Detailed syntax breakdown of Definition df-rloc
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | crloc 33259 | . 2
class 
RLocal | 
| 2 |  | vr | . . 3
setvar 𝑟 | 
| 3 |  | vs | . . 3
setvar 𝑠 | 
| 4 |  | cvv 3479 | . . 3
class
V | 
| 5 |  | vx | . . . 4
setvar 𝑥 | 
| 6 | 2 | cv 1538 | . . . . 5
class 𝑟 | 
| 7 |  | cmulr 17299 | . . . . 5
class
.r | 
| 8 | 6, 7 | cfv 6560 | . . . 4
class
(.r‘𝑟) | 
| 9 |  | vw | . . . . 5
setvar 𝑤 | 
| 10 |  | cbs 17248 | . . . . . . 7
class
Base | 
| 11 | 6, 10 | cfv 6560 | . . . . . 6
class
(Base‘𝑟) | 
| 12 | 3 | cv 1538 | . . . . . 6
class 𝑠 | 
| 13 | 11, 12 | cxp 5682 | . . . . 5
class
((Base‘𝑟)
× 𝑠) | 
| 14 |  | cnx 17231 | . . . . . . . . . . 11
class
ndx | 
| 15 | 14, 10 | cfv 6560 | . . . . . . . . . 10
class
(Base‘ndx) | 
| 16 | 9 | cv 1538 | . . . . . . . . . 10
class 𝑤 | 
| 17 | 15, 16 | cop 4631 | . . . . . . . . 9
class
〈(Base‘ndx), 𝑤〉 | 
| 18 |  | cplusg 17298 | . . . . . . . . . . 11
class
+g | 
| 19 | 14, 18 | cfv 6560 | . . . . . . . . . 10
class
(+g‘ndx) | 
| 20 |  | va | . . . . . . . . . . 11
setvar 𝑎 | 
| 21 |  | vb | . . . . . . . . . . 11
setvar 𝑏 | 
| 22 | 20 | cv 1538 | . . . . . . . . . . . . . . 15
class 𝑎 | 
| 23 |  | c1st 8013 | . . . . . . . . . . . . . . 15
class
1st | 
| 24 | 22, 23 | cfv 6560 | . . . . . . . . . . . . . 14
class
(1st ‘𝑎) | 
| 25 | 21 | cv 1538 | . . . . . . . . . . . . . . 15
class 𝑏 | 
| 26 |  | c2nd 8014 | . . . . . . . . . . . . . . 15
class
2nd | 
| 27 | 25, 26 | cfv 6560 | . . . . . . . . . . . . . 14
class
(2nd ‘𝑏) | 
| 28 | 5 | cv 1538 | . . . . . . . . . . . . . 14
class 𝑥 | 
| 29 | 24, 27, 28 | co 7432 | . . . . . . . . . . . . 13
class
((1st ‘𝑎)𝑥(2nd ‘𝑏)) | 
| 30 | 25, 23 | cfv 6560 | . . . . . . . . . . . . . 14
class
(1st ‘𝑏) | 
| 31 | 22, 26 | cfv 6560 | . . . . . . . . . . . . . 14
class
(2nd ‘𝑎) | 
| 32 | 30, 31, 28 | co 7432 | . . . . . . . . . . . . 13
class
((1st ‘𝑏)𝑥(2nd ‘𝑎)) | 
| 33 | 6, 18 | cfv 6560 | . . . . . . . . . . . . 13
class
(+g‘𝑟) | 
| 34 | 29, 32, 33 | co 7432 | . . . . . . . . . . . 12
class
(((1st ‘𝑎)𝑥(2nd ‘𝑏))(+g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))) | 
| 35 | 31, 27, 28 | co 7432 | . . . . . . . . . . . 12
class
((2nd ‘𝑎)𝑥(2nd ‘𝑏)) | 
| 36 | 34, 35 | cop 4631 | . . . . . . . . . . 11
class
〈(((1st ‘𝑎)𝑥(2nd ‘𝑏))(+g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉 | 
| 37 | 20, 21, 16, 16, 36 | cmpo 7434 | . . . . . . . . . 10
class (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈(((1st ‘𝑎)𝑥(2nd ‘𝑏))(+g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉) | 
| 38 | 19, 37 | cop 4631 | . . . . . . . . 9
class
〈(+g‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈(((1st ‘𝑎)𝑥(2nd ‘𝑏))(+g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉 | 
| 39 | 14, 7 | cfv 6560 | . . . . . . . . . 10
class
