| Metamath
Proof Explorer Theorem List (p. 428 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30888) |
(30889-32411) |
(32412-49816) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | 3cubeslem4 42701 | Lemma for 3cubes 42702. This is Ryley's explicit formula for decomposing a rational 𝐴 into a sum of three rational cubes. (Contributed by Igor Ieskov, 22-Jan-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℚ) ⇒ ⊢ (𝜑 → 𝐴 = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3))) | ||
| Theorem | 3cubes 42702* | Every rational number is a sum of three rational cubes. See S. Ryley, The Ladies' Diary 122 (1825), 35. (Contributed by Igor Ieskov, 22-Jan-2024.) |
| ⊢ (𝐴 ∈ ℚ ↔ ∃𝑎 ∈ ℚ ∃𝑏 ∈ ℚ ∃𝑐 ∈ ℚ 𝐴 = (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3))) | ||
| Theorem | rntrclfvOAI 42703 | The range of the transitive closure is equal to the range of the relation. (Contributed by OpenAI, 7-Jul-2020.) |
| ⊢ (𝑅 ∈ 𝑉 → ran (t+‘𝑅) = ran 𝑅) | ||
| Theorem | moxfr 42704* | Transfer at-most-one between related expressions. (Contributed by Stefan O'Rear, 12-Feb-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ ∃!𝑦 𝑥 = 𝐴 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃*𝑥𝜑 ↔ ∃*𝑦𝜓) | ||
| Theorem | imaiinfv 42705* | Indexed intersection of an image. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ∩ 𝑥 ∈ 𝐵 (𝐹‘𝑥) = ∩ (𝐹 “ 𝐵)) | ||
| Theorem | elrfi 42706* | Elementhood in a set of relative finite intersections. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ 𝐶)) ↔ ∃𝑣 ∈ (𝒫 𝐶 ∩ Fin)𝐴 = (𝐵 ∩ ∩ 𝑣))) | ||
| Theorem | elrfirn 42707* | Elementhood in a set of relative finite intersections of an indexed family of sets. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹:𝐼⟶𝒫 𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran 𝐹)) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 ∩ ∩ 𝑦 ∈ 𝑣 (𝐹‘𝑦)))) | ||
| Theorem | elrfirn2 42708* | Elementhood in a set of relative finite intersections of an indexed family of sets (implicit). (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝐼 𝐶 ⊆ 𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran (𝑦 ∈ 𝐼 ↦ 𝐶))) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 ∩ ∩ 𝑦 ∈ 𝑣 𝐶))) | ||
| Theorem | cmpfiiin 42709* | In a compact topology, a system of closed sets with nonempty finite intersections has a nonempty intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝑆 ∈ (Clsd‘𝐽)) & ⊢ ((𝜑 ∧ (𝑙 ⊆ 𝐼 ∧ 𝑙 ∈ Fin)) → (𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆) ≠ ∅) ⇒ ⊢ (𝜑 → (𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆) ≠ ∅) | ||
| Theorem | ismrcd1 42710* | Any function from the subsets of a set to itself, which is extensive (satisfies mrcssid 17515), isotone (satisfies mrcss 17514), and idempotent (satisfies mrcidm 17517) has a collection of fixed points which is a Moore collection, and itself is the closure operator for that collection. This can be taken as an alternate definition for the closure operators. This is the first half, ismrcd2 42711 is the second. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝒫 𝐵⟶𝒫 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → 𝑥 ⊆ (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝐹‘𝑦) ⊆ (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)) ⇒ ⊢ (𝜑 → dom (𝐹 ∩ I ) ∈ (Moore‘𝐵)) | ||
| Theorem | ismrcd2 42711* | Second half of ismrcd1 42710. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝒫 𝐵⟶𝒫 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → 𝑥 ⊆ (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝐹‘𝑦) ⊆ (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)) ⇒ ⊢ (𝜑 → 𝐹 = (mrCls‘dom (𝐹 ∩ I ))) | ||
