| Step | Hyp | Ref
| Expression |
| 1 | | df-rcl 43664 |
. 2
⊢ r* =
(𝑥 ∈ V ↦ ∩ {𝑧
∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)}) |
| 2 | | rabab 3496 |
. . . . . . . 8
⊢ {𝑧 ∈ V ∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)} = {𝑧 ∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)} |
| 3 | 2 | eqcomi 2745 |
. . . . . . 7
⊢ {𝑧 ∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)} = {𝑧 ∈ V ∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)} |
| 4 | 3 | inteqi 4931 |
. . . . . 6
⊢ ∩ {𝑧
∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)} = ∩ {𝑧 ∈ V ∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)} |
| 5 | 4 | a1i 11 |
. . . . 5
⊢ (𝑥 ∈ V → ∩ {𝑧
∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)} = ∩ {𝑧 ∈ V ∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)}) |
| 6 | | vex 3468 |
. . . . . . . . . . 11
⊢ 𝑥 ∈ V |
| 7 | 6 | dmex 7910 |
. . . . . . . . . 10
⊢ dom 𝑥 ∈ V |
| 8 | 6 | rnex 7911 |
. . . . . . . . . 10
⊢ ran 𝑥 ∈ V |
| 9 | 7, 8 | unex 7743 |
. . . . . . . . 9
⊢ (dom
𝑥 ∪ ran 𝑥) ∈ V |
| 10 | | resiexg 7913 |
. . . . . . . . 9
⊢ ((dom
𝑥 ∪ ran 𝑥) ∈ V → ( I ↾
(dom 𝑥 ∪ ran 𝑥)) ∈ V) |
| 11 | 9, 10 | ax-mp 5 |
. . . . . . . 8
⊢ ( I
↾ (dom 𝑥 ∪ ran
𝑥)) ∈
V |
| 12 | 11, 6 | unex 7743 |
. . . . . . 7
⊢ (( I
↾ (dom 𝑥 ∪ ran
𝑥)) ∪ 𝑥) ∈ V |
| 13 | 12 | a1i 11 |
. . . . . 6
⊢ (𝑥 ∈ V → (( I ↾
(dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ∈ V) |
| 14 | | ssun2 4159 |
. . . . . . 7
⊢ 𝑥 ⊆ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) |
| 15 | | dmun 5895 |
. . . . . . . . . . . 12
⊢ dom (( I
↾ (dom 𝑥 ∪ ran
𝑥)) ∪ 𝑥) = (dom ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ dom 𝑥) |
| 16 | | dmresi 6044 |
. . . . . . . . . . . . 13
⊢ dom ( I
↾ (dom 𝑥 ∪ ran
𝑥)) = (dom 𝑥 ∪ ran 𝑥) |
| 17 | 16 | uneq1i 4144 |
. . . . . . . . . . . 12
⊢ (dom ( I
↾ (dom 𝑥 ∪ ran
𝑥)) ∪ dom 𝑥) = ((dom 𝑥 ∪ ran 𝑥) ∪ dom 𝑥) |
| 18 | | un23 4154 |
. . . . . . . . . . . . 13
⊢ ((dom
𝑥 ∪ ran 𝑥) ∪ dom 𝑥) = ((dom 𝑥 ∪ dom 𝑥) ∪ ran 𝑥) |
| 19 | | unidm 4137 |
. . . . . . . . . . . . . 14
⊢ (dom
𝑥 ∪ dom 𝑥) = dom 𝑥 |
| 20 | 19 | uneq1i 4144 |
. . . . . . . . . . . . 13
⊢ ((dom
𝑥 ∪ dom 𝑥) ∪ ran 𝑥) = (dom 𝑥 ∪ ran 𝑥) |
| 21 | 18, 20 | eqtri 2759 |
. . . . . . . . . . . 12
⊢ ((dom
𝑥 ∪ ran 𝑥) ∪ dom 𝑥) = (dom 𝑥 ∪ ran 𝑥) |
| 22 | 15, 17, 21 | 3eqtri 2763 |
. . . . . . . . . . 11
⊢ dom (( I
↾ (dom 𝑥 ∪ ran
𝑥)) ∪ 𝑥) = (dom 𝑥 ∪ ran 𝑥) |
| 23 | | rnun 6139 |
. . . . . . . . . . . 12
⊢ ran (( I
↾ (dom 𝑥 ∪ ran
𝑥)) ∪ 𝑥) = (ran ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ ran 𝑥) |
| 24 | | rnresi 6067 |
. . . . . . . . . . . . 13
⊢ ran ( I
↾ (dom 𝑥 ∪ ran
𝑥)) = (dom 𝑥 ∪ ran 𝑥) |
| 25 | 24 | uneq1i 4144 |
. . . . . . . . . . . 12
⊢ (ran ( I
