| Metamath
Proof Explorer Theorem List (p. 428 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | mzpcl34 42701 | Defining properties 3 and 4 of a polynomially closed function set 𝑃: it is closed under pointwise addition and multiplication. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃) → ((𝐹 ∘f + 𝐺) ∈ 𝑃 ∧ (𝐹 ∘f · 𝐺) ∈ 𝑃)) | ||
| Theorem | mzpval 42702 | Value of the mzPoly function. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ (𝑉 ∈ V → (mzPoly‘𝑉) = ∩ (mzPolyCld‘𝑉)) | ||
| Theorem | dmmzp 42703 | mzPoly is defined for all index sets which are sets. This is used with elfvdm 6912 to eliminate sethood antecedents. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ dom mzPoly = V | ||
| Theorem | mzpincl 42704 | Polynomial closedness is a universal first-order property and passes to intersections. This is where the closure properties of the polynomial ring itself are proved. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ (𝑉 ∈ V → (mzPoly‘𝑉) ∈ (mzPolyCld‘𝑉)) | ||
| Theorem | mzpconst 42705 | Constant functions are polynomial. See also mzpconstmpt 42710. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ ((𝑉 ∈ V ∧ 𝐶 ∈ ℤ) → ((ℤ ↑m 𝑉) × {𝐶}) ∈ (mzPoly‘𝑉)) | ||
| Theorem | mzpf 42706 | A polynomial function is a function from the coordinate space to the integers. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
| ⊢ (𝐹 ∈ (mzPoly‘𝑉) → 𝐹:(ℤ ↑m 𝑉)⟶ℤ) | ||
| Theorem | mzpproj 42707* | A projection function is polynomial. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ ((𝑉 ∈ V ∧ 𝑋 ∈ 𝑉) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑋)) ∈ (mzPoly‘𝑉)) | ||
| Theorem | mzpadd 42708 | The pointwise sum of two polynomial functions is a polynomial function. See also mzpaddmpt 42711. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ ((𝐴 ∈ (mzPoly‘𝑉) ∧ 𝐵 ∈ (mzPoly‘𝑉)) → (𝐴 ∘f + 𝐵) ∈ (mzPoly‘𝑉)) | ||
| Theorem | mzpmul 42709 | The pointwise product of two polynomial functions is a polynomial function. See also mzpmulmpt 42712. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ ((𝐴 ∈ (mzPoly‘𝑉) ∧ 𝐵 ∈ (mzPoly‘𝑉)) → (𝐴 ∘f · 𝐵) ∈ (mzPoly‘𝑉)) | ||
| Theorem | mzpconstmpt 42710* | A constant function expressed in maps-to notation is polynomial. This theorem and the several that follow (mzpaddmpt 42711, mzpmulmpt 42712, mzpnegmpt 42714, mzpsubmpt 42713, mzpexpmpt 42715) can be used to build proofs that functions which are "manifestly polynomial", in the sense of being a maps-to containing constants, projections, and simple arithmetic operations, are actually polynomial functions. There is no mzpprojmpt because mzpproj 42707 is already expressed using maps-to notation. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
| ⊢ ((𝑉 ∈ V ∧ 𝐶 ∈ ℤ) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐶) ∈ (mzPoly‘𝑉)) | ||
| Theorem | mzpaddmpt 42711* | Sum of polynomial functions is polynomial. Maps-to version of mzpadd 42708. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
| ⊢ (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴 + 𝐵)) ∈ (mzPoly‘𝑉)) | ||
| Theorem | mzpmulmpt 42712* | Product of polynomial functions is polynomial. Maps-to version of mzpmulmpt 42712. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
| ⊢ (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴 · 𝐵)) ∈ (mzPoly‘𝑉)) | ||
| Theorem | mzpsubmpt 42713* | The difference of two polynomial functions is polynomial. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| ⊢ (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴 − 𝐵)) ∈ (mzPoly‘𝑉)) | ||
| Theorem | mzpnegmpt 42714* | Negation of a polynomial function. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
| ⊢ ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ -𝐴) ∈ (mzPoly‘𝑉)) | ||
| Theorem | mzpexpmpt 42715* | Raise a polynomial function to a (fixed) exponent. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
| ⊢ (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ 𝐷 ∈ ℕ0) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑𝐷)) ∈ (mzPoly‘𝑉)) | ||