| Theorem | istopclsd 42712* | A closure function which satisfies sscls 22964, clsidm 22975, cls0 22988, and clsun 36341 defines a (unique) topology which it is the closure function on. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝒫 𝐵⟶𝒫 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → 𝑥 ⊆ (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)) & ⊢ (𝜑 → (𝐹‘∅) = ∅) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝐵) → (𝐹‘(𝑥 ∪ 𝑦)) = ((𝐹‘𝑥) ∪ (𝐹‘𝑦))) & ⊢ 𝐽 = {𝑧 ∈ 𝒫 𝐵 ∣ (𝐹‘(𝐵 ∖ 𝑧)) = (𝐵 ∖ 𝑧)} ⇒ ⊢ (𝜑 → (𝐽 ∈ (TopOn‘𝐵) ∧ (cls‘𝐽) = 𝐹)) | ||
| Theorem | ismrc 42713* | A function is a Moore closure operator iff it satisfies mrcssid 17515, mrcss 17514, and mrcidm 17517. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ (𝐹 ∈ (mrCls “ (Moore‘𝐵)) ↔ (𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑦) ⊆ (𝐹‘𝑥) ∧ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥))))) | ||
| Syntax | cnacs 42714 | Class of Noetherian closure systems. |
| class NoeACS | ||
| Definition | df-nacs 42715* | Define a closure system of Noetherian type (not standard terminology) as an algebraic system where all closed sets are finitely generated. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| ⊢ NoeACS = (𝑥 ∈ V ↦ {𝑐 ∈ (ACS‘𝑥) ∣ ∀𝑠 ∈ 𝑐 ∃𝑔 ∈ (𝒫 𝑥 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)}) | ||
| Theorem | isnacs 42716* | Expand definition of Noetherian-type closure system. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑠 ∈ 𝐶 ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹‘𝑔))) | ||
| Theorem | nacsfg 42717* | In a Noetherian-type closure system, all closed sets are finitely generated. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑆 ∈ 𝐶) → ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔)) | ||
| Theorem | isnacs2 42718 | Express Noetherian-type closure system with fewer quantifiers. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ (𝐹 “ (𝒫 𝑋 ∩ Fin)) = 𝐶)) | ||
| Theorem | mrefg2 42719* | Slight variation on finite generation for closure systems. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ (𝐶 ∈ (Moore‘𝑋) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 = (𝐹‘𝑔))) | ||
| Theorem | mrefg3 42720* | Slight variation on finite generation for closure systems. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 ⊆ (𝐹‘𝑔))) | ||
| Theorem | nacsacs 42721 | A closure system of Noetherian type is algebraic. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| ⊢ (𝐶 ∈ (NoeACS‘𝑋) → 𝐶 ∈ (ACS‘𝑋)) | ||
| Theorem | isnacs3 42722* | A choice-free order equivalent to the Noetherian condition on a closure system. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| ⊢ (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠 ∈ 𝑠))) | ||
| Theorem | incssnn0 42723* | Transitivity induction of subsets, lemma for nacsfix 42724. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| ⊢ ((∀𝑥 ∈ ℕ0 (𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (𝐹‘𝐴) ⊆ (𝐹‘𝐵)) | ||
| Theorem | nacsfix 42724* | An increasing sequence of closed sets in a Noetherian-type closure system eventually fixates. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| ⊢ ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ∃𝑦 ∈ ℕ0 ∀𝑧 ∈ (ℤ≥‘𝑦)(𝐹‘𝑧) = (𝐹‘𝑦)) | ||
| Theorem | constmap 42725 |
A constant (represented without dummy variables) is an element of a
function set.