↾ (dom 𝑥 ∪ ran
𝑥)) ∪ ran 𝑥) = ((dom 𝑥 ∪ ran 𝑥) ∪ ran 𝑥) |
| 26 | | unass 4152 |
. . . . . . . . . . . . 13
⊢ ((dom
𝑥 ∪ ran 𝑥) ∪ ran 𝑥) = (dom 𝑥 ∪ (ran 𝑥 ∪ ran 𝑥)) |
| 27 | | unidm 4137 |
. . . . . . . . . . . . . 14
⊢ (ran
𝑥 ∪ ran 𝑥) = ran 𝑥 |
| 28 | 27 | uneq2i 4145 |
. . . . . . . . . . . . 13
⊢ (dom
𝑥 ∪ (ran 𝑥 ∪ ran 𝑥)) = (dom 𝑥 ∪ ran 𝑥) |
| 29 | 26, 28 | eqtri 2759 |
. . . . . . . . . . . 12
⊢ ((dom
𝑥 ∪ ran 𝑥) ∪ ran 𝑥) = (dom 𝑥 ∪ ran 𝑥) |
| 30 | 23, 25, 29 | 3eqtri 2763 |
. . . . . . . . . . 11
⊢ ran (( I
↾ (dom 𝑥 ∪ ran
𝑥)) ∪ 𝑥) = (dom 𝑥 ∪ ran 𝑥) |
| 31 | 22, 30 | uneq12i 4146 |
. . . . . . . . . 10
⊢ (dom (( I
↾ (dom 𝑥 ∪ ran
𝑥)) ∪ 𝑥) ∪ ran (( I ↾ (dom
𝑥 ∪ ran 𝑥)) ∪ 𝑥)) = ((dom 𝑥 ∪ ran 𝑥) ∪ (dom 𝑥 ∪ ran 𝑥)) |
| 32 | | unidm 4137 |
. . . . . . . . . 10
⊢ ((dom
𝑥 ∪ ran 𝑥) ∪ (dom 𝑥 ∪ ran 𝑥)) = (dom 𝑥 ∪ ran 𝑥) |
| 33 | 31, 32 | eqtri 2759 |
. . . . . . . . 9
⊢ (dom (( I
↾ (dom 𝑥 ∪ ran
𝑥)) ∪ 𝑥) ∪ ran (( I ↾ (dom
𝑥 ∪ ran 𝑥)) ∪ 𝑥)) = (dom 𝑥 ∪ ran 𝑥) |
| 34 | 33 | reseq2i 5968 |
. . . . . . . 8
⊢ ( I
↾ (dom (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ∪ ran (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥))) = ( I ↾ (dom 𝑥 ∪ ran 𝑥)) |
| 35 | | ssun1 4158 |
. . . . . . . 8
⊢ ( I
↾ (dom 𝑥 ∪ ran
𝑥)) ⊆ (( I ↾
(dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) |
| 36 | 34, 35 | eqsstri 4010 |
. . . . . . 7
⊢ ( I
↾ (dom (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ∪ ran (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥))) ⊆ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) |
| 37 | 14, 36 | pm3.2i 470 |
. . . . . 6
⊢ (𝑥 ⊆ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ∧ ( I ↾ (dom (( I ↾ (dom
𝑥 ∪ ran 𝑥)) ∪ 𝑥) ∪ ran (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥))) ⊆ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥)) |
| 38 | | dmeq 5888 |
. . . . . . . . . . 11
⊢ (𝑧 = (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) → dom 𝑧 = dom (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥)) |
| 39 | | rneq 5921 |
. . . . . . . . . . 11
⊢ (𝑧 = (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) → ran 𝑧 = ran (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥)) |
| 40 | 38, 39 | uneq12d 4149 |
. . . . . . . . . 10
⊢ (𝑧 = (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) → (dom 𝑧 ∪ ran 𝑧) = (dom (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ∪ ran (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥))) |
| 41 | 40 | reseq2d 5971 |
. . . . . . . . 9
⊢ (𝑧 = (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) → ( I ↾ (dom 𝑧 ∪ ran 𝑧)) = ( I ↾ (dom (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ∪ ran (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥)))) |
| 42 | | id 22 |