| Theorem | mzpindd 42716* | "Structural" induction to prove properties of all polynomial functions. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) → 𝜒) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑉) → 𝜃) & ⊢ ((𝜑 ∧ (𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂)) → 𝜁) & ⊢ ((𝜑 ∧ (𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂)) → 𝜎) & ⊢ (𝑥 = ((ℤ ↑m 𝑉) × {𝑓}) → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑓)) → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = 𝑓 → (𝜓 ↔ 𝜏)) & ⊢ (𝑥 = 𝑔 → (𝜓 ↔ 𝜂)) & ⊢ (𝑥 = (𝑓 ∘f + 𝑔) → (𝜓 ↔ 𝜁)) & ⊢ (𝑥 = (𝑓 ∘f · 𝑔) → (𝜓 ↔ 𝜎)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜌)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ (mzPoly‘𝑉)) → 𝜌) | ||
| Theorem | mzpmfp 42717 | Relationship between multivariate Z-polynomials and general multivariate polynomial functions. (Contributed by Stefan O'Rear, 20-Mar-2015.) (Revised by AV, 13-Jun-2019.) |
| ⊢ (mzPoly‘𝐼) = ran (𝐼 eval ℤring) | ||
| Theorem | mzpsubst 42718* | Substituting polynomials for the variables of a polynomial results in a polynomial. 𝐺 is expected to depend on 𝑦 and provide the polynomials which are being substituted. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
| ⊢ ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ ∀𝑦 ∈ 𝑉 𝐺 ∈ (mzPoly‘𝑊)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑦 ∈ 𝑉 ↦ (𝐺‘𝑥)))) ∈ (mzPoly‘𝑊)) | ||
| Theorem | mzprename 42719* | Simplified version of mzpsubst 42718 to simply relabel variables in a polynomial. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
| ⊢ ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉⟶𝑊) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥 ∘ 𝑅))) ∈ (mzPoly‘𝑊)) | ||
| Theorem | mzpresrename 42720* | A polynomial is a polynomial over all larger index sets. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Revised by Stefan O'Rear, 5-Jun-2015.) |
| ⊢ ((𝑊 ∈ V ∧ 𝑉 ⊆ 𝑊 ∧ 𝐹 ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥 ↾ 𝑉))) ∈ (mzPoly‘𝑊)) | ||
| Theorem | mzpcompact2lem 42721* | Lemma for mzpcompact2 42722. (Contributed by Stefan O'Rear, 9-Oct-2014.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐 ↾ 𝑎))))) | ||
| Theorem | mzpcompact2 42722* | Polynomials are finitary objects and can only reference a finite number of variables, even if the index set is infinite. Thus, every polynomial can be expressed as a (uniquely minimal, although we do not prove that) polynomial on a finite number of variables, which is then extended by adding an arbitrary set of ignored variables. (Contributed by Stefan O'Rear, 9-Oct-2014.) |
| ⊢ (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐 ↾ 𝑎))))) | ||
| Theorem | coeq0i 42723 | coeq0 6244 but without explicitly introducing domain and range symbols. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
| ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → (𝐴 ∘ 𝐵) = ∅) | ||
| Theorem | fzsplit1nn0 42724 | Split a finite 1-based set of integers in the middle, allowing either end to be empty ((1...0)). (Contributed by Stefan O'Rear, 8-Oct-2014.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵))) | ||
| Syntax | cdioph 42725 | Extend class notation to include the family of Diophantine sets. |
| class Dioph | ||
| Definition | df-dioph 42726* | A Diophantine set is a set of positive integers which is a projection of the zero set of some polynomial. This definition somewhat awkwardly mixes ℤ (via mzPoly) and ℕ0 (to define the zero sets); the former could be avoided by considering coincidence sets of ℕ0 polynomials at the cost of requiring two, and the second is driven by consistency with our mu-recursive functions and the requirements of the Davis-Putnam-Robinson-Matiyasevich proof. Both are avoidable at a complexity cost. In particular, it is a consequence of 4sq 16982 that implicitly restricting variables to ℕ0 adds no expressive power over allowing them to range over ℤ. While this definition stipulates a specific index set for the polynomials, there is actually flexibility here, see eldioph2b 42733. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
