Detailed syntax breakdown of Definition df-rloc
| Step | Hyp | Ref
| Expression |
| 1 | | crloc 33254 |
. 2
class
RLocal |
| 2 | | vr |
. . 3
setvar 𝑟 |
| 3 | | vs |
. . 3
setvar 𝑠 |
| 4 | | cvv 3464 |
. . 3
class
V |
| 5 | | vx |
. . . 4
setvar 𝑥 |
| 6 | 2 | cv 1539 |
. . . . 5
class 𝑟 |
| 7 | | cmulr 17277 |
. . . . 5
class
.r |
| 8 | 6, 7 | cfv 6536 |
. . . 4
class
(.r‘𝑟) |
| 9 | | vw |
. . . . 5
setvar 𝑤 |
| 10 | | cbs 17233 |
. . . . . . 7
class
Base |
| 11 | 6, 10 | cfv 6536 |
. . . . . 6
class
(Base‘𝑟) |
| 12 | 3 | cv 1539 |
. . . . . 6
class 𝑠 |
| 13 | 11, 12 | cxp 5657 |
. . . . 5
class
((Base‘𝑟)
× 𝑠) |
| 14 | | cnx 17217 |
. . . . . . . . . . 11
class
ndx |
| 15 | 14, 10 | cfv 6536 |
. . . . . . . . . 10
class
(Base‘ndx) |
| 16 | 9 | cv 1539 |
. . . . . . . . . 10
class 𝑤 |
| 17 | 15, 16 | cop 4612 |
. . . . . . . . 9
class
〈(Base‘ndx), 𝑤〉 |
| 18 | | cplusg 17276 |
. . . . . . . . . . 11
class
+g |
| 19 | 14, 18 | cfv 6536 |
. . . . . . . . . 10
class
(+g‘ndx) |
| 20 | | va |
. . . . . . . . . . 11
setvar 𝑎 |
| 21 | | vb |
. . . . . . . . . . 11
setvar 𝑏 |
| 22 | 20 | cv 1539 |
. . . . . . . . . . . . . . 15
class 𝑎 |
| 23 | | c1st 7991 |
. . . . . . . . . . . . . . 15
class
1st |
| 24 | 22, 23 | cfv 6536 |
. . . . . . . . . . . . . 14
class
(1st ‘𝑎) |
| 25 | 21 | cv 1539 |
. . . . . . . . . . . . . . 15
class 𝑏 |
| 26 | | c2nd 7992 |
. . . . . . . . . . . . . . 15
class
2nd |
| 27 | 25, 26 | cfv 6536 |
. . . . . . . . . . . . . 14
class
(2nd ‘𝑏) |
| 28 | 5 | cv 1539 |
. . . . . . . . . . . . . 14
class 𝑥 |
| 29 | 24, 27, 28 | co 7410 |
. . . . . . . . . . . . 13
class
((1st ‘𝑎)𝑥(2nd ‘𝑏)) |
| 30 | 25, 23 | cfv 6536 |
. . . . . . . . . . . . . 14
class
(1st ‘𝑏) |
| 31 | 22, 26 | cfv 6536 |
. . . . . . . . . . . . . 14
class
(2nd ‘𝑎) |
| 32 | 30, 31, 28 | co 7410 |
. . . . . . . . . . . . 13
class
((1st ‘𝑏)𝑥(2nd ‘𝑎)) |
| 33 | 6, 18 | cfv 6536 |
. . . . . . . . . . . . 13
class
(+g‘𝑟) |
| 34 | 29, 32, 33 | co 7410 |
. . . . . . . . . . . 12
class
(((1st ‘𝑎)𝑥(2nd ‘𝑏))(+g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))) |
| 35 | 31, 27, 28 | co 7410 |
. . . . . . . . . . . 12
class
((2nd ‘𝑎)𝑥(2nd ‘𝑏)) |
| 36 | 34, 35 | cop 4612 |
. . . . . . . . . . 11
class
〈(((1st ‘𝑎)𝑥(2nd ‘𝑏))(+g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉 |
| 37 | 20, 21, 16, 16, 36 | cmpo 7412 |
. . . . . . . . . 10
class (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈(((1st ‘𝑎)𝑥(2nd ‘𝑏))(+g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉) |
| 38 | 19, 37 | cop 4612 |
. . . . . . . . 9
class
〈(+g‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈(((1st ‘𝑎)𝑥(2nd ‘𝑏))(+g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉 |
| 39 | 14, 7 | cfv 6536 |
. . . . . . . . . 10
class
(.r‘ndx) |
| 40 | 24, 30, 28 | co 7410 |
