Detailed syntax breakdown of Definition df-rloc
Step | Hyp | Ref
| Expression |
1 | | crloc 33109 |
. 2
class
RLocal |
2 | | vr |
. . 3
setvar 𝑟 |
3 | | vs |
. . 3
setvar 𝑠 |
4 | | cvv 3462 |
. . 3
class
V |
5 | | vx |
. . . 4
setvar 𝑥 |
6 | 2 | cv 1533 |
. . . . 5
class 𝑟 |
7 | | cmulr 17267 |
. . . . 5
class
.r |
8 | 6, 7 | cfv 6554 |
. . . 4
class
(.r‘𝑟) |
9 | | vw |
. . . . 5
setvar 𝑤 |
10 | | cbs 17213 |
. . . . . . 7
class
Base |
11 | 6, 10 | cfv 6554 |
. . . . . 6
class
(Base‘𝑟) |
12 | 3 | cv 1533 |
. . . . . 6
class 𝑠 |
13 | 11, 12 | cxp 5680 |
. . . . 5
class
((Base‘𝑟)
× 𝑠) |
14 | | cnx 17195 |
. . . . . . . . . . 11
class
ndx |
15 | 14, 10 | cfv 6554 |
. . . . . . . . . 10
class
(Base‘ndx) |
16 | 9 | cv 1533 |
. . . . . . . . . 10
class 𝑤 |
17 | 15, 16 | cop 4639 |
. . . . . . . . 9
class
〈(Base‘ndx), 𝑤〉 |
18 | | cplusg 17266 |
. . . . . . . . . . 11
class
+g |
19 | 14, 18 | cfv 6554 |
. . . . . . . . . 10
class
(+g‘ndx) |
20 | | va |
. . . . . . . . . . 11
setvar 𝑎 |
21 | | vb |
. . . . . . . . . . 11
setvar 𝑏 |
22 | 20 | cv 1533 |
. . . . . . . . . . . . . . 15
class 𝑎 |
23 | | c1st 8001 |
. . . . . . . . . . . . . . 15
class
1st |
24 | 22, 23 | cfv 6554 |
. . . . . . . . . . . . . 14
class
(1st ‘𝑎) |
25 | 21 | cv 1533 |
. . . . . . . . . . . . . . 15
class 𝑏 |
26 | | c2nd 8002 |
. . . . . . . . . . . . . . 15
class
2nd |
27 | 25, 26 | cfv 6554 |
. . . . . . . . . . . . . 14
class
(2nd ‘𝑏) |
28 | 5 | cv 1533 |
. . . . . . . . . . . . . 14
class 𝑥 |
29 | 24, 27, 28 | co 7424 |
. . . . . . . . . . . . 13
class
((1st ‘𝑎)𝑥(2nd ‘𝑏)) |
30 | 25, 23 | cfv 6554 |
. . . . . . . . . . . . . 14
class
(1st ‘𝑏) |
31 | 22, 26 | cfv 6554 |
. . . . . . . . . . . . . 14
class
(2nd ‘𝑎) |
32 | 30, 31, 28 | co 7424 |
. . . . . . . . . . . . 13
class
((1st ‘𝑏)𝑥(2nd ‘𝑎)) |
33 | 6, 18 | cfv 6554 |
. . . . . . . . . . . . 13
class
(+g‘𝑟) |
34 | 29, 32, 33 | co 7424 |
. . . . . . . . . . . 12
class
(((1st ‘𝑎)𝑥(2nd ‘𝑏))(+g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))) |
35 | 31, 27, 28 | co 7424 |
. . . . . . . . . . . 12
class
((2nd ‘𝑎)𝑥(2nd ‘𝑏)) |
36 | 34, 35 | cop 4639 |
. . . . . . . . . . 11
class
〈(((1st ‘𝑎)𝑥(2nd ‘𝑏))(+g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉 |
37 | 20, 21, 16, 16, 36 | cmpo 7426 |
. . . . . . . . . 10
class (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈(((1st ‘𝑎)𝑥(2nd ‘𝑏))(+g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉) |
38 | 19, 37 | cop 4639 |
. . . . . . . . 9
class
〈(+g‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈(((1st ‘𝑎)𝑥(2nd ‘𝑏))(+g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉 |
39 | 14, 7 | cfv 6554 |
. . . . . . . . . 10
class
(.r‘ndx) |
40 | 24, 30, 28 | co 7424 |
. . . . . . . . . . . 12
class
((1st ‘𝑎)𝑥(1st ‘𝑏)) |
41 | 40, 35 | cop 4639 |
. . . . . . . . . . 11
class
〈((1st ‘𝑎)𝑥(1st ‘𝑏)), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉 |
42 | 20, 21, 16, 16, 41 | cmpo 7426 |
. . . . . . . . . 10
class (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈((1st ‘𝑎)𝑥(1st ‘𝑏)), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉) |
43 | 39, 42 | cop 4639 |
. . . . . . . . 9
class
〈(.r‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈((1st ‘𝑎)𝑥(1st ‘𝑏)), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉 |
44 | 17, 38, 43 | ctp 4637 |
. . . . . . . 8
class
{〈(Base‘ndx), 𝑤〉, 〈(+g‘ndx),
(𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈(((1st ‘𝑎)𝑥(2nd ‘𝑏))(+g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉,