| ⊢ Dioph = (𝑛 ∈ ℕ0 ↦ ran (𝑘 ∈ (ℤ≥‘𝑛), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0 ↑m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝‘𝑢) = 0)})) | ||
| Theorem | eldiophb 42727* | Initial expression of Diophantine property of a set. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) |
| ⊢ (𝐷 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑘 ∈ (ℤ≥‘𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘))𝐷 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0 ↑m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝‘𝑢) = 0)})) | ||
| Theorem | eldioph 42728* | Condition for a set to be Diophantine (unpacking existential quantifier). (Contributed by Stefan O'Rear, 5-Oct-2014.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ (mzPoly‘(1...𝐾))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0 ↑m (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃‘𝑢) = 0)} ∈ (Dioph‘𝑁)) | ||
| Theorem | diophrw 42729* | Renaming and adding unused witness variables does not change the Diophantine set coded by a polynomial. (Contributed by Stefan O'Rear, 7-Oct-2014.) |
| ⊢ ((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) → {𝑎 ∣ ∃𝑏 ∈ (ℕ0 ↑m 𝑆)(𝑎 = (𝑏 ↾ 𝑂) ∧ ((𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀)))‘𝑏) = 0)} = {𝑎 ∣ ∃𝑐 ∈ (ℕ0 ↑m 𝑇)(𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)}) | ||
| Theorem | eldioph2lem1 42730* | Lemma for eldioph2 42732. Construct necessary renaming function for one direction. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → ∃𝑑 ∈ (ℤ≥‘𝑁)∃𝑒 ∈ V (𝑒:(1...𝑑)–1-1-onto→𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) | ||
| Theorem | eldioph2lem2 42731* | Lemma for eldioph2 42732. Construct necessary renaming function for one direction. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
| ⊢ (((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆 ∧ 𝐴 ∈ (ℤ≥‘𝑁))) → ∃𝑐(𝑐:(1...𝐴)–1-1→𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) | ||
| Theorem | eldioph2 42732* | Construct a Diophantine set from a polynomial with witness variables drawn from any set whatsoever, via mzpcompact2 42722. (Contributed by Stefan O'Rear, 8-Oct-2014.) (Revised by Stefan O'Rear, 5-Jun-2015.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0 ↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃‘𝑢) = 0)} ∈ (Dioph‘𝑁)) | ||
| Theorem | eldioph2b 42733* | While Diophantine sets were defined to have a finite number of witness variables consequtively following the observable variables, this is not necessary; they can equivalently be taken to use any witness set (𝑆 ∖ (1...𝑁)). For instance, in diophin 42742 we use this to take the two input sets to have disjoint witness sets. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
| ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) → (𝐴 ∈ (Dioph‘𝑁) ↔ ∃𝑝 ∈ (mzPoly‘𝑆)𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0 ↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝‘𝑢) = 0)})) | ||
| Theorem | eldiophelnn0 42734 | Remove antecedent on 𝐵 from Diophantine set constructors. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| ⊢ (𝐴 ∈ (Dioph‘𝐵) → 𝐵 ∈ ℕ0) | ||
| Theorem | eldioph3b 42735* | Define Diophantine sets in terms of polynomials with variables indexed by ℕ. This avoids a quantifier over the number of witness variables and will be easier to use than eldiophb 42727 in most cases. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| ⊢ (𝐴 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘ℕ)𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0 ↑m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝‘𝑢) = 0)})) | ||