. . . . . . . . 9
⊢ (𝑧 = (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) → 𝑧 = (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥)) |
| 43 | 41, 42 | sseq12d 3997 |
. . . . . . . 8
⊢ (𝑧 = (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) → (( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧 ↔ ( I ↾ (dom (( I ↾ (dom
𝑥 ∪ ran 𝑥)) ∪ 𝑥) ∪ ran (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥))) ⊆ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥))) |
| 44 | 43 | cleq2lem 43599 |
. . . . . . 7
⊢ (𝑧 = (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) → ((𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧) ↔ (𝑥 ⊆ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ∧ ( I ↾ (dom (( I ↾ (dom
𝑥 ∪ ran 𝑥)) ∪ 𝑥) ∪ ran (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥))) ⊆ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥)))) |
| 45 | 44 | intminss 4955 |
. . . . . 6
⊢ (((( I
↾ (dom 𝑥 ∪ ran
𝑥)) ∪ 𝑥) ∈ V ∧ (𝑥 ⊆ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ∧ ( I ↾ (dom (( I ↾ (dom
𝑥 ∪ ran 𝑥)) ∪ 𝑥) ∪ ran (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥))) ⊆ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥))) → ∩
{𝑧 ∈ V ∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)} ⊆ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥)) |
| 46 | 13, 37, 45 | sylancl 586 |
. . . . 5
⊢ (𝑥 ∈ V → ∩ {𝑧
∈ V ∣ (𝑥 ⊆
𝑧 ∧ ( I ↾ (dom
𝑧 ∪ ran 𝑧)) ⊆ 𝑧)} ⊆ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥)) |
| 47 | 5, 46 | eqsstrd 3998 |
. . . 4
⊢ (𝑥 ∈ V → ∩ {𝑧
∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)} ⊆ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥)) |
| 48 | | dmss 5887 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ⊆ 𝑧 → dom 𝑥 ⊆ dom 𝑧) |
| 49 | | rnss 5924 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ⊆ 𝑧 → ran 𝑥 ⊆ ran 𝑧) |
| 50 | | unss12 4168 |
. . . . . . . . . . . . . . . 16
⊢ ((dom
𝑥 ⊆ dom 𝑧 ∧ ran 𝑥 ⊆ ran 𝑧) → (dom 𝑥 ∪ ran 𝑥) ⊆ (dom 𝑧 ∪ ran 𝑧)) |
| 51 | 48, 49, 50 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ⊆ 𝑧 → (dom 𝑥 ∪ ran 𝑥) ⊆ (dom 𝑧 ∪ ran 𝑧)) |
| 52 | | dfss 3950 |
. . . . . . . . . . . . . . 15
⊢ ((dom
𝑥 ∪ ran 𝑥) ⊆ (dom 𝑧 ∪ ran 𝑧) ↔ (dom 𝑥 ∪ ran 𝑥) = ((dom 𝑥 ∪ ran 𝑥) ∩ (dom 𝑧 ∪ ran 𝑧))) |
| 53 | 51, 52 | sylib 218 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ⊆ 𝑧 → (dom 𝑥 ∪ ran 𝑥) = ((dom 𝑥 ∪ ran 𝑥) ∩ (dom 𝑧 ∪ ran 𝑧))) |
| 54 | | incom 4189 |
. . . . . . . . . . . . . 14
⊢ ((dom
𝑥 ∪ ran 𝑥) ∩ (dom 𝑧 ∪ ran 𝑧)) = ((dom 𝑧 ∪ ran 𝑧) ∩ (dom 𝑥 ∪ ran 𝑥)) |
| 55 | 53, 54 | eqtrdi 2787 |
. . . . . . . . . . . . 13
⊢ (𝑥 ⊆ 𝑧 → (dom 𝑥 ∪ ran 𝑥) = ((dom 𝑧 ∪ ran 𝑧) ∩ (dom 𝑥 ∪ ran 𝑥))) |
| 56 | 55 | reseq2d 5971 |
. . . . . . . . . . . 12