Note: In the following development, we will be quite often quantifying over functions and points in N-dimensional space (which are equivalent to functions from an "index set"). Many of the following theorems exist to transfer standard facts about functions to elements of function sets. (Contributed by Stefan O'Rear, 30-Aug-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}) ∈ (𝐶 ↑m 𝐴)) | ||
| Theorem | mapco2g 42726 | Renaming indices in a tuple, with sethood as antecedents. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Mario Carneiro, 5-May-2015.) |
| ⊢ ((𝐸 ∈ V ∧ 𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷:𝐸⟶𝐶) → (𝐴 ∘ 𝐷) ∈ (𝐵 ↑m 𝐸)) | ||
| Theorem | mapco2 42727 | Post-composition (renaming indices) of a mapping viewed as a point. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
| ⊢ 𝐸 ∈ V ⇒ ⊢ ((𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷:𝐸⟶𝐶) → (𝐴 ∘ 𝐷) ∈ (𝐵 ↑m 𝐸)) | ||
| Theorem | mapfzcons 42728 | Extending a one-based mapping by adding a tuple at the end results in another mapping. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
| ⊢ 𝑀 = (𝑁 + 1) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ (𝐵 ↑m (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → (𝐴 ∪ {〈𝑀, 𝐶〉}) ∈ (𝐵 ↑m (1...𝑀))) | ||
| Theorem | mapfzcons1 42729 | Recover prefix mapping from an extended mapping. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
| ⊢ 𝑀 = (𝑁 + 1) ⇒ ⊢ (𝐴 ∈ (𝐵 ↑m (1...𝑁)) → ((𝐴 ∪ {〈𝑀, 𝐶〉}) ↾ (1...𝑁)) = 𝐴) | ||
| Theorem | mapfzcons1cl 42730 | A nonempty mapping has a prefix. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
| ⊢ 𝑀 = (𝑁 + 1) ⇒ ⊢ (𝐴 ∈ (𝐵 ↑m (1...𝑀)) → (𝐴 ↾ (1...𝑁)) ∈ (𝐵 ↑m (1...𝑁))) | ||
| Theorem | mapfzcons2 42731 | Recover added element from an extended mapping. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
| ⊢ 𝑀 = (𝑁 + 1) ⇒ ⊢ ((𝐴 ∈ (𝐵 ↑m (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → ((𝐴 ∪ {〈𝑀, 𝐶〉})‘𝑀) = 𝐶) | ||
| Theorem | mptfcl 42732* | Interpret range of a maps-to notation as a constraint on the definition. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| ⊢ ((𝑡 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶 → (𝑡 ∈ 𝐴 → 𝐵 ∈ 𝐶)) | ||
| Syntax | cmzpcl 42733 | Extend class notation to include pre-polynomial rings. |
| class mzPolyCld | ||
| Syntax | cmzp 42734 | Extend class notation to include polynomial rings. |
| class mzPoly | ||
| Definition | df-mzpcl 42735* | Define the polynomially closed function rings over an arbitrary index set 𝑣. The set (mzPolyCld‘𝑣) contains all sets of functions from (ℤ ↑m 𝑣) to ℤ which include all constants and projections and are closed under addition and multiplication. This is a "temporary" set used to define the polynomial function ring itself (mzPoly‘𝑣); see df-mzp 42736. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ mzPolyCld = (𝑣 ∈ V ↦ {𝑝 ∈ 𝒫 (ℤ ↑m (ℤ ↑m 𝑣)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗 ∈ 𝑣 (𝑥 ∈ (ℤ ↑m 𝑣) ↦ (𝑥‘𝑗)) ∈ 𝑝) ∧ ∀𝑓 ∈ 𝑝 ∀𝑔 ∈ 𝑝 ((𝑓 ∘f + 𝑔) ∈ 𝑝 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑝))}) | ||
| Definition | df-mzp 42736 | Polynomials over ℤ with an arbitrary index set, that is, the smallest ring of functions containing all constant functions and all projections. This is almost the most general reasonable definition; to reach full generality, we would need to be able to replace ZZ with an arbitrary (semi)ring (and a coordinate subring), but rings have not been defined yet. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ mzPoly = (𝑣 ∈ V ↦ ∩ (mzPolyCld‘𝑣)) | ||
| Theorem | mzpclval 42737* | Substitution lemma for mzPolyCld. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ (𝑉 ∈ V → (mzPolyCld‘𝑉) = {𝑝 ∈ 𝒫 (ℤ ↑m (ℤ ↑m 𝑉)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗 ∈ 𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥‘𝑗)) ∈ 𝑝) ∧ ∀𝑓 ∈ 𝑝 ∀𝑔 ∈ 𝑝 ((𝑓 ∘f + 𝑔) ∈ 𝑝 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑝))}) | ||