| Theorem | eldioph3 42736* | Inference version of eldioph3b 42735 with quantifier expanded. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ (mzPoly‘ℕ)) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0 ↑m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃‘𝑢) = 0)} ∈ (Dioph‘𝑁)) | ||
| Theorem | ellz1 42737 | Membership in a lower set of integers. (Contributed by Stefan O'Rear, 9-Oct-2014.) |
| ⊢ (𝐵 ∈ ℤ → (𝐴 ∈ (ℤ ∖ (ℤ≥‘(𝐵 + 1))) ↔ (𝐴 ∈ ℤ ∧ 𝐴 ≤ 𝐵))) | ||
| Theorem | lzunuz 42738 | The union of a lower set of integers and an upper set of integers which abut or overlap is all of the integers. (Contributed by Stefan O'Rear, 9-Oct-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → ((ℤ ∖ (ℤ≥‘(𝐴 + 1))) ∪ (ℤ≥‘𝐵)) = ℤ) | ||
| Theorem | fz1eqin 42739 | Express a one-based finite range as the intersection of lower integers with ℕ. (Contributed by Stefan O'Rear, 9-Oct-2014.) |
| ⊢ (𝑁 ∈ ℕ0 → (1...𝑁) = ((ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∩ ℕ)) | ||
| Theorem | lzenom 42740 | Lower integers are countably infinite. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| ⊢ (𝑁 ∈ ℤ → (ℤ ∖ (ℤ≥‘(𝑁 + 1))) ≈ ω) | ||
| Theorem | elmapresaunres2 42741 | fresaunres2 6749 transposed to mappings. (Contributed by Stefan O'Rear, 9-Oct-2014.) |
| ⊢ ((𝐹 ∈ (𝐶 ↑m 𝐴) ∧ 𝐺 ∈ (𝐶 ↑m 𝐵) ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐹 ∪ 𝐺) ↾ 𝐵) = 𝐺) | ||
| Theorem | diophin 42742 | If two sets are Diophantine, so is their intersection. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
| ⊢ ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴 ∩ 𝐵) ∈ (Dioph‘𝑁)) | ||
| Theorem | diophun 42743 | If two sets are Diophantine, so is their union. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
| ⊢ ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴 ∪ 𝐵) ∈ (Dioph‘𝑁)) | ||
| Theorem | eldiophss 42744 | Diophantine sets are sets of tuples of nonnegative integers. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
| ⊢ (𝐴 ∈ (Dioph‘𝐵) → 𝐴 ⊆ (ℕ0 ↑m (1...𝐵))) | ||
| Theorem | diophrex 42745* | Projecting a Diophantine set by removing a coordinate results in a Diophantine set. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) → {𝑡 ∣ ∃𝑢 ∈ 𝑆 𝑡 = (𝑢 ↾ (1...𝑁))} ∈ (Dioph‘𝑁)) | ||
| Theorem | eq0rabdioph 42746* | This is the first of a number of theorems which allow sets to be proven Diophantine by syntactic induction, and models the correspondence between Diophantine sets and monotone existential first-order logic. This first theorem shows that the zero set of an implicit polynomial is Diophantine. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 = 0} ∈ (Dioph‘𝑁)) | ||
| Theorem | eqrabdioph 42747* | Diophantine set builder for equality of polynomial expressions. Note that the two expressions need not be nonnegative; only variables are so constrained. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 = 𝐵} ∈ (Dioph‘𝑁)) | ||
| Theorem | 0dioph 42748 | The null set is Diophantine. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| ⊢ (𝐴 ∈ ℕ0 → ∅ ∈ (Dioph‘𝐴)) | ||
| Theorem | vdioph 42749 | The "universal" set (as large as possible given eldiophss 42744) is Diophantine. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| ⊢ (𝐴 ∈ ℕ0 → (ℕ0 ↑m (1...𝐴)) ∈ (Dioph‘𝐴)) | ||
| Theorem | anrabdioph 42750* | Diophantine set builder for conjunctions. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| ⊢ (({𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝜑} ∈ (Dioph‘𝑁) ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝜓} ∈ (Dioph‘𝑁)) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ (𝜑 ∧ 𝜓)} ∈ (Dioph‘𝑁)) | ||
| Theorem | orrabdioph 42751* | Diophantine set builder for disjunctions. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| ⊢ (({𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝜑} ∈ (Dioph‘𝑁) ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝜓} ∈ (Dioph‘𝑁)) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ (𝜑 ∨ 𝜓)} ∈ (Dioph‘𝑁)) | ||
