . . 6
⊢
∀𝑧((𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧) → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ⊆ 𝑧) |
68 | 67 | a1i 11 |
. . . . 5
⊢ (𝑥 ∈ V → ∀𝑧((𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧) → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ⊆ 𝑧)) |
69 | | ssintab 4901 |
. . . . 5
⊢ ((( I
↾ (dom 𝑥 ∪ ran
𝑥)) ∪ 𝑥) ⊆ ∩ {𝑧
∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)} ↔ ∀𝑧((𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧) → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ⊆ 𝑧)) |
70 | 68, 69 | sylibr 233 |
. . . 4
⊢ (𝑥 ∈ V → (( I ↾
(dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ⊆ ∩ {𝑧 ∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)}) |
71 | 47, 70 | eqssd 3942 |
. . 3
⊢ (𝑥 ∈ V → ∩ {𝑧
∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)} = (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥)) |
72 | 71 | mpteq2ia 5181 |
. 2
⊢ (𝑥 ∈ V ↦ ∩ {𝑧
∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)}) = (𝑥 ∈ V ↦ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥)) |
73 | 1, 72 | eqtri 2767 |
1
⊢ r* =
(𝑥 ∈ V ↦ (( I
↾ (dom 𝑥 ∪ ran
𝑥)) ∪ 𝑥)) |