| Theorem | elmzpcl 42738* | Double substitution lemma for mzPolyCld. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ (𝑉 ∈ V → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑃 ∧ ∀𝑗 ∈ 𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥‘𝑗)) ∈ 𝑃) ∧ ∀𝑓 ∈ 𝑃 ∀𝑔 ∈ 𝑃 ((𝑓 ∘f + 𝑔) ∈ 𝑃 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑃))))) | ||
| Theorem | mzpclall 42739 | The set of all functions with the signature of a polynomial is a polynomially closed set. This is a lemma to show that the intersection in df-mzp 42736 is well-defined. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ (𝑉 ∈ V → (ℤ ↑m (ℤ ↑m 𝑉)) ∈ (mzPolyCld‘𝑉)) | ||
| Theorem | mzpcln0 42740 | Corollary of mzpclall 42739: polynomially closed function sets are not empty. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ (𝑉 ∈ V → (mzPolyCld‘𝑉) ≠ ∅) | ||
| Theorem | mzpcl1 42741 | Defining property 1 of a polynomially closed function set 𝑃: it contains all constant functions. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → ((ℤ ↑m 𝑉) × {𝐹}) ∈ 𝑃) | ||
| Theorem | mzpcl2 42742* | Defining property 2 of a polynomially closed function set 𝑃: it contains all projections. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ 𝑉) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝐹)) ∈ 𝑃) | ||
| Theorem | mzpcl34 42743 | Defining properties 3 and 4 of a polynomially closed function set 𝑃: it is closed under pointwise addition and multiplication. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃) → ((𝐹 ∘f + 𝐺) ∈ 𝑃 ∧ (𝐹 ∘f · 𝐺) ∈ 𝑃)) | ||
| Theorem | mzpval 42744 | Value of the mzPoly function. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ (𝑉 ∈ V → (mzPoly‘𝑉) = ∩ (mzPolyCld‘𝑉)) | ||
| Theorem | dmmzp 42745 | mzPoly is defined for all index sets which are sets. This is used with elfvdm 6851 to eliminate sethood antecedents. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ dom mzPoly = V | ||
| Theorem | mzpincl 42746 | Polynomial closedness is a universal first-order property and passes to intersections. This is where the closure properties of the polynomial ring itself are proved. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ (𝑉 ∈ V → (mzPoly‘𝑉) ∈ (mzPolyCld‘𝑉)) | ||
| Theorem | mzpconst 42747 | Constant functions are polynomial. See also mzpconstmpt 42752. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ ((𝑉 ∈ V ∧ 𝐶 ∈ ℤ) → ((ℤ ↑m 𝑉) × {𝐶}) ∈ (mzPoly‘𝑉)) | ||
| Theorem | mzpf 42748 | A polynomial function is a function from the coordinate space to the integers. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
| ⊢ (𝐹 ∈ (mzPoly‘𝑉) → 𝐹:(ℤ ↑m 𝑉)⟶ℤ) | ||
| Theorem | mzpproj 42749* | A projection function is polynomial. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ ((𝑉 ∈ V ∧ 𝑋 ∈ 𝑉) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑋)) ∈ (mzPoly‘𝑉)) | ||
| Theorem | mzpadd 42750 | The pointwise sum of two polynomial functions is a polynomial function. See also mzpaddmpt 42753. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ ((𝐴 ∈ (mzPoly‘𝑉) ∧ 𝐵 ∈ (mzPoly‘𝑉)) → (𝐴 ∘f + 𝐵) ∈ (mzPoly‘𝑉)) | ||
| Theorem | mzpmul 42751 | The pointwise product of two polynomial functions is a polynomial function. See also mzpmulmpt 42754. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ ((𝐴 ∈ (mzPoly‘𝑉) ∧ 𝐵 ∈ (mzPoly‘𝑉)) → (𝐴 ∘f · 𝐵) ∈ (mzPoly‘𝑉)) | ||
| Theorem | mzpconstmpt 42752* | A constant function expressed in maps-to notation is polynomial. This theorem and the several that follow (mzpaddmpt 42753, mzpmulmpt 42754, mzpnegmpt 42756, mzpsubmpt 42755, mzpexpmpt 42757) can be used to build proofs that functions which are "manifestly polynomial", in the sense of being a maps-to containing constants, projections, and simple arithmetic operations, are actually polynomial functions. There is no mzpprojmpt because mzpproj 42749 is already expressed using maps-to notation. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
