Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reprval Structured version   Visualization version   GIF version

Theorem reprval 31989
 Description: Value of the representations of 𝑀 as the sum of 𝑆 nonnegative integers in a given set 𝐴. (Contributed by Thierry Arnoux, 1-Dec-2021.)
Hypotheses
Ref Expression
reprval.a (𝜑𝐴 ⊆ ℕ)
reprval.m (𝜑𝑀 ∈ ℤ)
reprval.s (𝜑𝑆 ∈ ℕ0)
Assertion
Ref Expression
reprval (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
Distinct variable groups:   𝐴,𝑐   𝑀,𝑐   𝑆,𝑎,𝑐   𝜑,𝑐
Allowed substitution hints:   𝜑(𝑎)   𝐴(𝑎)   𝑀(𝑎)

Proof of Theorem reprval
Dummy variables 𝑏 𝑚 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-repr 31988 . . 3 repr = (𝑠 ∈ ℕ0 ↦ (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏m (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐𝑎) = 𝑚}))
2 oveq2 7147 . . . . . 6 (𝑠 = 𝑆 → (0..^𝑠) = (0..^𝑆))
32oveq2d 7155 . . . . 5 (𝑠 = 𝑆 → (𝑏m (0..^𝑠)) = (𝑏m (0..^𝑆)))
42sumeq1d 15053 . . . . . 6 (𝑠 = 𝑆 → Σ𝑎 ∈ (0..^𝑠)(𝑐𝑎) = Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
54eqeq1d 2803 . . . . 5 (𝑠 = 𝑆 → (Σ𝑎 ∈ (0..^𝑠)(𝑐𝑎) = 𝑚 ↔ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑚))
63, 5rabeqbidv 3436 . . . 4 (𝑠 = 𝑆 → {𝑐 ∈ (𝑏m (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐𝑎) = 𝑚} = {𝑐 ∈ (𝑏m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑚})
76mpoeq3dv 7216 . . 3 (𝑠 = 𝑆 → (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏m (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐𝑎) = 𝑚}) = (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑚}))
8 reprval.s . . 3 (𝜑𝑆 ∈ ℕ0)
9 nnex 11635 . . . . . 6 ℕ ∈ V
109pwex 5249 . . . . 5 𝒫 ℕ ∈ V
11 zex 11982 . . . . 5 ℤ ∈ V
1210, 11mpoex 7764 . . . 4 (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑚}) ∈ V
1312a1i 11 . . 3 (𝜑 → (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑚}) ∈ V)
141, 7, 8, 13fvmptd3 6772 . 2 (𝜑 → (repr‘𝑆) = (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑚}))
15 simprl 770 . . . 4 ((𝜑 ∧ (𝑏 = 𝐴𝑚 = 𝑀)) → 𝑏 = 𝐴)
1615oveq1d 7154 . . 3 ((𝜑 ∧ (𝑏 = 𝐴𝑚 = 𝑀)) → (𝑏m (0..^𝑆)) = (𝐴m (0..^𝑆)))
17 simprr 772 . . . 4 ((𝜑 ∧ (𝑏 = 𝐴𝑚 = 𝑀)) → 𝑚 = 𝑀)
1817eqeq2d 2812 . . 3 ((𝜑 ∧ (𝑏 = 𝐴𝑚 = 𝑀)) → (Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑚 ↔ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀))
1916, 18rabeqbidv 3436 . 2 ((𝜑 ∧ (𝑏 = 𝐴𝑚 = 𝑀)) → {𝑐 ∈ (𝑏m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑚} = {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
209a1i 11 . . . 4 (𝜑 → ℕ ∈ V)
21 reprval.a . . . 4 (𝜑𝐴 ⊆ ℕ)
2220, 21ssexd 5195 . . 3 (𝜑𝐴 ∈ V)
2322, 21elpwd 4508 . 2 (𝜑𝐴 ∈ 𝒫 ℕ)
24 reprval.m . 2 (𝜑𝑀 ∈ ℤ)
25 ovex 7172 . . . 4 (𝐴m (0..^𝑆)) ∈ V
2625rabex 5202 . . 3 {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} ∈ V
2726a1i 11 . 2 (𝜑 → {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} ∈ V)
2814, 19, 23, 24, 27ovmpod 7285 1 (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2112  {crab 3113  Vcvv 3444   ⊆ wss 3884  𝒫 cpw 4500  ‘cfv 6328  (class class class)co 7139   ∈ cmpo 7141   ↑m cmap 8393  0cc0 10530  ℕcn 11629  ℕ0cn0 11889  ℤcz 11973  ..^cfzo 13032  Σcsu 15037  reprcrepr 31987 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-addcl 10590 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-neg 10866  df-nn 11630  df-z 11974  df-seq 13369  df-sum 15038  df-repr 31988 This theorem is referenced by:  repr0  31990  reprf  31991  reprsum  31992  reprsuc  31994  reprfi  31995  reprss  31996  reprinrn  31997  reprlt  31998  reprgt  32000  reprinfz1  32001  reprpmtf1o  32005  reprdifc  32006  breprexplema  32009
 Copyright terms: Public domain W3C validator