⊢ (𝑥 ⊆ 𝑧 → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) = ( I ↾ ((dom 𝑧 ∪ ran 𝑧) ∩ (dom 𝑥 ∪ ran 𝑥)))) |
| 57 | | resres 5984 |
. . . . . . . . . . . 12
⊢ (( I
↾ (dom 𝑧 ∪ ran
𝑧)) ↾ (dom 𝑥 ∪ ran 𝑥)) = ( I ↾ ((dom 𝑧 ∪ ran 𝑧) ∩ (dom 𝑥 ∪ ran 𝑥))) |
| 58 | 56, 57 | eqtr4di 2789 |
. . . . . . . . . . 11
⊢ (𝑥 ⊆ 𝑧 → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) = (( I ↾ (dom 𝑧 ∪ ran 𝑧)) ↾ (dom 𝑥 ∪ ran 𝑥))) |
| 59 | | resss 5993 |
. . . . . . . . . . . 12
⊢ (( I
↾ (dom 𝑧 ∪ ran
𝑧)) ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) |
| 60 | 59 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑥 ⊆ 𝑧 → (( I ↾ (dom 𝑧 ∪ ran 𝑧)) ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ ( I ↾ (dom 𝑧 ∪ ran 𝑧))) |
| 61 | 58, 60 | eqsstrd 3998 |
. . . . . . . . . 10
⊢ (𝑥 ⊆ 𝑧 → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ ( I ↾ (dom 𝑧 ∪ ran 𝑧))) |
| 62 | 61 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧) → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ ( I ↾ (dom 𝑧 ∪ ran 𝑧))) |
| 63 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧) → ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧) |
| 64 | 62, 63 | sstrd 3974 |
. . . . . . . 8
⊢ ((𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧) → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧) |
| 65 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧) → 𝑥 ⊆ 𝑧) |
| 66 | 64, 65 | unssd 4172 |
. . . . . . 7
⊢ ((𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧) → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ⊆ 𝑧) |
| 67 | 66 | ax-gen 1795 |
. . . . . 6
⊢
∀𝑧((𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧) → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ⊆ 𝑧) |
| 68 | 67 | a1i 11 |
. . . . 5
⊢ (𝑥 ∈ V → ∀𝑧((𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧) → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ⊆ 𝑧)) |
| 69 | | ssintab 4946 |
. . . . 5
⊢ ((( I
↾ (dom 𝑥 ∪ ran
𝑥)) ∪ 𝑥) ⊆ ∩ {𝑧
∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)} ↔ ∀𝑧((𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧) → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ⊆ 𝑧)) |
| 70 | 68, 69 | sylibr 234 |
. . . 4
⊢ (𝑥 ∈ V → (( I ↾
(dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥) ⊆ ∩ {𝑧 ∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)}) |
| 71 | 47, 70 | eqssd 3981 |
. . 3
⊢ (𝑥 ∈ V → ∩ {𝑧
∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)} = (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥)) |
| 72 | 71 | mpteq2ia 5221 |
. 2
⊢ (𝑥 ∈ V ↦ ∩ {𝑧
∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)}) = (𝑥 ∈ V ↦ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥)) |
| 73 | 1, 72 | eqtri 2759 |
1
⊢ r* =
(𝑥 ∈ V ↦ (( I
↾ (dom 𝑥 ∪ ran
𝑥)) ∪ 𝑥)) |