| Theorem | 3anrabdioph 42752* | Diophantine set builder for ternary conjunctions. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| ⊢ (({𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝜑} ∈ (Dioph‘𝑁) ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝜓} ∈ (Dioph‘𝑁) ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝜒} ∈ (Dioph‘𝑁)) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ (𝜑 ∧ 𝜓 ∧ 𝜒)} ∈ (Dioph‘𝑁)) | ||
| Theorem | 3orrabdioph 42753* | Diophantine set builder for ternary disjunctions. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| ⊢ (({𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝜑} ∈ (Dioph‘𝑁) ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝜓} ∈ (Dioph‘𝑁) ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝜒} ∈ (Dioph‘𝑁)) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ (𝜑 ∨ 𝜓 ∨ 𝜒)} ∈ (Dioph‘𝑁)) | ||
| Theorem | 2sbcrex 42754* | Exchange an existential quantifier with two substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by NM, 24-Aug-2018.) |
| ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏]∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎][𝐵 / 𝑏]𝜑) | ||
| Theorem | sbcrexgOLD 42755* | Interchange class substitution and restricted existential quantifier. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) Obsolete as of 18-Aug-2018. Use sbcrex 3850 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) | ||
| Theorem | 2sbcrexOLD 42756* | Exchange an existential quantifier with two substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014.) Obsolete as of 24-Aug-2018. Use csbov123 7447 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏]∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎][𝐵 / 𝑏]𝜑) | ||
| Theorem | sbc2rex 42757* | Exchange a substitution with two existentials. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by NM, 24-Aug-2018.) |
| ⊢ ([𝐴 / 𝑎]∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎]𝜑) | ||
| Theorem | sbc2rexgOLD 42758* | Exchange a substitution with two existentials. (Contributed by Stefan O'Rear, 11-Oct-2014.) Obsolete as of 24-Aug-2018. Use csbov123 7447 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑎]∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎]𝜑)) | ||
| Theorem | sbc4rex 42759* | Exchange a substitution with four existentials. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by NM, 24-Aug-2018.) |
| ⊢ ([𝐴 / 𝑎]∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 ∃𝑑 ∈ 𝐷 ∃𝑒 ∈ 𝐸 𝜑 ↔ ∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 ∃𝑑 ∈ 𝐷 ∃𝑒 ∈ 𝐸 [𝐴 / 𝑎]𝜑) | ||
| Theorem | sbc4rexgOLD 42760* | Exchange a substitution with four existentials. (Contributed by Stefan O'Rear, 11-Oct-2014.) Obsolete as of 24-Aug-2018. Use csbov123 7447 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑎]∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 ∃𝑑 ∈ 𝐷 ∃𝑒 ∈ 𝐸 𝜑 ↔ ∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 ∃𝑑 ∈ 𝐷 ∃𝑒 ∈ 𝐸 [𝐴 / 𝑎]𝜑)) | ||
| Theorem | sbcrot3 42761* | Rotate a sequence of three explicit substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Mario Carneiro, 11-Dec-2016.) |
| ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏][𝐶 / 𝑐]𝜑 ↔ [𝐵 / 𝑏][𝐶 / 𝑐][𝐴 / 𝑎]𝜑) | ||
| Theorem | sbcrot5 42762* | Rotate a sequence of five explicit substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Mario Carneiro, 11-Dec-2016.) |
| ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏][𝐶 / 𝑐][𝐷 / 𝑑][𝐸 / 𝑒]𝜑 ↔ [𝐵 / 𝑏][𝐶 / 𝑐][𝐷 / 𝑑][𝐸 / 𝑒][𝐴 / 𝑎]𝜑) | ||
| Theorem | sbccomieg 42763* | Commute two explicit substitutions, using an implicit substitution to rewrite the exiting substitution. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Mario Carneiro, 11-Dec-2016.) |
| ⊢ (𝑎 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏]𝜑 ↔ [𝐶 / 𝑏][𝐴 / 𝑎]𝜑) | ||
| Theorem | rexrabdioph 42764* | Diophantine set builder for existential quantification. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| ⊢ 𝑀 = (𝑁 + 1) & ⊢ (𝑣 = (𝑡‘𝑀) → (𝜓 ↔ 𝜒)) & ⊢ (𝑢 = (𝑡 ↾ (1...𝑁)) → (𝜒 ↔ 𝜑)) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝑀)) ∣ 𝜑} ∈ (Dioph‘𝑀)) → {𝑢 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜓} ∈ (Dioph‘𝑁)) | ||
