| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reprval | Structured version Visualization version GIF version | ||
| Description: Value of the representations of 𝑀 as the sum of 𝑆 nonnegative integers in a given set 𝐴. (Contributed by Thierry Arnoux, 1-Dec-2021.) |
| Ref | Expression |
|---|---|
| reprval.a | ⊢ (𝜑 → 𝐴 ⊆ ℕ) |
| reprval.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| reprval.s | ⊢ (𝜑 → 𝑆 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| reprval | ⊢ (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-repr 34643 | . . 3 ⊢ repr = (𝑠 ∈ ℕ0 ↦ (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏 ↑m (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐‘𝑎) = 𝑚})) | |
| 2 | oveq2 7360 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (0..^𝑠) = (0..^𝑆)) | |
| 3 | 2 | oveq2d 7368 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝑏 ↑m (0..^𝑠)) = (𝑏 ↑m (0..^𝑆))) |
| 4 | 2 | sumeq1d 15609 | . . . . . 6 ⊢ (𝑠 = 𝑆 → Σ𝑎 ∈ (0..^𝑠)(𝑐‘𝑎) = Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎)) |
| 5 | 4 | eqeq1d 2735 | . . . . 5 ⊢ (𝑠 = 𝑆 → (Σ𝑎 ∈ (0..^𝑠)(𝑐‘𝑎) = 𝑚 ↔ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚)) |
| 6 | 3, 5 | rabeqbidv 3414 | . . . 4 ⊢ (𝑠 = 𝑆 → {𝑐 ∈ (𝑏 ↑m (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐‘𝑎) = 𝑚} = {𝑐 ∈ (𝑏 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚}) |
| 7 | 6 | mpoeq3dv 7431 | . . 3 ⊢ (𝑠 = 𝑆 → (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏 ↑m (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐‘𝑎) = 𝑚}) = (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚})) |
| 8 | reprval.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℕ0) | |
| 9 | nnex 12138 | . . . . . 6 ⊢ ℕ ∈ V | |
| 10 | 9 | pwex 5320 | . . . . 5 ⊢ 𝒫 ℕ ∈ V |
| 11 | zex 12484 | . . . . 5 ⊢ ℤ ∈ V | |
| 12 | 10, 11 | mpoex 8017 | . . . 4 ⊢ (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚}) ∈ V |
| 13 | 12 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚}) ∈ V) |
| 14 | 1, 7, 8, 13 | fvmptd3 6958 | . 2 ⊢ (𝜑 → (repr‘𝑆) = (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚})) |
| 15 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑏 = 𝐴 ∧ 𝑚 = 𝑀)) → 𝑏 = 𝐴) | |
| 16 | 15 | oveq1d 7367 | . . 3 ⊢ ((𝜑 ∧ (𝑏 = 𝐴 ∧ 𝑚 = 𝑀)) → (𝑏 ↑m (0..^𝑆)) = (𝐴 ↑m (0..^𝑆))) |
| 17 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑏 = 𝐴 ∧ 𝑚 = 𝑀)) → 𝑚 = 𝑀) | |
| 18 | 17 | eqeq2d 2744 | . . 3 ⊢ ((𝜑 ∧ (𝑏 = 𝐴 ∧ 𝑚 = 𝑀)) → (Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚 ↔ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀)) |
| 19 | 16, 18 | rabeqbidv 3414 | . 2 ⊢ ((𝜑 ∧ (𝑏 = 𝐴 ∧ 𝑚 = 𝑀)) → {𝑐 ∈ (𝑏 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚} = {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
| 20 | 9 | a1i 11 | . . . 4 ⊢ (𝜑 → ℕ ∈ V) |
| 21 | reprval.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℕ) | |
| 22 | 20, 21 | ssexd 5264 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
| 23 | 22, 21 | elpwd 4555 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝒫 ℕ) |
| 24 | reprval.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 25 | ovex 7385 | . . . 4 ⊢ (𝐴 ↑m (0..^𝑆)) ∈ V | |
| 26 | 25 | rabex 5279 | . . 3 ⊢ {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀} ∈ V |
| 27 | 26 | a1i 11 | . 2 ⊢ (𝜑 → {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀} ∈ V) |
| 28 | 14, 19, 23, 24, 27 | ovmpod 7504 | 1 ⊢ (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {crab 3396 Vcvv 3437 ⊆ wss 3898 𝒫 cpw 4549 ‘cfv 6486 (class class class)co 7352 ∈ cmpo 7354 ↑m cmap 8756 0cc0 11013 ℕcn 12132 ℕ0cn0 12388 ℤcz 12475 ..^cfzo 13556 Σcsu 15595 reprcrepr 34642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-addcl 11073 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-neg 11354 df-nn 12133 df-z 12476 df-seq 13911 df-sum 15596 df-repr 34643 |
| This theorem is referenced by: repr0 34645 reprf 34646 reprsum 34647 reprsuc 34649 reprfi 34650 reprss 34651 reprinrn 34652 reprlt 34653 reprgt 34655 reprinfz1 34656 reprpmtf1o 34660 reprdifc 34661 breprexplema 34664 |
| Copyright terms: Public domain | W3C validator |