Home | Metamath
Proof Explorer Theorem List (p. 428 of 465) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29276) |
Hilbert Space Explorer
(29277-30799) |
Users' Mathboxes
(30800-46482) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | disjinfi 42701* | Only a finite number of disjoint sets can have a nonempty intersection with a finite set 𝐶. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) & ⊢ (𝜑 → 𝐶 ∈ Fin) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐵 ∩ 𝐶) ≠ ∅} ∈ Fin) | ||
Theorem | fvovco 42702 | Value of the composition of an operator, with a given function. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ (𝜑 → 𝐹:𝑋⟶(𝑉 × 𝑊)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) ⇒ ⊢ (𝜑 → ((𝑂 ∘ 𝐹)‘𝑌) = ((1st ‘(𝐹‘𝑌))𝑂(2nd ‘(𝐹‘𝑌)))) | ||
Theorem | ssnnf1octb 42703* | There exists a bijection between a subset of ℕ and a given nonempty countable set. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓–1-1-onto→𝐴)) | ||
Theorem | nnf1oxpnn 42704 | There is a bijection between the set of positive integers and the Cartesian product of the set of positive integers with itself. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ ∃𝑓 𝑓:ℕ–1-1-onto→(ℕ × ℕ) | ||
Theorem | rnmptssd 42705* | The range of an operation given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → ran 𝐹 ⊆ 𝐶) | ||
Theorem | projf1o 42706* | A biijection from a set to a projection in a two dimensional space. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈𝐴, 𝑥〉) ⇒ ⊢ (𝜑 → 𝐹:𝐵–1-1-onto→({𝐴} × 𝐵)) | ||
Theorem | fvmap 42707 | Function value for a member of a set exponentiation. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 ∈ (𝐴 ↑m 𝐵)) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹‘𝐶) ∈ 𝐴) | ||
Theorem | fvixp2 42708* | Projection of a factor of an indexed Cartesian product. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ ((𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) | ||
Theorem | fidmfisupp 42709 | A function with a finite domain is finitely supported. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ (𝜑 → 𝐹:𝐷⟶𝑅) & ⊢ (𝜑 → 𝐷 ∈ Fin) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐹 finSupp 𝑍) | ||
Theorem | choicefi 42710* | For a finite set, a choice function exists, without using the axiom of choice. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≠ ∅) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)) | ||
Theorem | mpct 42711 | The exponentiation of a countable set to a finite set is countable. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ (𝜑 → 𝐴 ≼ ω) & ⊢ (𝜑 → 𝐵 ∈ Fin) ⇒ ⊢ (𝜑 → (𝐴 ↑m 𝐵) ≼ ω) | ||
Theorem | cnmetcoval 42712 | Value of the distance function of the metric space of complex numbers, composed with a function. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ 𝐷 = (abs ∘ − ) & ⊢ (𝜑 → 𝐹:𝐴⟶(ℂ × ℂ)) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → ((𝐷 ∘ 𝐹)‘𝐵) = (abs‘((1st ‘(𝐹‘𝐵)) − (2nd ‘(𝐹‘𝐵))))) | ||
Theorem | fcomptss 42713* | Express composition of two functions as a maps-to applying both in sequence. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) & ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ (𝐺‘(𝐹‘𝑥)))) | ||
Theorem | elmapsnd 42714 | Membership in a set exponentiated to a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐹 Fn {𝐴}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑m {𝐴})) | ||
Theorem | mapss2 42715 | Subset inheritance for set exponentiation. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑍) & ⊢ (𝜑 → 𝐶 ≠ ∅) ⇒ ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ↔ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶))) | ||
Theorem | fsneq 42716 | Equality condition for two functions defined on a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ 𝐵 = {𝐴} & ⊢ (𝜑 → 𝐹 Fn 𝐵) & ⊢ (𝜑 → 𝐺 Fn 𝐵) ⇒ ⊢ (𝜑 → (𝐹 = 𝐺 ↔ (𝐹‘𝐴) = (𝐺‘𝐴))) | ||
Theorem | difmap 42717 | Difference of two sets exponentiations. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑍) & ⊢ (𝜑 → 𝐶 ≠ ∅) ⇒ ⊢ (𝜑 → ((𝐴 ∖ 𝐵) ↑m 𝐶) ⊆ ((𝐴 ↑m 𝐶) ∖ (𝐵 ↑m 𝐶))) | ||