〈(.r‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈((1st ‘𝑎)𝑥(1st ‘𝑏)), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉} |
45 | | csca 17269 |
. . . . . . . . . . 11
class
Scalar |
46 | 14, 45 | cfv 6554 |
. . . . . . . . . 10
class
(Scalar‘ndx) |
47 | 6, 45 | cfv 6554 |
. . . . . . . . . 10
class
(Scalar‘𝑟) |
48 | 46, 47 | cop 4639 |
. . . . . . . . 9
class
〈(Scalar‘ndx), (Scalar‘𝑟)〉 |
49 | | cvsca 17270 |
. . . . . . . . . . 11
class
·𝑠 |
50 | 14, 49 | cfv 6554 |
. . . . . . . . . 10
class (
·𝑠 ‘ndx) |
51 | | vk |
. . . . . . . . . . 11
setvar 𝑘 |
52 | 47, 10 | cfv 6554 |
. . . . . . . . . . 11
class
(Base‘(Scalar‘𝑟)) |
53 | 51 | cv 1533 |
. . . . . . . . . . . . 13
class 𝑘 |
54 | 6, 49 | cfv 6554 |
. . . . . . . . . . . . 13
class (
·𝑠 ‘𝑟) |
55 | 53, 24, 54 | co 7424 |
. . . . . . . . . . . 12
class (𝑘(
·𝑠 ‘𝑟)(1st ‘𝑎)) |
56 | 55, 31 | cop 4639 |
. . . . . . . . . . 11
class
〈(𝑘(
·𝑠 ‘𝑟)(1st ‘𝑎)), (2nd ‘𝑎)〉 |
57 | 51, 20, 52, 16, 56 | cmpo 7426 |
. . . . . . . . . 10
class (𝑘 ∈
(Base‘(Scalar‘𝑟)), 𝑎 ∈ 𝑤 ↦ 〈(𝑘( ·𝑠
‘𝑟)(1st
‘𝑎)), (2nd
‘𝑎)〉) |
58 | 50, 57 | cop 4639 |
. . . . . . . . 9
class 〈(
·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎 ∈ 𝑤 ↦ 〈(𝑘( ·𝑠
‘𝑟)(1st
‘𝑎)), (2nd
‘𝑎)〉)〉 |
59 | | cip 17271 |
. . . . . . . . . . 11
class
·𝑖 |
60 | 14, 59 | cfv 6554 |
. . . . . . . . . 10
class
(·𝑖‘ndx) |
61 | | c0 4325 |
. . . . . . . . . 10
class
∅ |
62 | 60, 61 | cop 4639 |
. . . . . . . . 9
class
〈(·𝑖‘ndx),
∅〉 |
63 | 48, 58, 62 | ctp 4637 |
. . . . . . . 8
class
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎 ∈ 𝑤 ↦ 〈(𝑘( ·𝑠
‘𝑟)(1st
‘𝑎)), (2nd
‘𝑎)〉)〉,
〈(·𝑖‘ndx),
∅〉} |
64 | 44, 63 | cun 3945 |
. . . . . . 7
class
({〈(Base‘ndx), 𝑤〉, 〈(+g‘ndx),
(𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈(((1st ‘𝑎)𝑥(2nd ‘𝑏))(+g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉,
〈(.r‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈((1st ‘𝑎)𝑥(1st ‘𝑏)), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉} ∪
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎 ∈ 𝑤 ↦ 〈(𝑘( ·𝑠
‘𝑟)(1st
‘𝑎)), (2nd
‘𝑎)〉)〉,
〈(·𝑖‘ndx),
∅〉}) |
65 | | cts 17272 |
. . . . . . . . . 10
class
TopSet |
66 | 14, 65 | cfv 6554 |
. . . . . . . . 9
class
(TopSet‘ndx) |
67 | 6, 65 | cfv 6554 |
. . . . . . . . . 10
class
(TopSet‘𝑟) |
68 | | crest 17435 |
. . . . . . . . . . 11
class
↾t |
69 | 67, 12, 68 | co 7424 |
. . . . . . . . . 10
class
((TopSet‘𝑟)
↾t 𝑠) |
70 | | ctx 23555 |
. . . . . . . . . 10
class
×t |
71 | 67, 69, 70 | co 7424 |
. . . . . . . . 9
class
((TopSet‘𝑟)
×t ((TopSet‘𝑟) ↾t 𝑠)) |
72 | 66, 71 | cop 4639 |
. . . . . . . 8
class
〈(TopSet‘ndx), ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))〉 |
73 | | cple 17273 |
. . . . . . . . . 10
class
le |
74 | 14, 73 | cfv 6554 |
. . . . . . . . 9
class
(le‘ndx) |
75 | 20, 9 | wel 2100 |
. . . . . . . . . . . 12
wff 𝑎 ∈ 𝑤 |
76 | 21, 9 | wel 2100 |
. . . . . . . . . . . 12
wff 𝑏 ∈ 𝑤 |
77 | 75, 76 | wa 394 |
. . . . . . . . . . 11
wff (𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) |
78 | 6, 73 | cfv 6554 |
. . . . . . . . . . . 12
class
(le‘𝑟) |
79 | 29, 32, 78 | wbr 5153 |
. . . . . . . . . . 11
wff
((1st ‘𝑎)𝑥(2nd ‘𝑏))(le‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)) |
80 | 77, 79 | wa 394 |
. . . . . . . . . 10
wff ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ((1st ‘𝑎)𝑥(2nd ‘𝑏))(le‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))) |
81 | 80, 20, 21 | copab 5215 |
. . . . . . . . 9
class
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ((1st ‘𝑎)𝑥(2nd ‘𝑏))(le‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))} |
82 | 74, 81 | cop 4639 |
. . . . . . . 8
class
〈(le‘ndx), {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ((1st ‘𝑎)𝑥(2nd ‘𝑏))(le‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))}〉 |
83 | | cds 17275 |
. . . . . . . . . 10
class
dist |
84 | 14, 83 | cfv 6554 |
. . . . . . . . 9
class
(dist‘ndx) |
85 | 6, 83 | cfv 6554 |
. . . . . . . . . . 11
class
(dist‘𝑟) |
86 | 29, 32, 85 | co 7424 |
. . . . . . . . . 10
class
(((1st ‘𝑎)𝑥(2nd ‘𝑏))(dist‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))) |
87 | 20, 21, 16, 16, 86 | cmpo 7426 |
. . . . . . . . 9
class (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ (((1st ‘𝑎)𝑥(2nd ‘𝑏))(dist‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))) |
88 | 84, 87 | cop 4639 |
. . . . . . . 8
class
〈(dist‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ (((1st ‘𝑎)𝑥(2nd ‘𝑏))(dist‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))))〉 |
89 | 72, 82, 88 | ctp 4637 |
. . . . . . 7
class
{〈(TopSet‘ndx), ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))〉, 〈(le‘ndx),
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ((1st ‘𝑎)𝑥(2nd ‘𝑏))(le‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))}〉, 〈(dist‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ (((1st ‘𝑎)𝑥(2nd ‘𝑏))(dist‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))))〉} |
90 | 64, 89 | cun 3945 |
. . . . . 6
class
(({〈(Base‘ndx), 𝑤〉, 〈(+g‘ndx),
(𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈(((1st ‘𝑎)𝑥(2nd ‘𝑏))(+g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉,
〈(.r‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈((1st ‘𝑎)𝑥(1st ‘𝑏)), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉} ∪
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎 ∈ 𝑤 ↦ 〈(𝑘( ·𝑠
‘𝑟)(1st
‘𝑎)), (2nd
‘𝑎)〉)〉,
〈(·𝑖‘ndx), ∅〉}) ∪
{〈(TopSet‘ndx), ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))〉, 〈(le‘ndx),
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ((1st ‘𝑎)𝑥(2nd ‘𝑏))(le‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))}〉, 〈(dist‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ (((1st ‘𝑎)𝑥(2nd ‘𝑏))(dist‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))))〉}) |
91 | | cerl 33108 |
. . . . . . 7
class
~RL |
92 | 6, 12, 91 | co 7424 |
. . . . . 6
class (𝑟 ~RL 𝑠) |
93 | | cqus 17520 |
. . . . . 6
class
/s |
94 | 90, 92, 93 | co 7424 |
. . . . 5
class
((({〈(Base‘ndx), 𝑤〉, 〈(+g‘ndx),
(𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈(((1st ‘𝑎)𝑥(2nd ‘𝑏))(+g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉,
〈(.r‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈((1st ‘𝑎)𝑥(1st ‘𝑏)), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉} ∪
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎 ∈ 𝑤 ↦ 〈(𝑘( ·𝑠
‘𝑟)(1st
‘𝑎)), (2nd
‘𝑎)〉)〉,
〈(·𝑖‘ndx), ∅〉}) ∪
{〈(TopSet‘ndx), ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))〉, 〈(le‘ndx),
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ((1st ‘𝑎)𝑥(2nd ‘𝑏))(le‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))}〉, 〈(dist‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ (((1st ‘𝑎)𝑥(2nd ‘𝑏))(dist‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))))〉}) /s (𝑟 ~RL 𝑠)) |
95 | 9, 13, 94 | csb 3892 |
. . . 4
class
⦋((Base‘𝑟) × 𝑠) / 𝑤⦌((({〈(Base‘ndx),