| Theorem | rexfrabdioph 42765* | Diophantine set builder for existential quantifier, explicit substitution. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
| ⊢ 𝑀 = (𝑁 + 1) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝑀)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀)) → {𝑢 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁)) | ||
| Theorem | 2rexfrabdioph 42766* | Diophantine set builder for existential quantifier, explicit substitution, two variables. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
| ⊢ 𝑀 = (𝑁 + 1) & ⊢ 𝐿 = (𝑀 + 1) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝐿)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐿)) → {𝑢 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 ∃𝑤 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁)) | ||
| Theorem | 3rexfrabdioph 42767* | Diophantine set builder for existential quantifier, explicit substitution, two variables. (Contributed by Stefan O'Rear, 17-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
| ⊢ 𝑀 = (𝑁 + 1) & ⊢ 𝐿 = (𝑀 + 1) & ⊢ 𝐾 = (𝐿 + 1) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥]𝜑} ∈ (Dioph‘𝐾)) → {𝑢 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 ∃𝑤 ∈ ℕ0 ∃𝑥 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁)) | ||
| Theorem | 4rexfrabdioph 42768* | Diophantine set builder for existential quantifier, explicit substitution, four variables. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
| ⊢ 𝑀 = (𝑁 + 1) & ⊢ 𝐿 = (𝑀 + 1) & ⊢ 𝐾 = (𝐿 + 1) & ⊢ 𝐽 = (𝐾 + 1) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝐽)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑} ∈ (Dioph‘𝐽)) → {𝑢 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 ∃𝑤 ∈ ℕ0 ∃𝑥 ∈ ℕ0 ∃𝑦 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁)) | ||
| Theorem | 6rexfrabdioph 42769* | Diophantine set builder for existential quantifier, explicit substitution, six variables. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
| ⊢ 𝑀 = (𝑁 + 1) & ⊢ 𝐿 = (𝑀 + 1) & ⊢ 𝐾 = (𝐿 + 1) & ⊢ 𝐽 = (𝐾 + 1) & ⊢ 𝐼 = (𝐽 + 1) & ⊢ 𝐻 = (𝐼 + 1) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝐻)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦][(𝑡‘𝐼) / 𝑧][(𝑡‘𝐻) / 𝑝]𝜑} ∈ (Dioph‘𝐻)) → {𝑢 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 ∃𝑤 ∈ ℕ0 ∃𝑥 ∈ ℕ0 ∃𝑦 ∈ ℕ0 ∃𝑧 ∈ ℕ0 ∃𝑝 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁)) | ||
| Theorem | 7rexfrabdioph 42770* | Diophantine set builder for existential quantifier, explicit substitution, seven variables. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
| ⊢ 𝑀 = (𝑁 + 1) & ⊢ 𝐿 = (𝑀 + 1) & ⊢ 𝐾 = (𝐿 + 1) & ⊢ 𝐽 = (𝐾 + 1) & ⊢ 𝐼 = (𝐽 + 1) & ⊢ 𝐻 = (𝐼 + 1) & ⊢ 𝐺 = (𝐻 + 1) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝐺)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦][(𝑡‘𝐼) / 𝑧][(𝑡‘𝐻) / 𝑝][(𝑡‘𝐺) / 𝑞]𝜑} ∈ (Dioph‘𝐺)) → {𝑢 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 ∃𝑤 ∈ ℕ0 ∃𝑥 ∈ ℕ0 ∃𝑦 ∈ ℕ0 ∃𝑧 ∈ ℕ0 ∃𝑝 ∈ ℕ0 ∃𝑞 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁)) | ||
| Theorem | rabdiophlem1 42771* | Lemma for arithmetic diophantine sets. Convert polynomial-ness of an expression into a constraint suitable for ralimi 3073. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| ⊢ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) → ∀𝑡 ∈ (ℕ0 ↑m (1...𝑁))𝐴 ∈ ℤ) | ||
| Theorem | rabdiophlem2 42772* | Lemma for arithmetic diophantine sets. Reuse a polynomial expression under a new quantifier. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| ⊢ 𝑀 = (𝑁 + 1) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑m (1...𝑀)) ↦ ⦋(𝑡 ↾ (1...𝑁)) / 𝑢⦌𝐴) ∈ (mzPoly‘(1...𝑀))) | ||
| Theorem | elnn0rabdioph 42773* | Diophantine set builder for nonnegativity constraints. The first builder which uses a witness variable internally; an expression is nonnegative if there is a nonnegative integer equal to it. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 ∈ ℕ0} ∈ (Dioph‘𝑁)) | ||
| Theorem | rexzrexnn0 42774* | Rewrite an existential quantification restricted to integers into an existential quantification restricted to naturals. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜒)) ⇒ ⊢ (∃𝑥 ∈ ℤ 𝜑 ↔ ∃𝑦 ∈ ℕ0 (𝜓 ∨ 𝜒)) | ||
| Theorem | lerabdioph 42775* | Diophantine set builder for the "less than or equal to" relation. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 ≤ 𝐵} ∈ (Dioph‘𝑁)) | ||
| Theorem | eluzrabdioph 42776* | Diophantine set builder for membership in a fixed upper set of integers. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 ∈ (ℤ≥‘𝑀)} ∈ (Dioph‘𝑁)) | ||
| Theorem | elnnrabdioph 42777* | Diophantine set builder for positivity. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 ∈ ℕ} ∈ (Dioph‘𝑁)) | ||
| Theorem | ltrabdioph 42778* | Diophantine set builder for the strict less than relation. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 < 𝐵} ∈ (Dioph‘𝑁)) | ||
| Theorem | nerabdioph 42779* | Diophantine set builder for inequality. This not quite trivial theorem touches on something important; Diophantine sets are not closed under negation, but they contain an important subclass that is, namely the recursive sets. With this theorem and De Morgan's laws, all quantifier-free formulas can be negated. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 ≠ 𝐵} ∈ (Dioph‘𝑁)) | ||
| Theorem | dvdsrabdioph 42780* | Divisibility is a Diophantine relation. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 ∥ 𝐵} ∈ (Dioph‘𝑁)) | ||
| Theorem | eldioph4b 42781* | Membership in Dioph expressed using a quantified union to add witness variables instead of a restriction to remove them. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
| ⊢ 𝑊 ∈ V & ⊢ ¬ 𝑊 ∈ Fin & ⊢ (𝑊 ∩ ℕ) = ∅ ⇒ ⊢ (𝑆 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))𝑆 = {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑝‘(𝑡 ∪ 𝑤)) = 0})) | ||
| Theorem | eldioph4i 42782* | Forward-only version of eldioph4b 42781. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
| ⊢ 𝑊 ∈ V & ⊢ ¬ 𝑊 ∈ Fin & ⊢ (𝑊 ∩ ℕ) = ∅ ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} ∈ (Dioph‘𝑁)) | ||
| Theorem | diophren 42783* | Change variables in a Diophantine set, using class notation. This allows already proved Diophantine sets to be reused in contexts with more variables. (Contributed by Stefan O'Rear, 16-Oct-2014.) (Revised by Stefan O'Rear, 5-Jun-2015.) |
| ⊢ ((𝑆 ∈ (Dioph‘𝑁) ∧ 𝑀 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶(1...𝑀)) → {𝑎 ∈ (ℕ0 ↑m (1...𝑀)) ∣ (𝑎 ∘ 𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀)) | ||
| Theorem | rabrenfdioph 42784* | Change variable numbers in a Diophantine class abstraction using explicit substitution. (Contributed by Stefan O'Rear, 17-Oct-2014.) |
| ⊢ ((𝐵 ∈ ℕ0 ∧ 𝐹:(1...𝐴)⟶(1...𝐵) ∧ {𝑎 ∈ (ℕ0 ↑m (1...𝐴)) ∣ 𝜑} ∈ (Dioph‘𝐴)) → {𝑏 ∈ (ℕ0 ↑m (1...𝐵)) ∣ [(𝑏 ∘ 𝐹) / 𝑎]𝜑} ∈ (Dioph‘𝐵)) | ||
| Theorem | rabren3dioph 42785* | Change variable numbers in a 3-variable Diophantine class abstraction. (Contributed by Stefan O'Rear, 17-Oct-2014.) |
| ⊢ (((𝑎‘1) = (𝑏‘𝑋) ∧ (𝑎‘2) = (𝑏‘𝑌) ∧ (𝑎‘3) = (𝑏‘𝑍)) → (𝜑 ↔ 𝜓)) & ⊢ 𝑋 ∈ (1...𝑁) & ⊢ 𝑌 ∈ (1...𝑁) & ⊢ 𝑍 ∈ (1...𝑁) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ {𝑎 ∈ (ℕ0 ↑m (1...3)) ∣ 𝜑} ∈ (Dioph‘3)) → {𝑏 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝜓} ∈ (Dioph‘𝑁)) | ||
| Theorem | fphpd 42786* | Pigeonhole principle expressed with implicit substitution. If the range is smaller than the domain, two inputs must be mapped to the same output. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
| ⊢ (𝜑 → 𝐵 ≺ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) & ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 ∧ 𝐶 = 𝐷)) | ||
| Theorem | fphpdo 42787* | Pigeonhole principle for sets of real numbers with implicit output reordering. (Contributed by Stefan O'Rear, 12-Sep-2014.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐵 ≺ 𝐴) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐶 ∈ 𝐵) & ⊢ (𝑧 = 𝑥 → 𝐶 = 𝐷) & ⊢ (𝑧 = 𝑦 → 𝐶 = 𝐸) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (𝑥 < 𝑦 ∧ 𝐷 = 𝐸)) | ||
| Theorem | ctbnfien 42788 | An infinite subset of a countable set is countable, without using choice. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
| ⊢ (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ (𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin)) → 𝐴 ≈ 𝑌) | ||
| Theorem | fiphp3d 42789* | Infinite pigeonhole principle for partitioning an infinite set between finitely many buckets. (Contributed by Stefan O'Rear, 18-Oct-2014.) |
| ⊢ (𝜑 → 𝐴 ≈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐷 ∈ 𝐵) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ≈ ℕ) | ||
| Theorem | rencldnfilem 42790* | Lemma for rencldnfi 42791. (Contributed by Stefan O'Rear, 18-Oct-2014.) |
| ⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵 ∈ 𝐴)) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐴 (abs‘(𝑦 − 𝐵)) < 𝑥) → ¬ 𝐴 ∈ Fin) | ||
| Theorem | rencldnfi 42791* | A set of real numbers which comes arbitrarily close to some target yet excludes it is infinite. The work is done in rencldnfilem 42790 using infima; this theorem removes the requirement that A be nonempty. (Contributed by Stefan O'Rear, 19-Oct-2014.) |
| ⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ 𝐴) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐴 (abs‘(𝑦 − 𝐵)) < 𝑥) → ¬ 𝐴 ∈ Fin) | ||
| Theorem | irrapxlem1 42792* | Lemma for irrapx1 42798. Divides the unit interval into 𝐵 half-open sections and using the pigeonhole principle fphpdo 42787 finds two multiples of 𝐴 in the same section mod 1. (Contributed by Stefan O'Rear, 12-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))))) | ||
| Theorem | irrapxlem2 42793* | Lemma for irrapx1 42798. Two multiples in the same bucket means they are very close mod 1. (Contributed by Stefan O'Rear, 12-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵))) | ||
| Theorem | irrapxlem3 42794* | Lemma for irrapx1 42798. By subtraction, there is a multiple very close to an integer. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ (1...𝐵)∃𝑦 ∈ ℕ0 (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / 𝐵)) | ||
| Theorem | irrapxlem4 42795* | Lemma for irrapx1 42798. Eliminate ranges, use positivity of the input to force positivity of the output by increasing 𝐵 as needed. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / if(𝑥 ≤ 𝐵, 𝐵, 𝑥))) | ||
| Theorem | irrapxlem5 42796* | Lemma for irrapx1 42798. Switching to real intervals and fraction syntax. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ (abs‘(𝑥 − 𝐴)) < 𝐵 ∧ (abs‘(𝑥 − 𝐴)) < ((denom‘𝑥)↑-2))) | ||
| Theorem | irrapxlem6 42797* | Lemma for irrapx1 42798. Explicit description of a non-closed set. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥 − 𝐴)) < 𝐵) | ||
| Theorem | irrapx1 42798* | Dirichlet's approximation theorem. Every positive irrational number has infinitely many rational approximations which are closer than the inverse squares of their reduced denominators. Lemma 61 in [vandenDries] p. 42. (Contributed by Stefan O'Rear, 14-Sep-2014.) |
| ⊢ (𝐴 ∈ (ℝ+ ∖ ℚ) → {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} ≈ ℕ) | ||
| Theorem | pellexlem1 42799 | Lemma for pellex 42805. Arithmetical core of pellexlem3, norm lower bound. This begins Dirichlet's proof of the Pell equation solution existence; the proof here follows theorem 62 of [vandenDries] p. 43. (Contributed by Stefan O'Rear, 14-Sep-2014.) |
| ⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ¬ (√‘𝐷) ∈ ℚ) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) ≠ 0) | ||
| Theorem | pellexlem2 42800 | Lemma for pellex 42805. Arithmetical core of pellexlem3, norm upper bound. (Contributed by Stefan O'Rear, 14-Sep-2014.) |
| ⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) < (1 + (2 · (√‘𝐷)))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |