| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reprval | Structured version Visualization version GIF version | ||
| Description: Value of the representations of 𝑀 as the sum of 𝑆 nonnegative integers in a given set 𝐴. (Contributed by Thierry Arnoux, 1-Dec-2021.) |
| Ref | Expression |
|---|---|
| reprval.a | ⊢ (𝜑 → 𝐴 ⊆ ℕ) |
| reprval.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| reprval.s | ⊢ (𝜑 → 𝑆 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| reprval | ⊢ (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-repr 34646 | . . 3 ⊢ repr = (𝑠 ∈ ℕ0 ↦ (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏 ↑m (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐‘𝑎) = 𝑚})) | |
| 2 | oveq2 7418 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (0..^𝑠) = (0..^𝑆)) | |
| 3 | 2 | oveq2d 7426 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝑏 ↑m (0..^𝑠)) = (𝑏 ↑m (0..^𝑆))) |
| 4 | 2 | sumeq1d 15721 | . . . . . 6 ⊢ (𝑠 = 𝑆 → Σ𝑎 ∈ (0..^𝑠)(𝑐‘𝑎) = Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎)) |
| 5 | 4 | eqeq1d 2738 | . . . . 5 ⊢ (𝑠 = 𝑆 → (Σ𝑎 ∈ (0..^𝑠)(𝑐‘𝑎) = 𝑚 ↔ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚)) |
| 6 | 3, 5 | rabeqbidv 3439 | . . . 4 ⊢ (𝑠 = 𝑆 → {𝑐 ∈ (𝑏 ↑m (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐‘𝑎) = 𝑚} = {𝑐 ∈ (𝑏 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚}) |
| 7 | 6 | mpoeq3dv 7491 | . . 3 ⊢ (𝑠 = 𝑆 → (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏 ↑m (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐‘𝑎) = 𝑚}) = (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚})) |
| 8 | reprval.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℕ0) | |
| 9 | nnex 12251 | . . . . . 6 ⊢ ℕ ∈ V | |
| 10 | 9 | pwex 5355 | . . . . 5 ⊢ 𝒫 ℕ ∈ V |
| 11 | zex 12602 | . . . . 5 ⊢ ℤ ∈ V | |
| 12 | 10, 11 | mpoex 8083 | . . . 4 ⊢ (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚}) ∈ V |
| 13 | 12 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚}) ∈ V) |
| 14 | 1, 7, 8, 13 | fvmptd3 7014 | . 2 ⊢ (𝜑 → (repr‘𝑆) = (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚})) |
| 15 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑏 = 𝐴 ∧ 𝑚 = 𝑀)) → 𝑏 = 𝐴) | |
| 16 | 15 | oveq1d 7425 | . . 3 ⊢ ((𝜑 ∧ (𝑏 = 𝐴 ∧ 𝑚 = 𝑀)) → (𝑏 ↑m (0..^𝑆)) = (𝐴 ↑m (0..^𝑆))) |
| 17 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑏 = 𝐴 ∧ 𝑚 = 𝑀)) → 𝑚 = 𝑀) | |
| 18 | 17 | eqeq2d 2747 | . . 3 ⊢ ((𝜑 ∧ (𝑏 = 𝐴 ∧ 𝑚 = 𝑀)) → (Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚 ↔ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀)) |
| 19 | 16, 18 | rabeqbidv 3439 | . 2 ⊢ ((𝜑 ∧ (𝑏 = 𝐴 ∧ 𝑚 = 𝑀)) → {𝑐 ∈ (𝑏 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚} = {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
| 20 | 9 | a1i 11 | . . . 4 ⊢ (𝜑 → ℕ ∈ V) |
| 21 | reprval.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℕ) | |
| 22 | 20, 21 | ssexd 5299 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
| 23 | 22, 21 | elpwd 4586 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝒫 ℕ) |
| 24 | reprval.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 25 | ovex 7443 | . . . 4 ⊢ (𝐴 ↑m (0..^𝑆)) ∈ V | |
| 26 | 25 | rabex 5314 | . . 3 ⊢ {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀} ∈ V |
| 27 | 26 | a1i 11 | . 2 ⊢ (𝜑 → {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀} ∈ V) |
| 28 | 14, 19, 23, 24, 27 | ovmpod 7564 | 1 ⊢ (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3420 Vcvv 3464 ⊆ wss 3931 𝒫 cpw 4580 ‘cfv 6536 (class class class)co 7410 ∈ cmpo 7412 ↑m cmap 8845 0cc0 11134 ℕcn 12245 ℕ0cn0 12506 ℤcz 12593 ..^cfzo 13676 Σcsu 15707 reprcrepr 34645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-addcl 11194 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-neg 11474 df-nn 12246 df-z 12594 df-seq 14025 df-sum 15708 df-repr 34646 |
| This theorem is referenced by: repr0 34648 reprf 34649 reprsum 34650 reprsuc 34652 reprfi 34653 reprss 34654 reprinrn 34655 reprlt 34656 reprgt 34658 reprinfz1 34659 reprpmtf1o 34663 reprdifc 34664 breprexplema 34667 |
| Copyright terms: Public domain | W3C validator |