𝑤〉,
〈(+g‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈(((1st ‘𝑎)𝑥(2nd ‘𝑏))(+g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉,
〈(.r‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈((1st ‘𝑎)𝑥(1st ‘𝑏)), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉} ∪
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎 ∈ 𝑤 ↦ 〈(𝑘( ·𝑠
‘𝑟)(1st
‘𝑎)), (2nd
‘𝑎)〉)〉,
〈(·𝑖‘ndx), ∅〉}) ∪
{〈(TopSet‘ndx), ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))〉, 〈(le‘ndx),
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ((1st ‘𝑎)𝑥(2nd ‘𝑏))(le‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))}〉, 〈(dist‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ (((1st ‘𝑎)𝑥(2nd ‘𝑏))(dist‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))))〉}) /s (𝑟 ~RL 𝑠)) |
96 | 5, 8, 95 | csb 3892 |
. . 3
class
⦋(.r‘𝑟) / 𝑥⦌⦋((Base‘𝑟) × 𝑠) / 𝑤⦌((({〈(Base‘ndx), 𝑤〉,
〈(+g‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈(((1st ‘𝑎)𝑥(2nd ‘𝑏))(+g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉,
〈(.r‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈((1st ‘𝑎)𝑥(1st ‘𝑏)), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉} ∪
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎 ∈ 𝑤 ↦ 〈(𝑘( ·𝑠
‘𝑟)(1st
‘𝑎)), (2nd
‘𝑎)〉)〉,
〈(·𝑖‘ndx), ∅〉}) ∪
{〈(TopSet‘ndx), ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))〉, 〈(le‘ndx),
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ((1st ‘𝑎)𝑥(2nd ‘𝑏))(le‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))}〉, 〈(dist‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ (((1st ‘𝑎)𝑥(2nd ‘𝑏))(dist‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))))〉}) /s (𝑟 ~RL 𝑠)) |
97 | 2, 3, 4, 4, 96 | cmpo 7426 |
. 2
class (𝑟 ∈ V, 𝑠 ∈ V ↦
⦋(.r‘𝑟) / 𝑥⦌⦋((Base‘𝑟) × 𝑠) / 𝑤⦌((({〈(Base‘ndx), 𝑤〉,
〈(+g‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈(((1st ‘𝑎)𝑥(2nd ‘𝑏))(+g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉,
〈(.r‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈((1st ‘𝑎)𝑥(1st ‘𝑏)), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉} ∪
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎 ∈ 𝑤 ↦ 〈(𝑘( ·𝑠
‘𝑟)(1st
‘𝑎)), (2nd
‘𝑎)〉)〉,
〈(·𝑖‘ndx), ∅〉}) ∪
{〈(TopSet‘ndx), ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))〉, 〈(le‘ndx),
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ((1st ‘𝑎)𝑥(2nd ‘𝑏))(le‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))}〉, 〈(dist‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ (((1st ‘𝑎)𝑥(2nd ‘𝑏))(dist‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))))〉}) /s (𝑟 ~RL 𝑠))) |
98 | 1, 97 | wceq 1534 |
1
wff RLocal =
(𝑟 ∈ V, 𝑠 ∈ V ↦
⦋(.r‘𝑟) / 𝑥⦌⦋((Base‘𝑟) × 𝑠) / 𝑤⦌((({〈(Base‘ndx), 𝑤〉,
〈(+g‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈(((1st ‘𝑎)𝑥(2nd ‘𝑏))(+g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉,
〈(.r‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈((1st ‘𝑎)𝑥(1st ‘𝑏)), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉} ∪
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎 ∈ 𝑤 ↦ 〈(𝑘( ·𝑠
‘𝑟)(1st
‘𝑎)), (2nd
‘𝑎)〉)〉,
〈(·𝑖‘ndx), ∅〉}) ∪
{〈(TopSet‘ndx), ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))〉, 〈(le‘ndx),
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ((1st ‘𝑎)𝑥(2nd ‘𝑏))(le‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))}〉, 〈(dist‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ (((1st ‘𝑎)𝑥(2nd ‘𝑏))(dist‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))))〉}) /s (𝑟 ~RL 𝑠))) |