(.r‘ndx) | 
| 40 | 24, 30, 28 | co 7432 | . . . . . . . . . . . 12
class
((1st ‘𝑎)𝑥(1st ‘𝑏)) | 
| 41 | 40, 35 | cop 4631 | . . . . . . . . . . 11
class
〈((1st ‘𝑎)𝑥(1st ‘𝑏)), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉 | 
| 42 | 20, 21, 16, 16, 41 | cmpo 7434 | . . . . . . . . . 10
class (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈((1st ‘𝑎)𝑥(1st ‘𝑏)), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉) | 
| 43 | 39, 42 | cop 4631 | . . . . . . . . 9
class
〈(.r‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈((1st ‘𝑎)𝑥(1st ‘𝑏)), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉 | 
| 44 | 17, 38, 43 | ctp 4629 | . . . . . . . 8
class
{〈(Base‘ndx), 𝑤〉, 〈(+g‘ndx),
(𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈(((1st ‘𝑎)𝑥(2nd ‘𝑏))(+g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉,
〈(.r‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈((1st ‘𝑎)𝑥(1st ‘𝑏)), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉} | 
| 45 |  | csca 17301 | . . . . . . . . . . 11
class
Scalar | 
| 46 | 14, 45 | cfv 6560 | . . . . . . . . . 10
class
(Scalar‘ndx) | 
| 47 | 6, 45 | cfv 6560 | . . . . . . . . . 10
class
(Scalar‘𝑟) | 
| 48 | 46, 47 | cop 4631 | . . . . . . . . 9
class
〈(Scalar‘ndx), (Scalar‘𝑟)〉 | 
| 49 |  | cvsca 17302 | . . . . . . . . . . 11
class 
·𝑠 | 
| 50 | 14, 49 | cfv 6560 | . . . . . . . . . 10
class (
·𝑠 ‘ndx) | 
| 51 |  | vk | . . . . . . . . . . 11
setvar 𝑘 | 
| 52 | 47, 10 | cfv 6560 | . . . . . . . . . . 11
class
(Base‘(Scalar‘𝑟)) | 
| 53 | 51 | cv 1538 | . . . . . . . . . . . . 13
class 𝑘 | 
| 54 | 6, 49 | cfv 6560 | . . . . . . . . . . . . 13
class (
·𝑠 ‘𝑟) | 
| 55 | 53, 24, 54 | co 7432 | . . . . . . . . . . . 12
class (𝑘(
·𝑠 ‘𝑟)(1st ‘𝑎)) | 
| 56 | 55, 31 | cop 4631 | . . . . . . . . . . 11
class
〈(𝑘(
·𝑠 ‘𝑟)(1st ‘𝑎)), (2nd ‘𝑎)〉 | 
| 57 | 51, 20, 52, 16, 56 | cmpo 7434 | . . . . . . . . . 10
class (𝑘 ∈
(Base‘(Scalar‘𝑟)), 𝑎 ∈ 𝑤 ↦ 〈(𝑘( ·𝑠
‘𝑟)(1st
‘𝑎)), (2nd
‘𝑎)〉) | 
| 58 | 50, 57 | cop 4631 | . . . . . . . . 9
class 〈(
·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎 ∈ 𝑤 ↦ 〈(𝑘( ·𝑠
‘𝑟)(1st
‘𝑎)), (2nd
‘𝑎)〉)〉 | 
| 59 |  | cip 17303 | . . . . . . . . . . 11
class
·𝑖 | 
| 60 | 14, 59 | cfv 6560 | . . . . . . . . . 10
class
(·𝑖‘ndx) | 
| 61 |  | c0 4332 | . . . . . . . . . 10
class
∅ | 
| 62 | 60, 61 | cop 4631 | . . . . . . . . 9
class
〈(·𝑖‘ndx),
∅〉 | 
| 63 | 48, 58, 62 | ctp 4629 | . . . . . . . 8
class
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎 ∈ 𝑤 ↦ 〈(𝑘( ·𝑠
‘𝑟)(1st
‘𝑎)), (2nd
‘𝑎)〉)〉,
〈(·𝑖‘ndx),
∅〉} | 
| 64 | 44, 63 | cun 3948 | . . . . . . 7
class
({〈(Base‘ndx), 𝑤〉, 〈(+g‘ndx),
(𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈(((1st ‘𝑎)𝑥(2nd ‘𝑏))(+g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉,
〈(.r‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈((1st ‘𝑎)𝑥(1st ‘𝑏)), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉} ∪
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎 ∈ 𝑤 ↦ 〈(𝑘( ·𝑠
‘𝑟)(1st
‘𝑎)), (2nd
‘𝑎)〉)〉,
〈(·𝑖‘ndx),
∅〉}) | 
| 65 |  | cts 17304 | . . . . . . . . . 10
class
TopSet | 
| 66 | 14, 65 | cfv 6560 | . . . . . . . . 9
class
(TopSet‘ndx) | 
| 67 | 6, 65 | cfv 6560 | . . . . . . . . . 10
class
(TopSet‘𝑟) | 
| 68 |  | crest 17466 | . . . . . . . . . . 11
class 
↾t | 
| 69 | 67, 12, 68 | co 7432 | . . . . . . . . . 10
class
((TopSet‘𝑟)
↾t 𝑠) | 
| 70 |  | ctx 23569 | . . . . . . . . . 10
class 
×t | 
| 71 | 67, 69, 70 | co 7432 | . . . . . . . . 9
class
((TopSet‘𝑟)
×t ((TopSet‘𝑟) ↾t 𝑠)) | 
| 72 | 66, 71 | cop 4631 | . . . . . . . 8
class
〈(TopSet‘ndx), ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))〉 | 
| 73 |  | cple 17305 | . . . . . . . . . 10
class
le | 
| 74 | 14, 73 | cfv 6560 | . . . . . . . . 9
class
(le‘ndx) | 
| 75 | 20, 9 | wel 2108 | . . . . . . . . . . . 12
wff 𝑎 ∈ 𝑤 | 
| 76 | 21, 9 | wel 2108 | . . . . . . . . . . . 12
wff 𝑏 ∈ 𝑤 | 
| 77 | 75, 76 | wa 395 | . . . . . . . . . . 11
wff (𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) | 
| 78 | 6, 73 | cfv 6560 | . . . . . . . . . . . 12
class
(le‘𝑟) | 
| 79 | 29, 32, 78 | wbr 5142 | . . . . . . . . . . 11
wff
((1st ‘𝑎)𝑥(2nd ‘𝑏))(le‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)) | 
| 80 | 77, 79 | wa 395 | . . . . . . . . . 10
wff ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ((1st ‘𝑎)𝑥(2nd ‘𝑏))(le‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))) | 
| 81 | 80, 20, 21 | copab 5204 | . . . . . . . . 9
class
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ((1st ‘𝑎)𝑥(2nd ‘𝑏))(le‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))} | 
| 82 | 74, 81 | cop 4631 | . . . . . . . 8
class
〈(le‘ndx), {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ((1st ‘𝑎)𝑥(2nd ‘𝑏))(le‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))}〉 | 
| 83 |  | cds 17307 | . . . . . . . . . 10
class
dist | 
| 84 | 14, 83 | cfv 6560 | . . . . . . . . 9
class
(dist‘ndx) | 
| 85 | 6, 83 | cfv 6560 | . . . . . . . . . . 11
class
(dist‘𝑟) | 
| 86 | 29, 32, 85 | co 7432 | . . . . . . . . . 10
class
(((1st ‘𝑎)𝑥(2nd ‘𝑏))(dist‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))) | 
| 87 | 20, 21, 16, 16, 86 | cmpo 7434 | . . . . . . . . 9
class (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ (((1st ‘𝑎)𝑥(2nd ‘𝑏))(dist‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))) | 
| 88 | 84, 87 | cop 4631 | . . . . . . . 8
class
〈(dist‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ (((1st ‘𝑎)𝑥(2nd ‘𝑏))(dist‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))))〉 | 
| 89 | 72, 82, 88 | ctp 4629 | . . . . . . 7
class
{〈(TopSet‘ndx), ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))〉, 〈(le‘ndx),
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ((1st ‘𝑎)𝑥(2nd ‘𝑏))(le‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))}〉, 〈(dist‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ (((1st ‘𝑎)𝑥(2nd ‘𝑏))(dist‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))))〉} | 
| 90 | 64, 89 | cun 3948 | . . . . . 6
class
(({〈(Base‘ndx), 𝑤〉, 〈(+g‘ndx),
(𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈(((1st ‘𝑎)𝑥(2nd ‘𝑏))(+g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉,
〈(.r‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈((1st ‘𝑎)𝑥(1st ‘𝑏)), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉} ∪
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎 ∈ 𝑤 ↦ 〈(𝑘( ·𝑠
‘𝑟)(1st
‘𝑎)), (2nd
‘𝑎)〉)〉,
〈(·𝑖‘ndx), ∅〉}) ∪
{〈(TopSet‘ndx), ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))〉, 〈(le‘ndx),
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ((1st ‘𝑎)𝑥(2nd ‘𝑏))(le‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))}〉, 〈(dist‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ (((1st ‘𝑎)𝑥(2nd ‘𝑏))(dist‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))))〉}) | 
| 91 |  | cerl 33258 | . . . . . . 7
class 
~RL | 
| 92 | 6, 12, 91 | co 7432 | . . . . . 6
class (𝑟 ~RL 𝑠) | 
| 93 |  | cqus 17551 | . . . . . 6
class 
/s | 
| 94 | 90, 92, 93 | co 7432 | . . . . 5
class
((({〈(Base‘ndx), 𝑤〉, 〈(+g‘ndx),
(𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈(((1st ‘𝑎)𝑥(2nd ‘𝑏))(+g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉,
〈(.r‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈((1st ‘𝑎)𝑥(1st ‘𝑏)), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉} ∪
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎 ∈ 𝑤 ↦ 〈(𝑘( ·𝑠
‘𝑟)(1st
‘𝑎)), (2nd
‘𝑎)〉)〉,
〈(·𝑖‘ndx), ∅〉}) ∪
{〈(TopSet‘ndx), ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))〉, 〈(le‘ndx),
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ((1st ‘𝑎)𝑥(2nd ‘𝑏))(le‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))}〉, 〈(dist‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ (((1st ‘𝑎)𝑥(2nd ‘𝑏))(dist‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))))〉}) /s (𝑟 ~RL 𝑠)) | 
| 95 | 9, 13, 94 | csb 3898 | . . . 4
class
⦋((Base‘𝑟) × 𝑠) / 𝑤⦌((({〈(Base‘ndx),
𝑤〉,
〈(+g‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈(((1st ‘𝑎)𝑥(2nd ‘𝑏))(+g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉,
〈(.r‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈((1st ‘𝑎)𝑥(1st ‘𝑏)), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉} ∪
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎 ∈ 𝑤 ↦ 〈(𝑘( ·𝑠
‘𝑟)(1st
‘𝑎)), (2nd
‘𝑎)〉)〉,
〈(·𝑖‘ndx), ∅〉}) ∪
{〈(TopSet‘ndx), ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))〉, 〈(le‘ndx),
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ((1st ‘𝑎)𝑥(2nd ‘𝑏))(le‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))}〉, 〈(dist‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ (((1st ‘𝑎)𝑥(2nd ‘𝑏))(dist‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))))〉}) /s (𝑟 ~RL 𝑠)) | 
| 96 | 5, 8, 95 | csb 3898 | . . 3
class
⦋(.r‘𝑟) / 𝑥⦌⦋((Base‘𝑟) × 𝑠) / 𝑤⦌((({〈(Base‘ndx), 𝑤〉,
〈(+g‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈(((1st ‘𝑎)𝑥(2nd ‘𝑏))(+g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉,
〈(.r‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈((1st ‘𝑎)𝑥(1st ‘𝑏)), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉} ∪
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎 ∈ 𝑤 ↦ 〈(𝑘( ·𝑠
‘𝑟)(1st
‘𝑎)), (2nd
‘𝑎)〉)〉,
〈(·𝑖‘ndx), ∅〉}) ∪
{〈(TopSet‘ndx), ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))〉, 〈(le‘ndx),
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ((1st ‘𝑎)𝑥(2nd ‘𝑏))(le‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))}〉, 〈(dist‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ (((1st ‘𝑎)𝑥(2nd ‘𝑏))(dist‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))))〉}) /s (𝑟 ~RL 𝑠)) | 
| 97 | 2, 3, 4, 4, 96 | cmpo 7434 | . 2
class (𝑟 ∈ V, 𝑠 ∈ V ↦
⦋(.r‘𝑟) / 𝑥⦌⦋((Base‘𝑟) × 𝑠) / 𝑤⦌((({〈(Base‘ndx), 𝑤〉,
〈(+g‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈(((1st ‘𝑎)𝑥(2nd ‘𝑏))(+g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉,
〈(.r‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈((1st ‘𝑎)𝑥(1st ‘𝑏)), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉} ∪
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎 ∈ 𝑤 ↦ 〈(𝑘( ·𝑠
‘𝑟)(1st
‘𝑎)), (2nd
‘𝑎)〉)〉,
〈(·𝑖‘ndx), ∅〉}) ∪
{〈(TopSet‘ndx), ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))〉, 〈(le‘ndx),
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ((1st ‘𝑎)𝑥(2nd ‘𝑏))(le‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))}〉, 〈(dist‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ (((1st ‘𝑎)𝑥(2nd ‘𝑏))(dist‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))))〉}) /s (𝑟 ~RL 𝑠))) | 
| 98 | 1, 97 | wceq 1539 | 1
wff  RLocal =
(𝑟 ∈ V, 𝑠 ∈ V ↦
⦋(.r‘𝑟) / 𝑥⦌⦋((Base‘𝑟) × 𝑠) / 𝑤⦌((({〈(Base‘ndx), 𝑤〉,
〈(+g‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈(((1st ‘𝑎)𝑥(2nd ‘𝑏))(+g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉,
〈(.r‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈((1st ‘𝑎)𝑥(1st ‘𝑏)), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉} ∪
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎 ∈ 𝑤 ↦ 〈(𝑘( ·𝑠
‘𝑟)(1st
‘𝑎)), (2nd
‘𝑎)〉)〉,
〈(·𝑖‘ndx), ∅〉}) ∪
{〈(TopSet‘ndx), ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))〉, 〈(le‘ndx),
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ((1st ‘𝑎)𝑥(2nd ‘𝑏))(le‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))}〉, 〈(dist‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ (((1st ‘𝑎)𝑥(2nd ‘𝑏))(dist‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))))〉}) /s (𝑟 ~RL 𝑠))) |