| ⊢ ((𝑉 ∈ V ∧ 𝐶 ∈ ℤ) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐶) ∈ (mzPoly‘𝑉)) | ||
| Theorem | mzpaddmpt 42753* | Sum of polynomial functions is polynomial. Maps-to version of mzpadd 42750. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
| ⊢ (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴 + 𝐵)) ∈ (mzPoly‘𝑉)) | ||
| Theorem | mzpmulmpt 42754* | Product of polynomial functions is polynomial. Maps-to version of mzpmulmpt 42754. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
| ⊢ (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴 · 𝐵)) ∈ (mzPoly‘𝑉)) | ||
| Theorem | mzpsubmpt 42755* | The difference of two polynomial functions is polynomial. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| ⊢ (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴 − 𝐵)) ∈ (mzPoly‘𝑉)) | ||
| Theorem | mzpnegmpt 42756* | Negation of a polynomial function. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
| ⊢ ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ -𝐴) ∈ (mzPoly‘𝑉)) | ||
| Theorem | mzpexpmpt 42757* | Raise a polynomial function to a (fixed) exponent. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
| ⊢ (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ 𝐷 ∈ ℕ0) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑𝐷)) ∈ (mzPoly‘𝑉)) | ||
| Theorem | mzpindd 42758* | "Structural" induction to prove properties of all polynomial functions. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) → 𝜒) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑉) → 𝜃) & ⊢ ((𝜑 ∧ (𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂)) → 𝜁) & ⊢ ((𝜑 ∧ (𝑓:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝜂)) → 𝜎) & ⊢ (𝑥 = ((ℤ ↑m 𝑉) × {𝑓}) → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑓)) → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = 𝑓 → (𝜓 ↔ 𝜏)) & ⊢ (𝑥 = 𝑔 → (𝜓 ↔ 𝜂)) & ⊢ (𝑥 = (𝑓 ∘f + 𝑔) → (𝜓 ↔ 𝜁)) & ⊢ (𝑥 = (𝑓 ∘f · 𝑔) → (𝜓 ↔ 𝜎)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜌)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ (mzPoly‘𝑉)) → 𝜌) | ||
| Theorem | mzpmfp 42759 | Relationship between multivariate Z-polynomials and general multivariate polynomial functions. (Contributed by Stefan O'Rear, 20-Mar-2015.) (Revised by AV, 13-Jun-2019.) |
| ⊢ (mzPoly‘𝐼) = ran (𝐼 eval ℤring) | ||
| Theorem | mzpsubst 42760* | Substituting polynomials for the variables of a polynomial results in a polynomial. 𝐺 is expected to depend on 𝑦 and provide the polynomials which are being substituted. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
| ⊢ ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ ∀𝑦 ∈ 𝑉 𝐺 ∈ (mzPoly‘𝑊)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑦 ∈ 𝑉 ↦ (𝐺‘𝑥)))) ∈ (mzPoly‘𝑊)) | ||
| Theorem | mzprename 42761* | Simplified version of mzpsubst 42760 to simply relabel variables in a polynomial. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
| ⊢ ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉⟶𝑊) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥 ∘ 𝑅))) ∈ (mzPoly‘𝑊)) | ||
| Theorem | mzpresrename 42762* | A polynomial is a polynomial over all larger index sets. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Revised by Stefan O'Rear, 5-Jun-2015.) |
| ⊢ ((𝑊 ∈ V ∧ 𝑉 ⊆ 𝑊 ∧ 𝐹 ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥 ↾ 𝑉))) ∈ (mzPoly‘𝑊)) | ||
| Theorem | mzpcompact2lem 42763* | Lemma for mzpcompact2 42764. (Contributed by Stefan O'Rear, 9-Oct-2014.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐 ↾ 𝑎))))) | ||
| Theorem | mzpcompact2 42764* | Polynomials are finitary objects and can only reference a finite number of variables, even if the index set is infinite. Thus, every polynomial can be expressed as a (uniquely minimal, although we do not prove that) polynomial on a finite number of variables, which is then extended by adding an arbitrary set of ignored variables. (Contributed by Stefan O'Rear, 9-Oct-2014.) |
