Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-rloc Structured version   Visualization version   GIF version

Definition df-rloc 33111
Description: Define the operation giving the localization of a ring 𝑟 by a given set 𝑠. The localized ring 𝑟 RLocal 𝑠 is the set of equivalence classes of pairs of elements in 𝑟 over the relation 𝑟 ~RL 𝑠 with addition and multiplication defined naturally. (Contributed by Thierry Arnoux, 27-Apr-2025.)
Assertion
Ref Expression
df-rloc RLocal = (𝑟 ∈ V, 𝑠 ∈ V ↦ (.r𝑟) / 𝑥((Base‘𝑟) × 𝑠) / 𝑤((({⟨(Base‘ndx), 𝑤⟩, ⟨(+g‘ndx), (𝑎𝑤, 𝑏𝑤 ↦ ⟨(((1st𝑎)𝑥(2nd𝑏))(+g𝑟)((1st𝑏)𝑥(2nd𝑎))), ((2nd𝑎)𝑥(2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎𝑤, 𝑏𝑤 ↦ ⟨((1st𝑎)𝑥(1st𝑏)), ((2nd𝑎)𝑥(2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑟)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎𝑤 ↦ ⟨(𝑘( ·𝑠𝑟)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑤𝑏𝑤) ∧ ((1st𝑎)𝑥(2nd𝑏))(le‘𝑟)((1st𝑏)𝑥(2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎𝑤, 𝑏𝑤 ↦ (((1st𝑎)𝑥(2nd𝑏))(dist‘𝑟)((1st𝑏)𝑥(2nd𝑎))))⟩}) /s (𝑟 ~RL 𝑠)))
Distinct variable group:   𝑠,𝑟,𝑥,𝑤,𝑎,𝑏,𝑘

Detailed syntax breakdown of Definition df-rloc
StepHypRef Expression
1 crloc 33109 . 2 class RLocal
2 vr . . 3 setvar 𝑟
3 vs . . 3 setvar 𝑠
4 cvv 3462 . . 3 class V
5 vx . . . 4 setvar 𝑥
62cv 1533 . . . . 5 class 𝑟
7 cmulr 17267 . . . . 5 class .r
86, 7cfv 6554 . . . 4 class (.r𝑟)
9 vw . . . . 5 setvar 𝑤
10 cbs 17213 . . . . . . 7 class Base
116, 10cfv 6554 . . . . . 6 class (Base‘𝑟)
123cv 1533 . . . . . 6 class 𝑠
1311, 12cxp 5680 . . . . 5 class ((Base‘𝑟) × 𝑠)
14 cnx 17195 . . . . . . . . . . 11 class ndx
1514, 10cfv 6554 . . . . . . . . . 10 class (Base‘ndx)
169cv 1533 . . . . . . . . . 10 class 𝑤
1715, 16cop 4639 . . . . . . . . 9 class ⟨(Base‘ndx), 𝑤
18 cplusg 17266 . . . . . . . . . . 11 class +g
1914, 18cfv 6554 . . . . . . . . . 10 class (+g‘ndx)
20 va . . . . . . . . . . 11 setvar 𝑎
21 vb . . . . . . . . . . 11 setvar 𝑏
2220cv 1533 . . . . . . . . . . . . . . 15 class 𝑎
23 c1st 8001 . . . . . . . . . . . . . . 15 class 1st
2422, 23cfv 6554 . . . . . . . . . . . . . 14 class (1st𝑎)
2521cv 1533 . . . . . . . . . . . . . . 15 class 𝑏
26 c2nd 8002 . . . . . . . . . . . . . . 15 class 2nd
2725, 26cfv 6554 . . . . . . . . . . . . . 14 class (2nd𝑏)
285cv 1533 . . . . . . . . . . . . . 14 class 𝑥
2924, 27, 28co 7424 . . . . . . . . . . . . 13 class ((1st𝑎)𝑥(2nd𝑏))
3025, 23cfv 6554 . . . . . . . . . . . . . 14 class (1st𝑏)
3122, 26cfv 6554 . . . . . . . . . . . . . 14 class (2nd𝑎)
3230, 31, 28co 7424 . . . . . . . . . . . . 13 class ((1st𝑏)𝑥(2nd𝑎))
336, 18cfv 6554 . . . . . . . . . . . . 13 class (+g𝑟)
3429, 32, 33co 7424 . . . . . . . . . . . 12 class (((1st𝑎)𝑥(2nd𝑏))(+g𝑟)((1st𝑏)𝑥(2nd𝑎)))
3531, 27, 28co 7424 . . . . . . . . . . . 12 class ((2nd𝑎)𝑥(2nd𝑏))
3634, 35cop 4639 . . . . . . . . . . 11 class ⟨(((1st𝑎)𝑥(2nd𝑏))(+g𝑟)((1st𝑏)𝑥(2nd𝑎))), ((2nd𝑎)𝑥(2nd𝑏))⟩
3720, 21, 16, 16, 36cmpo 7426 . . . . . . . . . 10 class (𝑎𝑤, 𝑏𝑤 ↦ ⟨(((1st𝑎)𝑥(2nd𝑏))(+g𝑟)((1st𝑏)𝑥(2nd𝑎))), ((2nd𝑎)𝑥(2nd𝑏))⟩)
3819, 37cop 4639 . . . . . . . . 9 class ⟨(+g‘ndx), (𝑎𝑤, 𝑏𝑤 ↦ ⟨(((1st𝑎)𝑥(2nd𝑏))(+g𝑟)((1st𝑏)𝑥(2nd𝑎))), ((2nd𝑎)𝑥(2nd𝑏))⟩)⟩
3914, 7cfv 6554 . . . . . . . . . 10 class (.r‘ndx)
4024, 30, 28co 7424 . . . . . . . . . . . 12 class ((1st𝑎)𝑥(1st𝑏))
4140, 35cop 4639 . . . . . . . . . . 11 class ⟨((1st𝑎)𝑥(1st𝑏)), ((2nd𝑎)𝑥(2nd𝑏))⟩
4220, 21, 16, 16, 41cmpo 7426 . . . . . . . . . 10 class (𝑎𝑤, 𝑏𝑤 ↦ ⟨((1st𝑎)𝑥(1st𝑏)), ((2nd𝑎)𝑥(2nd𝑏))⟩)
4339, 42cop 4639 . . . . . . . . 9 class ⟨(.r‘ndx), (𝑎𝑤, 𝑏𝑤 ↦ ⟨((1st𝑎)𝑥(1st𝑏)), ((2nd𝑎)𝑥(2nd𝑏))⟩)⟩
4417, 38, 43ctp 4637 . . . . . . . 8 class {⟨(Base‘ndx), 𝑤⟩, ⟨(+g‘ndx), (𝑎𝑤, 𝑏𝑤 ↦ ⟨(((1st𝑎)𝑥(2nd𝑏))(+g𝑟)((1st𝑏)𝑥(2nd𝑎))), ((2nd𝑎)𝑥(2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎𝑤, 𝑏𝑤 ↦ ⟨((1st𝑎)𝑥(1st𝑏)), ((2nd𝑎)𝑥(2nd𝑏))⟩)⟩}
45 csca 17269 . . . . . . . . . . 11 class Scalar
4614, 45cfv 6554 . . . . . . . . . 10 class (Scalar‘ndx)
476, 45cfv 6554 . . . . . . . . . 10 class (Scalar‘𝑟)
4846, 47cop 4639 . . . . . . . . 9 class ⟨(Scalar‘ndx), (Scalar‘𝑟)⟩
49 cvsca 17270 . . . . . . . . . . 11 class ·𝑠
5014, 49cfv 6554 . . . . . . . . . 10 class ( ·𝑠 ‘ndx)
51 vk . . . . . . . . . . 11 setvar 𝑘
5247, 10cfv 6554 . . . . . . . . . . 11 class (Base‘(Scalar‘𝑟))
5351cv 1533 . . . . . . . . . . . . 13 class 𝑘
546, 49cfv 6554 . . . . . . . . . . . . 13 class ( ·𝑠𝑟)
5553, 24, 54co 7424 . . . . . . . . . . . 12 class (𝑘( ·𝑠𝑟)(1st𝑎))
5655, 31cop 4639 . . . . . . . . . . 11 class ⟨(𝑘( ·𝑠𝑟)(1st𝑎)), (2nd𝑎)⟩
5751, 20, 52, 16, 56cmpo 7426 . . . . . . . . . 10 class (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎𝑤 ↦ ⟨(𝑘( ·𝑠𝑟)(1st𝑎)), (2nd𝑎)⟩)
5850, 57cop 4639 . . . . . . . . 9 class ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎𝑤 ↦ ⟨(𝑘( ·𝑠𝑟)(1st𝑎)), (2nd𝑎)⟩)⟩
59 cip 17271 . . . . . . . . . . 11 class ·𝑖
6014, 59cfv 6554 . . . . . . . . . 10 class (·𝑖‘ndx)
61 c0 4325 . . . . . . . . . 10 class
6260, 61cop 4639 . . . . . . . . 9 class ⟨(·𝑖‘ndx), ∅⟩
6348, 58, 62ctp 4637 . . . . . . . 8 class {⟨(Scalar‘ndx), (Scalar‘𝑟)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎𝑤 ↦ ⟨(𝑘( ·𝑠𝑟)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}
6444, 63cun 3945 . . . . . . 7 class ({⟨(Base‘ndx), 𝑤⟩, ⟨(+g‘ndx), (𝑎𝑤, 𝑏𝑤 ↦ ⟨(((1st𝑎)𝑥(2nd𝑏))(+g𝑟)((1st𝑏)𝑥(2nd𝑎))), ((2nd𝑎)𝑥(2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎𝑤, 𝑏𝑤 ↦ ⟨((1st𝑎)𝑥(1st𝑏)), ((2nd𝑎)𝑥(2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑟)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎𝑤 ↦ ⟨(𝑘( ·𝑠𝑟)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩})
65 cts 17272 . . . . . . . . . 10 class TopSet
6614, 65cfv 6554 . . . . . . . . 9 class (TopSet‘ndx)
676, 65cfv 6554 . . . . . . . . . 10 class (TopSet‘𝑟)
68 crest 17435 . . . . . . . . . . 11 class t
6967, 12, 68co 7424 . . . . . . . . . 10 class ((TopSet‘𝑟) ↾t 𝑠)
70 ctx 23555 . . . . . . . . . 10 class ×t
7167, 69, 70co 7424 . . . . . . . . 9 class ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))
7266, 71cop 4639 . . . . . . . 8 class ⟨(TopSet‘ndx), ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))⟩
73 cple 17273 . . . . . . . . . 10 class le
7414, 73cfv 6554 . . . . . . . . 9 class (le‘ndx)
7520, 9wel 2100 . . . . . . . . . . . 12 wff 𝑎𝑤
7621, 9wel 2100 . . . . . . . . . . . 12 wff 𝑏𝑤
7775, 76wa 394 . . . . . . . . . . 11 wff (𝑎𝑤𝑏𝑤)
786, 73cfv 6554 . . . . . . . . . . . 12 class (le‘𝑟)
7929, 32, 78wbr 5153 . . . . . . . . . . 11 wff ((1st𝑎)𝑥(2nd𝑏))(le‘𝑟)((1st𝑏)𝑥(2nd𝑎))
8077, 79wa 394 . . . . . . . . . 10 wff ((𝑎𝑤𝑏𝑤) ∧ ((1st𝑎)𝑥(2nd𝑏))(le‘𝑟)((1st𝑏)𝑥(2nd𝑎)))
8180, 20, 21copab 5215 . . . . . . . . 9 class {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑤𝑏𝑤) ∧ ((1st𝑎)𝑥(2nd𝑏))(le‘𝑟)((1st𝑏)𝑥(2nd𝑎)))}
8274, 81cop 4639 . . . . . . . 8 class ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑤𝑏𝑤) ∧ ((1st𝑎)𝑥(2nd𝑏))(le‘𝑟)((1st𝑏)𝑥(2nd𝑎)))}⟩
83 cds 17275 . . . . . . . . . 10 class dist
8414, 83cfv 6554 . . . . . . . . 9 class (dist‘ndx)
856, 83cfv 6554 . . . . . . . . . . 11 class (dist‘𝑟)
8629, 32, 85co 7424 . . . . . . . . . 10 class (((1st𝑎)𝑥(2nd𝑏))(dist‘𝑟)((1st𝑏)𝑥(2nd𝑎)))
8720, 21, 16, 16, 86cmpo 7426 . . . . . . . . 9 class (𝑎𝑤, 𝑏𝑤 ↦ (((1st𝑎)𝑥(2nd𝑏))(dist‘𝑟)((1st𝑏)𝑥(2nd𝑎))))
8884, 87cop 4639 . . . . . . . 8 class ⟨(dist‘ndx), (𝑎𝑤, 𝑏𝑤 ↦ (((1st𝑎)𝑥(2nd𝑏))(dist‘𝑟)((1st𝑏)𝑥(2nd𝑎))))⟩
8972, 82, 88ctp 4637 . . . . . . 7 class {⟨(TopSet‘ndx), ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑤𝑏𝑤) ∧ ((1st𝑎)𝑥(2nd𝑏))(le‘𝑟)((1st𝑏)𝑥(2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎𝑤, 𝑏𝑤 ↦ (((1st𝑎)𝑥(2nd𝑏))(dist‘𝑟)((1st𝑏)𝑥(2nd𝑎))))⟩}
9064, 89cun 3945 . . . . . 6 class (({⟨(Base‘ndx), 𝑤⟩, ⟨(+g‘ndx), (𝑎𝑤, 𝑏𝑤 ↦ ⟨(((1st𝑎)𝑥(2nd𝑏))(+g𝑟)((1st𝑏)𝑥(2nd𝑎))), ((2nd𝑎)𝑥(2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎𝑤, 𝑏𝑤 ↦ ⟨((1st𝑎)𝑥(1st𝑏)), ((2nd𝑎)𝑥(2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑟)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎𝑤 ↦ ⟨(𝑘( ·𝑠𝑟)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑤𝑏𝑤) ∧ ((1st𝑎)𝑥(2nd𝑏))(le‘𝑟)((1st𝑏)𝑥(2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎𝑤, 𝑏𝑤 ↦ (((1st𝑎)𝑥(2nd𝑏))(dist‘𝑟)((1st𝑏)𝑥(2nd𝑎))))⟩})
91 cerl 33108 . . . . . . 7 class ~RL
926, 12, 91co 7424 . . . . . 6 class (𝑟 ~RL 𝑠)
93 cqus 17520 . . . . . 6 class /s
9490, 92, 93co 7424 . . . . 5 class ((({⟨(Base‘ndx), 𝑤⟩, ⟨(+g‘ndx), (𝑎𝑤, 𝑏𝑤 ↦ ⟨(((1st𝑎)𝑥(2nd𝑏))(+g𝑟)((1st𝑏)𝑥(2nd𝑎))), ((2nd𝑎)𝑥(2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎𝑤, 𝑏𝑤 ↦ ⟨((1st𝑎)𝑥(1st𝑏)), ((2nd𝑎)𝑥(2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑟)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎𝑤 ↦ ⟨(𝑘( ·𝑠𝑟)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑤𝑏𝑤) ∧ ((1st𝑎)𝑥(2nd𝑏))(le‘𝑟)((1st𝑏)𝑥(2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎𝑤, 𝑏𝑤 ↦ (((1st𝑎)𝑥(2nd𝑏))(dist‘𝑟)((1st𝑏)𝑥(2nd𝑎))))⟩}) /s (𝑟 ~RL 𝑠))
959, 13, 94csb 3892 . . . 4 class ((Base‘𝑟) × 𝑠) / 𝑤((({⟨(Base‘ndx), 𝑤⟩, ⟨(+g‘ndx), (𝑎𝑤, 𝑏𝑤 ↦ ⟨(((1st𝑎)𝑥(2nd𝑏))(+g𝑟)((1st𝑏)𝑥(2nd𝑎))), ((2nd𝑎)𝑥(2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎𝑤, 𝑏𝑤 ↦ ⟨((1st𝑎)𝑥(1st𝑏)), ((2nd𝑎)𝑥(2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑟)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎𝑤 ↦ ⟨(𝑘( ·𝑠𝑟)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑤𝑏𝑤) ∧ ((1st𝑎)𝑥(2nd𝑏))(le‘𝑟)((1st𝑏)𝑥(2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎𝑤, 𝑏𝑤 ↦ (((1st𝑎)𝑥(2nd𝑏))(dist‘𝑟)((1st𝑏)𝑥(2nd𝑎))))⟩}) /s (𝑟 ~RL 𝑠))
965, 8, 95csb 3892 . . 3 class (.r𝑟) / 𝑥((Base‘𝑟) × 𝑠) / 𝑤((({⟨(Base‘ndx), 𝑤⟩, ⟨(+g‘ndx), (𝑎𝑤, 𝑏𝑤 ↦ ⟨(((1st𝑎)𝑥(2nd𝑏))(+g𝑟)((1st𝑏)𝑥(2nd𝑎))), ((2nd𝑎)𝑥(2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎𝑤, 𝑏𝑤 ↦ ⟨((1st𝑎)𝑥(1st𝑏)), ((2nd𝑎)𝑥(2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑟)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎𝑤 ↦ ⟨(𝑘( ·𝑠𝑟)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑤𝑏𝑤) ∧ ((1st𝑎)𝑥(2nd𝑏))(le‘𝑟)((1st𝑏)𝑥(2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎𝑤, 𝑏𝑤 ↦ (((1st𝑎)𝑥(2nd𝑏))(dist‘𝑟)((1st𝑏)𝑥(2nd𝑎))))⟩}) /s (𝑟 ~RL 𝑠))
972, 3, 4, 4, 96cmpo 7426 . 2 class (𝑟 ∈ V, 𝑠 ∈ V ↦ (.r𝑟) / 𝑥((Base‘𝑟) × 𝑠) / 𝑤((({⟨(Base‘ndx), 𝑤⟩, ⟨(+g‘ndx), (𝑎𝑤, 𝑏𝑤 ↦ ⟨(((1st𝑎)𝑥(2nd𝑏))(+g𝑟)((1st𝑏)𝑥(2nd𝑎))), ((2nd𝑎)𝑥(2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎𝑤, 𝑏𝑤 ↦ ⟨((1st𝑎)𝑥(1st𝑏)), ((2nd𝑎)𝑥(2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑟)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎𝑤 ↦ ⟨(𝑘( ·𝑠𝑟)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑤𝑏𝑤) ∧ ((1st𝑎)𝑥(2nd𝑏))(le‘𝑟)((1st𝑏)𝑥(2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎𝑤, 𝑏𝑤 ↦ (((1st𝑎)𝑥(2nd𝑏))(dist‘𝑟)((1st𝑏)𝑥(2nd𝑎))))⟩}) /s (𝑟 ~RL 𝑠)))
981, 97wceq 1534 1 wff RLocal = (𝑟 ∈ V, 𝑠 ∈ V ↦ (.r𝑟) / 𝑥((Base‘𝑟) × 𝑠) / 𝑤((({⟨(Base‘ndx), 𝑤⟩, ⟨(+g‘ndx), (𝑎𝑤, 𝑏𝑤 ↦ ⟨(((1st𝑎)𝑥(2nd𝑏))(+g𝑟)((1st𝑏)𝑥(2nd𝑎))), ((2nd𝑎)𝑥(2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎𝑤, 𝑏𝑤 ↦ ⟨((1st𝑎)𝑥(1st𝑏)), ((2nd𝑎)𝑥(2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑟)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎𝑤 ↦ ⟨(𝑘( ·𝑠𝑟)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑤𝑏𝑤) ∧ ((1st𝑎)𝑥(2nd𝑏))(le‘𝑟)((1st𝑏)𝑥(2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎𝑤, 𝑏𝑤 ↦ (((1st𝑎)𝑥(2nd𝑏))(dist‘𝑟)((1st𝑏)𝑥(2nd𝑎))))⟩}) /s (𝑟 ~RL 𝑠)))
Colors of variables: wff setvar class
This definition is referenced by:  reldmrloc  33112  rlocval  33114
  Copyright terms: Public domain W3C validator