Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reprval Structured version   Visualization version   GIF version

Theorem reprval 34458
Description: Value of the representations of 𝑀 as the sum of 𝑆 nonnegative integers in a given set 𝐴. (Contributed by Thierry Arnoux, 1-Dec-2021.)
Hypotheses
Ref Expression
reprval.a (𝜑𝐴 ⊆ ℕ)
reprval.m (𝜑𝑀 ∈ ℤ)
reprval.s (𝜑𝑆 ∈ ℕ0)
Assertion
Ref Expression
reprval (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
Distinct variable groups:   𝐴,𝑐   𝑀,𝑐   𝑆,𝑎,𝑐   𝜑,𝑐
Allowed substitution hints:   𝜑(𝑎)   𝐴(𝑎)   𝑀(𝑎)

Proof of Theorem reprval
Dummy variables 𝑏 𝑚 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-repr 34457 . . 3 repr = (𝑠 ∈ ℕ0 ↦ (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏m (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐𝑎) = 𝑚}))
2 oveq2 7434 . . . . . 6 (𝑠 = 𝑆 → (0..^𝑠) = (0..^𝑆))
32oveq2d 7442 . . . . 5 (𝑠 = 𝑆 → (𝑏m (0..^𝑠)) = (𝑏m (0..^𝑆)))
42sumeq1d 15707 . . . . . 6 (𝑠 = 𝑆 → Σ𝑎 ∈ (0..^𝑠)(𝑐𝑎) = Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
54eqeq1d 2728 . . . . 5 (𝑠 = 𝑆 → (Σ𝑎 ∈ (0..^𝑠)(𝑐𝑎) = 𝑚 ↔ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑚))
63, 5rabeqbidv 3437 . . . 4 (𝑠 = 𝑆 → {𝑐 ∈ (𝑏m (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐𝑎) = 𝑚} = {𝑐 ∈ (𝑏m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑚})
76mpoeq3dv 7506 . . 3 (𝑠 = 𝑆 → (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏m (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐𝑎) = 𝑚}) = (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑚}))
8 reprval.s . . 3 (𝜑𝑆 ∈ ℕ0)
9 nnex 12272 . . . . . 6 ℕ ∈ V
109pwex 5386 . . . . 5 𝒫 ℕ ∈ V
11 zex 12621 . . . . 5 ℤ ∈ V
1210, 11mpoex 8095 . . . 4 (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑚}) ∈ V
1312a1i 11 . . 3 (𝜑 → (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑚}) ∈ V)
141, 7, 8, 13fvmptd3 7034 . 2 (𝜑 → (repr‘𝑆) = (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑚}))
15 simprl 769 . . . 4 ((𝜑 ∧ (𝑏 = 𝐴𝑚 = 𝑀)) → 𝑏 = 𝐴)
1615oveq1d 7441 . . 3 ((𝜑 ∧ (𝑏 = 𝐴𝑚 = 𝑀)) → (𝑏m (0..^𝑆)) = (𝐴m (0..^𝑆)))
17 simprr 771 . . . 4 ((𝜑 ∧ (𝑏 = 𝐴𝑚 = 𝑀)) → 𝑚 = 𝑀)
1817eqeq2d 2737 . . 3 ((𝜑 ∧ (𝑏 = 𝐴𝑚 = 𝑀)) → (Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑚 ↔ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀))
1916, 18rabeqbidv 3437 . 2 ((𝜑 ∧ (𝑏 = 𝐴𝑚 = 𝑀)) → {𝑐 ∈ (𝑏m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑚} = {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
209a1i 11 . . . 4 (𝜑 → ℕ ∈ V)
21 reprval.a . . . 4 (𝜑𝐴 ⊆ ℕ)
2220, 21ssexd 5331 . . 3 (𝜑𝐴 ∈ V)
2322, 21elpwd 4613 . 2 (𝜑𝐴 ∈ 𝒫 ℕ)
24 reprval.m . 2 (𝜑𝑀 ∈ ℤ)
25 ovex 7459 . . . 4 (𝐴m (0..^𝑆)) ∈ V
2625rabex 5341 . . 3 {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} ∈ V
2726a1i 11 . 2 (𝜑 → {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} ∈ V)
2814, 19, 23, 24, 27ovmpod 7580 1 (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  {crab 3419  Vcvv 3462  wss 3947  𝒫 cpw 4607  cfv 6556  (class class class)co 7426  cmpo 7428  m cmap 8857  0cc0 11160  cn 12266  0cn0 12526  cz 12612  ..^cfzo 13683  Σcsu 15692  reprcrepr 34456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5292  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-cnex 11216  ax-resscn 11217  ax-1cn 11218  ax-addcl 11220
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8005  df-2nd 8006  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-neg 11499  df-nn 12267  df-z 12613  df-seq 14024  df-sum 15693  df-repr 34457
This theorem is referenced by:  repr0  34459  reprf  34460  reprsum  34461  reprsuc  34463  reprfi  34464  reprss  34465  reprinrn  34466  reprlt  34467  reprgt  34469  reprinfz1  34470  reprpmtf1o  34474  reprdifc  34475  breprexplema  34478
  Copyright terms: Public domain W3C validator