| ⊢ (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐 ↾ 𝑎))))) | ||
| Theorem | coeq0i 42765 | coeq0 6199 but without explicitly introducing domain and range symbols. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
| ⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → (𝐴 ∘ 𝐵) = ∅) | ||
| Theorem | fzsplit1nn0 42766 | Split a finite 1-based set of integers in the middle, allowing either end to be empty ((1...0)). (Contributed by Stefan O'Rear, 8-Oct-2014.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵))) | ||
| Syntax | cdioph 42767 | Extend class notation to include the family of Diophantine sets. |
| class Dioph | ||
| Definition | df-dioph 42768* | A Diophantine set is a set of positive integers which is a projection of the zero set of some polynomial. This definition somewhat awkwardly mixes ℤ (via mzPoly) and ℕ0 (to define the zero sets); the former could be avoided by considering coincidence sets of ℕ0 polynomials at the cost of requiring two, and the second is driven by consistency with our mu-recursive functions and the requirements of the Davis-Putnam-Robinson-Matiyasevich proof. Both are avoidable at a complexity cost. In particular, it is a consequence of 4sq 16868 that implicitly restricting variables to ℕ0 adds no expressive power over allowing them to range over ℤ. While this definition stipulates a specific index set for the polynomials, there is actually flexibility here, see eldioph2b 42775. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
| ⊢ Dioph = (𝑛 ∈ ℕ0 ↦ ran (𝑘 ∈ (ℤ≥‘𝑛), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0 ↑m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝‘𝑢) = 0)})) | ||
| Theorem | eldiophb 42769* | Initial expression of Diophantine property of a set. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) |
| ⊢ (𝐷 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑘 ∈ (ℤ≥‘𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘))𝐷 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0 ↑m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝‘𝑢) = 0)})) | ||
| Theorem | eldioph 42770* | Condition for a set to be Diophantine (unpacking existential quantifier). (Contributed by Stefan O'Rear, 5-Oct-2014.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ (mzPoly‘(1...𝐾))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0 ↑m (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃‘𝑢) = 0)} ∈ (Dioph‘𝑁)) | ||
| Theorem | diophrw 42771* | Renaming and adding unused witness variables does not change the Diophantine set coded by a polynomial. (Contributed by Stefan O'Rear, 7-Oct-2014.) |
| ⊢ ((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) → {𝑎 ∣ ∃𝑏 ∈ (ℕ0 ↑m 𝑆)(𝑎 = (𝑏 ↾ 𝑂) ∧ ((𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀)))‘𝑏) = 0)} = {𝑎 ∣ ∃𝑐 ∈ (ℕ0 ↑m 𝑇)(𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)}) | ||
| Theorem | eldioph2lem1 42772* | Lemma for eldioph2 42774. Construct necessary renaming function for one direction. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → ∃𝑑 ∈ (ℤ≥‘𝑁)∃𝑒 ∈ V (𝑒:(1...𝑑)–1-1-onto→𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) | ||
| Theorem | eldioph2lem2 42773* | Lemma for eldioph2 42774. Construct necessary renaming function for one direction. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
| ⊢ (((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆 ∧ 𝐴 ∈ (ℤ≥‘𝑁))) → ∃𝑐(𝑐:(1...𝐴)–1-1→𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) | ||
| Theorem | eldioph2 42774* | Construct a Diophantine set from a polynomial with witness variables drawn from any set whatsoever, via mzpcompact2 42764. (Contributed by Stefan O'Rear, 8-Oct-2014.) (Revised by Stefan O'Rear, 5-Jun-2015.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0 ↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃‘𝑢) = 0)} ∈ (Dioph‘𝑁)) | ||