. . . . . . . . . . . 12
class
((1st ‘𝑎)𝑥(1st ‘𝑏)) |
| 41 | 40, 35 | cop 4612 |
. . . . . . . . . . 11
class
〈((1st ‘𝑎)𝑥(1st ‘𝑏)), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉 |
| 42 | 20, 21, 16, 16, 41 | cmpo 7412 |
. . . . . . . . . 10
class (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈((1st ‘𝑎)𝑥(1st ‘𝑏)), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉) |
| 43 | 39, 42 | cop 4612 |
. . . . . . . . 9
class
〈(.r‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈((1st ‘𝑎)𝑥(1st ‘𝑏)), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉 |
| 44 | 17, 38, 43 | ctp 4610 |
. . . . . . . 8
class
{〈(Base‘ndx), 𝑤〉, 〈(+g‘ndx),
(𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈(((1st ‘𝑎)𝑥(2nd ‘𝑏))(+g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉,
〈(.r‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈((1st ‘𝑎)𝑥(1st ‘𝑏)), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉} |
| 45 | | csca 17279 |
. . . . . . . . . . 11
class
Scalar |
| 46 | 14, 45 | cfv 6536 |
. . . . . . . . . 10
class
(Scalar‘ndx) |
| 47 | 6, 45 | cfv 6536 |
. . . . . . . . . 10
class
(Scalar‘𝑟) |
| 48 | 46, 47 | cop 4612 |
. . . . . . . . 9
class
〈(Scalar‘ndx), (Scalar‘𝑟)〉 |
| 49 | | cvsca 17280 |
. . . . . . . . . . 11
class
·𝑠 |
| 50 | 14, 49 | cfv 6536 |
. . . . . . . . . 10
class (
·𝑠 ‘ndx) |
| 51 | | vk |
. . . . . . . . . . 11
setvar 𝑘 |
| 52 | 47, 10 | cfv 6536 |
. . . . . . . . . . 11
class
(Base‘(Scalar‘𝑟)) |
| 53 | 51 | cv 1539 |
. . . . . . . . . . . . 13
class 𝑘 |
| 54 | 6, 49 | cfv 6536 |
. . . . . . . . . . . . 13
class (
·𝑠 ‘𝑟) |
| 55 | 53, 24, 54 | co 7410 |
. . . . . . . . . . . 12
class (𝑘(
·𝑠 ‘𝑟)(1st ‘𝑎)) |
| 56 | 55, 31 | cop 4612 |
. . . . . . . . . . 11
class
〈(𝑘(
·𝑠 ‘𝑟)(1st ‘𝑎)), (2nd ‘𝑎)〉 |
| 57 | 51, 20, 52, 16, 56 | cmpo 7412 |
. . . . . . . . . 10
class (𝑘 ∈
(Base‘(Scalar‘𝑟)), 𝑎 ∈ 𝑤 ↦ 〈(𝑘( ·𝑠
‘𝑟)(1st
‘𝑎)), (2nd
‘𝑎)〉) |
| 58 | 50, 57 | cop 4612 |
. . . . . . . . 9
class 〈(
·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎 ∈ 𝑤 ↦ 〈(𝑘( ·𝑠
‘𝑟)(1st
‘𝑎)), (2nd
‘𝑎)〉)〉 |
| 59 | | cip 17281 |
. . . . . . . . . . 11
class
·𝑖 |
| 60 | 14, 59 | cfv 6536 |
. . . . . . . . . 10
class
(·𝑖‘ndx) |
| 61 | | c0 4313 |
. . . . . . . . . 10
class
∅ |
| 62 | 60, 61 | cop 4612 |
. . . . . . . . 9
class
〈(·𝑖‘ndx),
∅〉 |
| 63 | 48, 58, 62 | ctp 4610 |
. . . . . . . 8
class
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎 ∈ 𝑤 ↦ 〈(𝑘( ·𝑠
‘𝑟)(1st
‘𝑎)), (2nd
‘𝑎)〉)〉,
〈(·𝑖‘ndx),
∅〉} |
| 64 | 44, 63 | cun 3929 |
. . . . . . 7
class
({〈(Base‘ndx), 𝑤〉, 〈(+g‘ndx),
(𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈(((1st ‘𝑎)𝑥(2nd ‘𝑏))(+g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉,
〈(.r‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈((1st ‘𝑎)𝑥(1st ‘𝑏)), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉} ∪
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎 ∈ 𝑤 ↦ 〈(𝑘( ·𝑠
‘𝑟)(1st
‘𝑎)), (2nd
‘𝑎)〉)〉,
〈(·𝑖‘ndx),
∅〉}) |
| 65 | | cts 17282 |
. . . . . . . . . 10
class
TopSet |
| 66 | 14, 65 | cfv 6536 |
. . . . . . . . 9
class
(TopSet‘ndx) |
| 67 | 6, 65 | cfv 6536 |
. . . . . . . . . 10
class
(TopSet‘𝑟) |
| 68 | | crest 17439 |
. . . . . . . . . . 11
class
↾t |
| 69 | 67, 12, 68 | co 7410 |
. . . . . . . . . 10
class
((TopSet‘𝑟)
↾t 𝑠) |
| 70 | | ctx 23503 |
. . . . . . . . . 10
class
×t |
| 71 | 67, 69, 70 | co 7410 |
. . . . . . . . 9
class
((TopSet‘𝑟)
×t ((TopSet‘𝑟) ↾t 𝑠)) |
| 72 | 66, 71 | cop 4612 |
. . . . . . . 8
class
〈(TopSet‘ndx), ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))〉 |
| 73 | | cple 17283 |
. . . . . . . . . 10
class
le |
| 74 | 14, 73 | cfv 6536 |
. . . . . . . . 9
class
(le‘ndx) |
| 75 | 20, 9 | wel 2110 |
. . . . . . . . . . . 12
wff 𝑎 ∈ 𝑤 |
| 76 | 21, 9 | wel 2110 |
. . . . . . . . . . . 12
wff 𝑏 ∈ 𝑤 |
| 77 | 75, 76 | wa 395 |
. . . . . . . . . . 11
wff (𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) |
| 78 | 6, 73 | cfv 6536 |
. . . . . . . . . . . 12
class
(le‘𝑟) |
| 79 | 29, 32, 78 | wbr 5124 |
. . . . . . . . . . 11
wff
((1st ‘𝑎)𝑥(2nd ‘𝑏))(le‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)) |
| 80 | 77, 79 | wa 395 |
. . . . . . . . . 10
wff ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ((1st ‘𝑎)𝑥(2nd ‘𝑏))(le‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))) |
| 81 | 80, 20, 21 | copab 5186 |
. . . . . . . . 9
class
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ((1st ‘𝑎)𝑥(2nd ‘𝑏))(le‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))} |
| 82 | 74, 81 | cop 4612 |
. . . . . . . 8
class
〈(le‘ndx), {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ((1st ‘𝑎)𝑥(2nd ‘𝑏))(le‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))}〉 |
| 83 | | cds 17285 |
. . . . . . . . . 10
class
dist |
| 84 | 14, 83 | cfv 6536 |
. . . . . . . . 9
class
(dist‘ndx) |
| 85 | 6, 83 | cfv 6536 |
. . . . . . . . . . 11
class
(dist‘𝑟) |
| 86 | 29, 32, 85 | co 7410 |
. . . . . . . . . 10
class
(((1st ‘𝑎)𝑥(2nd ‘𝑏))(dist‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))) |
| 87 | 20, 21, 16, 16, 86 | cmpo 7412 |
. . . . . . . . 9
class (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ (((1st ‘𝑎)𝑥(2nd ‘𝑏))(dist‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))) |
| 88 | 84, 87 | cop 4612 |
. . . . . . . 8
class
〈(dist‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ (((1st ‘𝑎)𝑥(2nd ‘𝑏))(dist‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))))〉 |
| 89 | 72, 82, 88 | ctp 4610 |
. . . . . . 7
class
{〈(TopSet‘ndx), ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))〉, 〈(le‘ndx),
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ((1st ‘𝑎)𝑥(2nd ‘𝑏))(le‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))}〉, 〈(dist‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ (((1st ‘𝑎)𝑥(2nd ‘𝑏))(dist‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))))〉} |
| 90 | 64, 89 | cun 3929 |
. . . . . 6
class
(({〈(Base‘ndx), 𝑤〉, 〈(+g‘ndx),
(𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈(((1st ‘𝑎)𝑥(2nd ‘𝑏))(+g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉,
〈(.r‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈((1st ‘𝑎)𝑥(1st ‘𝑏)), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉} ∪
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎 ∈ 𝑤 ↦ 〈(𝑘( ·𝑠
‘𝑟)(1st
‘𝑎)), (2nd
‘𝑎)〉)〉,
〈(·𝑖‘ndx), ∅〉}) ∪
{〈(TopSet‘ndx), ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))〉, 〈(le‘ndx),
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ((1st ‘𝑎)𝑥(2nd ‘𝑏))(le‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))}〉, 〈(dist‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ (((1st ‘𝑎)𝑥(2nd ‘𝑏))(dist‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))))〉}) |
| 91 | | cerl 33253 |
. . . . . . 7
class
~RL |
| 92 | 6, 12, 91 | co 7410 |
. . . . . 6
class (𝑟 ~RL 𝑠) |
| 93 | | cqus 17524 |
. . . . . 6
class
/s |
| 94 | 90, 92, 93 | co 7410 |
. . . . 5
class
((({〈(Base‘ndx), 𝑤〉, 〈(+g‘ndx),
(𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈(((1st ‘𝑎)𝑥(2nd ‘𝑏))(+g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉,
〈(.r‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈((1st ‘𝑎)𝑥(1st ‘𝑏)), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉} ∪
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎 ∈ 𝑤 ↦ 〈(𝑘( ·𝑠
‘𝑟)(1st
‘𝑎)), (2nd
‘𝑎)〉)〉,
〈(·𝑖‘ndx), ∅〉}) ∪
{〈(TopSet‘ndx), ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))〉, 〈(le‘ndx),
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ((1st ‘𝑎)𝑥(2nd ‘𝑏))(le‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))}〉, 〈(dist‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ (((1st ‘𝑎)𝑥(2nd ‘𝑏))(dist‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))))〉}) /s (𝑟 ~RL 𝑠)) |
| 95 | 9, 13, 94 | csb 3879 |
. . . 4
class
⦋((Base‘𝑟) × 𝑠) / 𝑤⦌((({〈(Base‘ndx),
𝑤〉,
〈(+g‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈(((1st ‘𝑎)𝑥(2nd ‘𝑏))(+g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉,
〈(.r‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈((1st ‘𝑎)𝑥(1st ‘𝑏)), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉} ∪
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎 ∈ 𝑤 ↦ 〈(𝑘( ·𝑠
‘𝑟)(1st
‘𝑎)), (2nd
‘𝑎)〉)〉,
〈(·𝑖‘ndx), ∅〉}) ∪
{〈(TopSet‘ndx), ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))〉, 〈(le‘ndx),
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ((1st ‘𝑎)𝑥(2nd ‘𝑏))(le‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))}〉, 〈(dist‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ (((1st ‘𝑎)𝑥(2nd ‘𝑏))(dist‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))))〉}) /s (𝑟 ~RL 𝑠)) |
| 96 | 5, 8, 95 | csb 3879 |
. . 3
class
⦋(.r‘𝑟) / 𝑥⦌⦋((Base‘𝑟) × 𝑠) / 𝑤⦌((({〈(Base‘ndx), 𝑤〉,
〈(+g‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈(((1st ‘𝑎)𝑥(2nd ‘𝑏))(+g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉,
〈(.r‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈((1st ‘𝑎)𝑥(1st ‘𝑏)), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉} ∪
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎 ∈ 𝑤 ↦ 〈(𝑘( ·𝑠
‘𝑟)(1st
‘𝑎)), (2nd
‘𝑎)〉)〉,
〈(·𝑖‘ndx), ∅〉}) ∪
{〈(TopSet‘ndx), ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))〉, 〈(le‘ndx),
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ((1st ‘𝑎)𝑥(2nd ‘𝑏))(le‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))}〉, 〈(dist‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ (((1st ‘𝑎)𝑥(2nd ‘𝑏))(dist‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))))〉}) /s (𝑟 ~RL 𝑠)) |
| 97 | 2, 3, 4, 4, 96 | cmpo 7412 |
. 2
class (𝑟 ∈ V, 𝑠 ∈ V ↦
⦋(.r‘𝑟) / 𝑥⦌⦋((Base‘𝑟) × 𝑠) / 𝑤⦌((({〈(Base‘ndx), 𝑤〉,
〈(+g‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈(((1st ‘𝑎)𝑥(2nd ‘𝑏))(+g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉,
〈(.r‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈((1st ‘𝑎)𝑥(1st ‘𝑏)), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉} ∪
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎 ∈ 𝑤 ↦ 〈(𝑘( ·𝑠
‘𝑟)(1st
‘𝑎)), (2nd
‘𝑎)〉)〉,
〈(·𝑖‘ndx), ∅〉}) ∪
{〈(TopSet‘ndx), ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))〉, 〈(le‘ndx),
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ((1st ‘𝑎)𝑥(2nd ‘𝑏))(le‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))}〉, 〈(dist‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ (((1st ‘𝑎)𝑥(2nd ‘𝑏))(dist‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))))〉}) /s (𝑟 ~RL 𝑠))) |
| 98 | 1, 97 | wceq 1540 |
1
wff RLocal =
(𝑟 ∈ V, 𝑠 ∈ V ↦
⦋(.r‘𝑟) / 𝑥⦌⦋((Base‘𝑟) × 𝑠) / 𝑤⦌((({〈(Base‘ndx), 𝑤〉,
〈(+g‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈(((1st ‘𝑎)𝑥(2nd ‘𝑏))(+g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉,
〈(.r‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈((1st ‘𝑎)𝑥(1st ‘𝑏)), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉} ∪
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎 ∈ 𝑤 ↦ 〈(𝑘( ·𝑠
‘𝑟)(1st
‘𝑎)), (2nd
‘𝑎)〉)〉,
〈(·𝑖‘ndx), ∅〉}) ∪
{〈(TopSet‘ndx), ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))〉, 〈(le‘ndx),
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ((1st ‘𝑎)𝑥(2nd ‘𝑏))(le‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))}〉, 〈(dist‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ (((1st ‘𝑎)𝑥(2nd ‘𝑏))(dist‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))))〉}) /s (𝑟 ~RL 𝑠))) |