| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reprval | Structured version Visualization version GIF version | ||
| Description: Value of the representations of 𝑀 as the sum of 𝑆 nonnegative integers in a given set 𝐴. (Contributed by Thierry Arnoux, 1-Dec-2021.) |
| Ref | Expression |
|---|---|
| reprval.a | ⊢ (𝜑 → 𝐴 ⊆ ℕ) |
| reprval.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| reprval.s | ⊢ (𝜑 → 𝑆 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| reprval | ⊢ (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-repr 34607 | . . 3 ⊢ repr = (𝑠 ∈ ℕ0 ↦ (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏 ↑m (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐‘𝑎) = 𝑚})) | |
| 2 | oveq2 7398 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (0..^𝑠) = (0..^𝑆)) | |
| 3 | 2 | oveq2d 7406 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝑏 ↑m (0..^𝑠)) = (𝑏 ↑m (0..^𝑆))) |
| 4 | 2 | sumeq1d 15673 | . . . . . 6 ⊢ (𝑠 = 𝑆 → Σ𝑎 ∈ (0..^𝑠)(𝑐‘𝑎) = Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎)) |
| 5 | 4 | eqeq1d 2732 | . . . . 5 ⊢ (𝑠 = 𝑆 → (Σ𝑎 ∈ (0..^𝑠)(𝑐‘𝑎) = 𝑚 ↔ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚)) |
| 6 | 3, 5 | rabeqbidv 3427 | . . . 4 ⊢ (𝑠 = 𝑆 → {𝑐 ∈ (𝑏 ↑m (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐‘𝑎) = 𝑚} = {𝑐 ∈ (𝑏 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚}) |
| 7 | 6 | mpoeq3dv 7471 | . . 3 ⊢ (𝑠 = 𝑆 → (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏 ↑m (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐‘𝑎) = 𝑚}) = (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚})) |
| 8 | reprval.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℕ0) | |
| 9 | nnex 12199 | . . . . . 6 ⊢ ℕ ∈ V | |
| 10 | 9 | pwex 5338 | . . . . 5 ⊢ 𝒫 ℕ ∈ V |
| 11 | zex 12545 | . . . . 5 ⊢ ℤ ∈ V | |
| 12 | 10, 11 | mpoex 8061 | . . . 4 ⊢ (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚}) ∈ V |
| 13 | 12 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚}) ∈ V) |
| 14 | 1, 7, 8, 13 | fvmptd3 6994 | . 2 ⊢ (𝜑 → (repr‘𝑆) = (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚})) |
| 15 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑏 = 𝐴 ∧ 𝑚 = 𝑀)) → 𝑏 = 𝐴) | |
| 16 | 15 | oveq1d 7405 | . . 3 ⊢ ((𝜑 ∧ (𝑏 = 𝐴 ∧ 𝑚 = 𝑀)) → (𝑏 ↑m (0..^𝑆)) = (𝐴 ↑m (0..^𝑆))) |
| 17 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑏 = 𝐴 ∧ 𝑚 = 𝑀)) → 𝑚 = 𝑀) | |
| 18 | 17 | eqeq2d 2741 | . . 3 ⊢ ((𝜑 ∧ (𝑏 = 𝐴 ∧ 𝑚 = 𝑀)) → (Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚 ↔ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀)) |
| 19 | 16, 18 | rabeqbidv 3427 | . 2 ⊢ ((𝜑 ∧ (𝑏 = 𝐴 ∧ 𝑚 = 𝑀)) → {𝑐 ∈ (𝑏 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚} = {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
| 20 | 9 | a1i 11 | . . . 4 ⊢ (𝜑 → ℕ ∈ V) |
| 21 | reprval.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℕ) | |
| 22 | 20, 21 | ssexd 5282 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
| 23 | 22, 21 | elpwd 4572 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝒫 ℕ) |
| 24 | reprval.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 25 | ovex 7423 | . . . 4 ⊢ (𝐴 ↑m (0..^𝑆)) ∈ V | |
| 26 | 25 | rabex 5297 | . . 3 ⊢ {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀} ∈ V |
| 27 | 26 | a1i 11 | . 2 ⊢ (𝜑 → {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀} ∈ V) |
| 28 | 14, 19, 23, 24, 27 | ovmpod 7544 | 1 ⊢ (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3408 Vcvv 3450 ⊆ wss 3917 𝒫 cpw 4566 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 ↑m cmap 8802 0cc0 11075 ℕcn 12193 ℕ0cn0 12449 ℤcz 12536 ..^cfzo 13622 Σcsu 15659 reprcrepr 34606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-addcl 11135 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-neg 11415 df-nn 12194 df-z 12537 df-seq 13974 df-sum 15660 df-repr 34607 |
| This theorem is referenced by: repr0 34609 reprf 34610 reprsum 34611 reprsuc 34613 reprfi 34614 reprss 34615 reprinrn 34616 reprlt 34617 reprgt 34619 reprinfz1 34620 reprpmtf1o 34624 reprdifc 34625 breprexplema 34628 |
| Copyright terms: Public domain | W3C validator |