| Theorem | eldioph2b 42775* | While Diophantine sets were defined to have a finite number of witness variables consequtively following the observable variables, this is not necessary; they can equivalently be taken to use any witness set (𝑆 ∖ (1...𝑁)). For instance, in diophin 42784 we use this to take the two input sets to have disjoint witness sets. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
| ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) → (𝐴 ∈ (Dioph‘𝑁) ↔ ∃𝑝 ∈ (mzPoly‘𝑆)𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0 ↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝‘𝑢) = 0)})) | ||
| Theorem | eldiophelnn0 42776 | Remove antecedent on 𝐵 from Diophantine set constructors. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| ⊢ (𝐴 ∈ (Dioph‘𝐵) → 𝐵 ∈ ℕ0) | ||
| Theorem | eldioph3b 42777* | Define Diophantine sets in terms of polynomials with variables indexed by ℕ. This avoids a quantifier over the number of witness variables and will be easier to use than eldiophb 42769 in most cases. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| ⊢ (𝐴 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘ℕ)𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0 ↑m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝‘𝑢) = 0)})) | ||
| Theorem | eldioph3 42778* | Inference version of eldioph3b 42777 with quantifier expanded. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ (mzPoly‘ℕ)) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0 ↑m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃‘𝑢) = 0)} ∈ (Dioph‘𝑁)) | ||
| Theorem | ellz1 42779 | Membership in a lower set of integers. (Contributed by Stefan O'Rear, 9-Oct-2014.) |
| ⊢ (𝐵 ∈ ℤ → (𝐴 ∈ (ℤ ∖ (ℤ≥‘(𝐵 + 1))) ↔ (𝐴 ∈ ℤ ∧ 𝐴 ≤ 𝐵))) | ||
| Theorem | lzunuz 42780 | The union of a lower set of integers and an upper set of integers which abut or overlap is all of the integers. (Contributed by Stefan O'Rear, 9-Oct-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → ((ℤ ∖ (ℤ≥‘(𝐴 + 1))) ∪ (ℤ≥‘𝐵)) = ℤ) | ||
| Theorem | fz1eqin 42781 | Express a one-based finite range as the intersection of lower integers with ℕ. (Contributed by Stefan O'Rear, 9-Oct-2014.) |
| ⊢ (𝑁 ∈ ℕ0 → (1...𝑁) = ((ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∩ ℕ)) | ||
| Theorem | lzenom 42782 | Lower integers are countably infinite. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| ⊢ (𝑁 ∈ ℤ → (ℤ ∖ (ℤ≥‘(𝑁 + 1))) ≈ ω) | ||
| Theorem | elmapresaunres2 42783 | fresaunres2 6691 transposed to mappings. (Contributed by Stefan O'Rear, 9-Oct-2014.) |
| ⊢ ((𝐹 ∈ (𝐶 ↑m 𝐴) ∧ 𝐺 ∈ (𝐶 ↑m 𝐵) ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐹 ∪ 𝐺) ↾ 𝐵) = 𝐺) | ||
| Theorem | diophin 42784 | If two sets are Diophantine, so is their intersection. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
| ⊢ ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴 ∩ 𝐵) ∈ (Dioph‘𝑁)) | ||
| Theorem | diophun 42785 | If two sets are Diophantine, so is their union. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
| ⊢ ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴 ∪ 𝐵) ∈ (Dioph‘𝑁)) | ||
| Theorem | eldiophss 42786 | Diophantine sets are sets of tuples of nonnegative integers. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
| ⊢ (𝐴 ∈ (Dioph‘𝐵) → 𝐴 ⊆ (ℕ0 ↑m (1...𝐵))) | ||
| Theorem | diophrex 42787* | Projecting a Diophantine set by removing a coordinate results in a Diophantine set. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) → {𝑡 ∣ ∃𝑢 ∈ 𝑆 𝑡 = (𝑢 ↾ (1...𝑁))} ∈ (Dioph‘𝑁)) | ||
