Detailed syntax breakdown of Definition df-repr
| Step | Hyp | Ref
| Expression |
| 1 | | crepr 34623 |
. 2
class
repr |
| 2 | | vs |
. . 3
setvar 𝑠 |
| 3 | | cn0 12526 |
. . 3
class
ℕ0 |
| 4 | | vb |
. . . 4
setvar 𝑏 |
| 5 | | vm |
. . . 4
setvar 𝑚 |
| 6 | | cn 12266 |
. . . . 5
class
ℕ |
| 7 | 6 | cpw 4600 |
. . . 4
class 𝒫
ℕ |
| 8 | | cz 12613 |
. . . 4
class
ℤ |
| 9 | | cc0 11155 |
. . . . . . . 8
class
0 |
| 10 | 2 | cv 1539 |
. . . . . . . 8
class 𝑠 |
| 11 | | cfzo 13694 |
. . . . . . . 8
class
..^ |
| 12 | 9, 10, 11 | co 7431 |
. . . . . . 7
class
(0..^𝑠) |
| 13 | | va |
. . . . . . . . 9
setvar 𝑎 |
| 14 | 13 | cv 1539 |
. . . . . . . 8
class 𝑎 |
| 15 | | vc |
. . . . . . . . 9
setvar 𝑐 |
| 16 | 15 | cv 1539 |
. . . . . . . 8
class 𝑐 |
| 17 | 14, 16 | cfv 6561 |
. . . . . . 7
class (𝑐‘𝑎) |
| 18 | 12, 17, 13 | csu 15722 |
. . . . . 6
class
Σ𝑎 ∈
(0..^𝑠)(𝑐‘𝑎) |
| 19 | 5 | cv 1539 |
. . . . . 6
class 𝑚 |
| 20 | 18, 19 | wceq 1540 |
. . . . 5
wff
Σ𝑎 ∈
(0..^𝑠)(𝑐‘𝑎) = 𝑚 |
| 21 | 4 | cv 1539 |
. . . . . 6
class 𝑏 |
| 22 | | cmap 8866 |
. . . . . 6
class
↑m |
| 23 | 21, 12, 22 | co 7431 |
. . . . 5
class (𝑏 ↑m (0..^𝑠)) |
| 24 | 20, 15, 23 | crab 3436 |
. . . 4
class {𝑐 ∈ (𝑏 ↑m (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐‘𝑎) = 𝑚} |
| 25 | 4, 5, 7, 8, 24 | cmpo 7433 |
. . 3
class (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏 ↑m (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐‘𝑎) = 𝑚}) |
| 26 | 2, 3, 25 | cmpt 5225 |
. 2
class (𝑠 ∈ ℕ0
↦ (𝑏 ∈ 𝒫
ℕ, 𝑚 ∈ ℤ
↦ {𝑐 ∈ (𝑏 ↑m (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐‘𝑎) = 𝑚})) |
| 27 | 1, 26 | wceq 1540 |
1
wff repr =
(𝑠 ∈
ℕ0 ↦ (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏 ↑m (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐‘𝑎) = 𝑚})) |