Theorem | unirnmap 42718 | Given a subset of a set exponentiation, the base set can be restricted. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ⊆ (𝐵 ↑m 𝐴)) ⇒ ⊢ (𝜑 → 𝑋 ⊆ (ran ∪ 𝑋 ↑m 𝐴)) | ||
Theorem | inmap 42719 | Intersection of two sets exponentiations. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑍) ⇒ ⊢ (𝜑 → ((𝐴 ↑m 𝐶) ∩ (𝐵 ↑m 𝐶)) = ((𝐴 ∩ 𝐵) ↑m 𝐶)) | ||
Theorem | fcoss 42720 | Composition of two mappings. Similar to fco 6622, but with a weaker condition on the domain of 𝐹. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → 𝐺:𝐷⟶𝐶) ⇒ ⊢ (𝜑 → (𝐹 ∘ 𝐺):𝐷⟶𝐵) | ||
Theorem | fsneqrn 42721 | Equality condition for two functions defined on a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ 𝐵 = {𝐴} & ⊢ (𝜑 → 𝐹 Fn 𝐵) & ⊢ (𝜑 → 𝐺 Fn 𝐵) ⇒ ⊢ (𝜑 → (𝐹 = 𝐺 ↔ (𝐹‘𝐴) ∈ ran 𝐺)) | ||
Theorem | difmapsn 42722 | Difference of two sets exponentiatiated to a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑍) ⇒ ⊢ (𝜑 → ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶})) = ((𝐴 ∖ 𝐵) ↑m {𝐶})) | ||
Theorem | mapssbi 42723 | Subset inheritance for set exponentiation. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑍) & ⊢ (𝜑 → 𝐶 ≠ ∅) ⇒ ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ↔ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶))) | ||
Theorem | unirnmapsn 42724 | Equality theorem for a subset of a set exponentiation, where the exponent is a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ 𝐶 = {𝐴} & ⊢ (𝜑 → 𝑋 ⊆ (𝐵 ↑m 𝐶)) ⇒ ⊢ (𝜑 → 𝑋 = (ran ∪ 𝑋 ↑m 𝐶)) | ||
Theorem | iunmapss 42725* | The indexed union of set exponentiations is a subset of the set exponentiation of the indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐶)) | ||
Theorem | ssmapsn 42726* | A subset 𝐶 of a set exponentiation to a singleton, is its projection 𝐷 exponentiated to the singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ Ⅎ𝑓𝐷 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ⊆ (𝐵 ↑m {𝐴})) & ⊢ 𝐷 = ∪ 𝑓 ∈ 𝐶 ran 𝑓 ⇒ ⊢ (𝜑 → 𝐶 = (𝐷 ↑m {𝐴})) | ||
Theorem | iunmapsn 42727* | The indexed union of set exponentiations to a singleton is equal to the set exponentiation of the indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑍) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑m {𝐶}) = (∪ 𝑥 ∈ 𝐴 𝐵 ↑m {𝐶})) | ||
Theorem | absfico 42728 | Mapping domain and codomain of the absolute value function. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ abs:ℂ⟶(0[,)+∞) | ||
Theorem | icof 42729 | The set of left-closed right-open intervals of extended reals maps to subsets of extended reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ [,):(ℝ* × ℝ*)⟶𝒫 ℝ* | ||
Theorem | elpmrn 42730 | The range of a partial function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) → ran 𝐹 ⊆ 𝐴) | ||
Theorem | imaexi 42731 | The image of a set is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ 𝐴 ∈ 𝑉 ⇒ ⊢ (𝐴 “ 𝐵) ∈ V | ||
Theorem | axccdom 42732* | Relax the constraint on ax-cc to dominance instead of equinumerosity. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝑋 ≼ ω) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝑧 ≠ ∅) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧 ∈ 𝑋 (𝑓‘𝑧) ∈ 𝑧)) | ||
Theorem | dmmptdf 42733* | The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ 𝐴 = (𝑥 ∈ 𝐵 ↦ 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) ⇒ ⊢ (𝜑 → dom 𝐴 = 𝐵) | ||
Theorem | elpmi2 42734 | The domain of a partial function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) → dom 𝐹 ⊆ 𝐵) | ||
Theorem | dmrelrnrel 42735* | A relation preserving function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐵𝑅𝐶) ⇒ ⊢ (𝜑 → (𝐹‘𝐵)𝑆(𝐹‘𝐶)) | ||
Theorem | fvcod 42736 | Value of a function composition. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → 𝐴 ∈ dom 𝐺) & ⊢ 𝐻 = (𝐹 ∘ 𝐺) ⇒ ⊢ (𝜑 → (𝐻‘𝐴) = (𝐹‘(𝐺‘𝐴))) | ||