| Theorem | eq0rabdioph 42788* | This is the first of a number of theorems which allow sets to be proven Diophantine by syntactic induction, and models the correspondence between Diophantine sets and monotone existential first-order logic. This first theorem shows that the zero set of an implicit polynomial is Diophantine. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 = 0} ∈ (Dioph‘𝑁)) | ||
| Theorem | eqrabdioph 42789* | Diophantine set builder for equality of polynomial expressions. Note that the two expressions need not be nonnegative; only variables are so constrained. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 = 𝐵} ∈ (Dioph‘𝑁)) | ||
| Theorem | 0dioph 42790 | The null set is Diophantine. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| ⊢ (𝐴 ∈ ℕ0 → ∅ ∈ (Dioph‘𝐴)) | ||
| Theorem | vdioph 42791 | The "universal" set (as large as possible given eldiophss 42786) is Diophantine. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| ⊢ (𝐴 ∈ ℕ0 → (ℕ0 ↑m (1...𝐴)) ∈ (Dioph‘𝐴)) | ||
| Theorem | anrabdioph 42792* | Diophantine set builder for conjunctions. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| ⊢ (({𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝜑} ∈ (Dioph‘𝑁) ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝜓} ∈ (Dioph‘𝑁)) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ (𝜑 ∧ 𝜓)} ∈ (Dioph‘𝑁)) | ||
| Theorem | orrabdioph 42793* | Diophantine set builder for disjunctions. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| ⊢ (({𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝜑} ∈ (Dioph‘𝑁) ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝜓} ∈ (Dioph‘𝑁)) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ (𝜑 ∨ 𝜓)} ∈ (Dioph‘𝑁)) | ||
| Theorem | 3anrabdioph 42794* | Diophantine set builder for ternary conjunctions. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| ⊢ (({𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝜑} ∈ (Dioph‘𝑁) ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝜓} ∈ (Dioph‘𝑁) ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝜒} ∈ (Dioph‘𝑁)) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ (𝜑 ∧ 𝜓 ∧ 𝜒)} ∈ (Dioph‘𝑁)) | ||
| Theorem | 3orrabdioph 42795* | Diophantine set builder for ternary disjunctions. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| ⊢ (({𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝜑} ∈ (Dioph‘𝑁) ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝜓} ∈ (Dioph‘𝑁) ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝜒} ∈ (Dioph‘𝑁)) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ (𝜑 ∨ 𝜓 ∨ 𝜒)} ∈ (Dioph‘𝑁)) | ||
| Theorem | 2sbcrex 42796* | Exchange an existential quantifier with two substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by NM, 24-Aug-2018.) |
| ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏]∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎][𝐵 / 𝑏]𝜑) | ||
| Theorem | sbcrexgOLD 42797* | Interchange class substitution and restricted existential quantifier. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) Obsolete as of 18-Aug-2018. Use sbcrex 3824 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) | ||
| Theorem | 2sbcrexOLD 42798* | Exchange an existential quantifier with two substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014.) Obsolete as of 24-Aug-2018. Use csbov123 7385 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏]∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎][𝐵 / 𝑏]𝜑) | ||
| Theorem | sbc2rex 42799* | Exchange a substitution with two existentials. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by NM, 24-Aug-2018.) |
| ⊢ ([𝐴 / 𝑎]∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎]𝜑) | ||
| Theorem | sbc2rexgOLD 42800* | Exchange a substitution with two existentials. (Contributed by Stefan O'Rear, 11-Oct-2014.) Obsolete as of 24-Aug-2018. Use csbov123 7385 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑎]∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎]𝜑)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |