Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-reflexive | Structured version Visualization version GIF version |
Description: Define reflexive relation; relation 𝑅 is reflexive over the set 𝐴 iff ∀𝑥 ∈ 𝐴𝑥𝑅𝑥. (Contributed by David A. Wheeler, 1-Dec-2019.) |
Ref | Expression |
---|---|
df-reflexive | ⊢ (𝑅Reflexive𝐴 ↔ (𝑅 ⊆ (𝐴 × 𝐴) ∧ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cR | . . 3 class 𝑅 | |
3 | 1, 2 | wreflexive 46140 | . 2 wff 𝑅Reflexive𝐴 |
4 | 1, 1 | cxp 5549 | . . . 4 class (𝐴 × 𝐴) |
5 | 2, 4 | wss 3866 | . . 3 wff 𝑅 ⊆ (𝐴 × 𝐴) |
6 | vx | . . . . . 6 setvar 𝑥 | |
7 | 6 | cv 1542 | . . . . 5 class 𝑥 |
8 | 7, 7, 2 | wbr 5053 | . . . 4 wff 𝑥𝑅𝑥 |
9 | 8, 6, 1 | wral 3061 | . . 3 wff ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥 |
10 | 5, 9 | wa 399 | . 2 wff (𝑅 ⊆ (𝐴 × 𝐴) ∧ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
11 | 3, 10 | wb 209 | 1 wff (𝑅Reflexive𝐴 ↔ (𝑅 ⊆ (𝐴 × 𝐴) ∧ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥)) |
Colors of variables: wff setvar class |
This definition is referenced by: (None) |
Copyright terms: Public domain | W3C validator |