Theorem | elrnmpoid 42737* | Membership in the range of an operation class abstraction. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉) → (𝑥𝐹𝑦) ∈ ran 𝐹) | ||
Theorem | axccd 42738* | An alternative version of the axiom of countable choice. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ≈ ω) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ ∅) ⇒ ⊢ (𝜑 → ∃𝑓∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) | ||
Theorem | axccd2 42739* | An alternative version of the axiom of countable choice. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ≼ ω) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ ∅) ⇒ ⊢ (𝜑 → ∃𝑓∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) | ||
Theorem | funimassd 42740* | Sufficient condition for the image of a function being a subclass. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Fun 𝐹) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 “ 𝐴) ⊆ 𝐵) | ||
Theorem | fimassd 42741 | The image of a class is a subset of its codomain. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → (𝐹 “ 𝑋) ⊆ 𝐵) | ||
Theorem | feqresmptf 42742* | Express a restricted function as a mapping. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) ⇒ ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) | ||
Theorem | elrnmpt1d 42743 | Elementhood in an image set. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝑥 ∈ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐵 ∈ ran 𝐹) | ||
Theorem | dmresss 42744 | The domain of a restriction is a subset of the original domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ dom (𝐴 ↾ 𝐵) ⊆ dom 𝐴 | ||
Theorem | dmmptssf 42745 | The domain of a mapping is a subset of its base class. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝐴 & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ dom 𝐹 ⊆ 𝐴 | ||
Theorem | dmmptdf2 42746 | The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐵 & ⊢ 𝐴 = (𝑥 ∈ 𝐵 ↦ 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) ⇒ ⊢ (𝜑 → dom 𝐴 = 𝐵) | ||
Theorem | dmuz 42747 | Domain of the upper integers function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ dom ℤ≥ = ℤ | ||
Theorem | fmptd2f 42748* | Domain and codomain of the mapping operation; deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) | ||
Theorem | mpteq1df 42749 | An equality theorem for the maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Proof shortened by SN, 11-Nov-2024.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | ||
Theorem | mpteq1dfOLD 42750 | Obsolete version of mpteq1df 42749 as of 11-Nov-2024. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | ||
Theorem | mptexf 42751 | If the domain of a function given by maps-to notation is a set, the function is a set. Inference version of mptexg 7094. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝐴 & ⊢ 𝐴 ∈ V ⇒ ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V | ||
Theorem | fvmpt4 42752* | Value of a function given by the maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) | ||
Theorem | fmptf 42753* | Functionality of the mapping operation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝐵 & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) | ||
Theorem | resimass 42754 | The image of a restriction is a subset of the original image. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ ((𝐴 ↾ 𝐵) “ 𝐶) ⊆ (𝐴 “ 𝐶) | ||
Theorem | mptssid 42755 | The mapping operation expressed with its actual domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝐴 & ⊢ 𝐶 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ⇒ ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐵) | ||
Theorem | mptfnd 42756 | The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013.) (Revised by Thierry Arnoux, 10-May-2017.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) | ||
Theorem | mpteq12daOLD 42757 | Obsolete version of mpteq12da 5164 as of 11-Nov-2024. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) | ||
Theorem | rnmptlb 42758* | Boundness below of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧) | ||
Theorem | rnmptbddlem 42759* | Boundness of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) | ||
Theorem | rnmptbdd 42760* | Boundness of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) | ||
Theorem | mptima2 42761* | Image of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝐶 ⊆ 𝐴) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐶) = ran (𝑥 ∈ 𝐶 ↦ 𝐵)) | ||
Theorem | funimaeq 42762* | Membership relation for the values of a function whose image is a subclass. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Fun 𝐹) & ⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → 𝐴 ⊆ dom 𝐹) & ⊢ (𝜑 → 𝐴 ⊆ dom 𝐺) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) ⇒ ⊢ (𝜑 → (𝐹 “ 𝐴) = (𝐺 “ 𝐴)) | ||
Theorem | rnmptssf 42763* | The range of an operation given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝐶 & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran 𝐹 ⊆ 𝐶) | ||
Theorem | rnmptbd2lem 42764* | Boundness below of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧)) | ||
Theorem | rnmptbd2 42765* | Boundness below of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧)) | ||
Theorem | infnsuprnmpt 42766* | The indexed infimum of real numbers is the negative of the indexed supremum of the negative values. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵) ⇒ ⊢ (𝜑 → inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ, < ) = -sup(ran (𝑥 ∈ 𝐴 ↦ -𝐵), ℝ, < )) | ||
Theorem | suprclrnmpt 42767* | Closure of the indexed supremum of a nonempty bounded set of reals. Range of a function in maps-to notation can be used, to express an indexed supremum. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ⇒ ⊢ (𝜑 → sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ, < ) ∈ ℝ) | ||
Theorem | suprubrnmpt2 42768* | A member of a nonempty indexed set of reals is less than or equal to the set's upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → 𝐷 ≤ sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ, < )) | ||
Theorem | suprubrnmpt 42769* | A member of a nonempty indexed set of reals is less than or equal to the set's upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ, < )) | ||
Theorem | rnmptssdf 42770* | The range of an operation given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐶 & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → ran 𝐹 ⊆ 𝐶) | ||
Theorem | rnmptbdlem 42771* | Boundness above of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦)) | ||
Theorem | rnmptbd 42772* | Boundness above of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦)) | ||
Theorem | rnmptss2 42773* | The range of an operation given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) ⇒ ⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐶) ⊆ ran (𝑥 ∈ 𝐵 ↦ 𝐶)) | ||
Theorem | elmptima 42774* | The image of a function in maps-to notation. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐷) ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐷)𝐶 = 𝐵)) | ||
Theorem | ralrnmpt3 42775* | A restricted quantifier over an image set. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | fvelima2 42776* | Function value in an image. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ (𝐹 “ 𝐶)) → ∃𝑥 ∈ (𝐴 ∩ 𝐶)(𝐹‘𝑥) = 𝐵) | ||
Theorem | rnmptssbi 42777* | The range of an operation given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ Ⅎ𝑥𝜑 & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → (ran 𝐹 ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶)) | ||
Theorem | fnfvelrnd 42778 | A function's value belongs to its range. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝐹‘𝐵) ∈ ran 𝐹) | ||
Theorem | imass2d 42779 | Subset theorem for image. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐶 “ 𝐴) ⊆ (𝐶 “ 𝐵)) | ||
Theorem | imassmpt 42780* | Membership relation for the values of a function whose image is a subclass. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐶)) → 𝐵 ∈ 𝑉) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (𝜑 → ((𝐹 “ 𝐶) ⊆ 𝐷 ↔ ∀𝑥 ∈ (𝐴 ∩ 𝐶)𝐵 ∈ 𝐷)) | ||
Theorem | fpmd 42781 | A total function is a partial function. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → 𝐹:𝐶⟶𝐵) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑pm 𝐴)) | ||
Theorem | fconst7 42782* | An alternative way to express a constant function. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) ⇒ ⊢ (𝜑 → 𝐹 = (𝐴 × {𝐵})) | ||
Theorem | sub2times 42783 | Subtracting from a number, twice the number itself, gives negative the number. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝐴 ∈ ℂ → (𝐴 − (2 · 𝐴)) = -𝐴) | ||
Theorem | abssubrp 42784 | The distance of two distinct complex number is a strictly positive real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ≠ 𝐵) → (abs‘(𝐴 − 𝐵)) ∈ ℝ+) | ||
Theorem | elfzfzo 42785 | Relationship between membership in a half-open finite set of sequential integers and membership in a finite set of sequential intergers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝐴 ∈ (𝑀..^𝑁) ↔ (𝐴 ∈ (𝑀...𝑁) ∧ 𝐴 < 𝑁)) | ||
Theorem | oddfl 42786 | Odd number representation by using the floor function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → 𝐾 = ((2 · (⌊‘(𝐾 / 2))) + 1)) | ||
Theorem | abscosbd 42787 | Bound for the absolute value of the cosine of a real number. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝐴 ∈ ℝ → (abs‘(cos‘𝐴)) ≤ 1) | ||
Theorem | mul13d 42788 | Commutative/associative law that swaps the first and the third factor in a triple product. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · (𝐵 · 𝐶)) = (𝐶 · (𝐵 · 𝐴))) | ||
Theorem | negpilt0 42789 | Negative π is negative. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ -π < 0 | ||
Theorem | dstregt0 42790* | A complex number 𝐴 that is not real, has a distance from the reals that is strictly larger than 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ ℝ)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ ℝ 𝑥 < (abs‘(𝐴 − 𝑦))) | ||
Theorem | subadd4b 42791 | Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) + (𝐶 − 𝐷)) = ((𝐴 − 𝐷) + (𝐶 − 𝐵))) | ||
Theorem | xrlttri5d 42792 | Not equal and not larger implies smaller. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → ¬ 𝐵 < 𝐴) ⇒ ⊢ (𝜑 → 𝐴 < 𝐵) | ||
Theorem | neglt 42793 | The negative of a positive number is less than the number itself. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝐴 ∈ ℝ+ → -𝐴 < 𝐴) | ||
Theorem | zltlesub 42794 | If an integer 𝑁 is less than or equal to a real, and we subtract a quantity less than 1, then 𝑁 is less than or equal to the result. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐵 < 1) & ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℤ) ⇒ ⊢ (𝜑 → 𝑁 ≤ (𝐴 − 𝐵)) | ||
Theorem | divlt0gt0d 42795 | The ratio of a negative numerator and a positive denominator is negative. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐴 < 0) ⇒ ⊢ (𝜑 → (𝐴 / 𝐵) < 0) | ||
Theorem | subsub23d 42796 | Swap subtrahend and result of subtraction. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐴 − 𝐶) = 𝐵)) | ||
Theorem | 2timesgt 42797 | Double of a positive real is larger than the real itself. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝐴 ∈ ℝ+ → 𝐴 < (2 · 𝐴)) | ||
Theorem | reopn 42798 | The reals are open with respect to the standard topology. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ℝ ∈ (topGen‘ran (,)) | ||
Theorem | elfzop1le2 42799 | A member in a half-open integer interval plus 1 is less than or equal to the upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝐾 ∈ (𝑀..^𝑁) → (𝐾 + 1) ≤ 𝑁) | ||
Theorem | sub31 42800 | Swap the first and third terms in a double subtraction. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵 − 𝐶)) = (𝐶 − (𝐵 − 𝐴))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |