Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reldmrloc Structured version   Visualization version   GIF version

Theorem reldmrloc 33276
Description: Ring localization is a proper operator, so it can be used with ovprc1 7477. (Contributed by Thierry Arnoux, 10-May-2025.)
Assertion
Ref Expression
reldmrloc Rel dom RLocal

Proof of Theorem reldmrloc
Dummy variables 𝑎 𝑏 𝑘 𝑟 𝑠 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rloc 33275 . 2 RLocal = (𝑟 ∈ V, 𝑠 ∈ V ↦ (.r𝑟) / 𝑥((Base‘𝑟) × 𝑠) / 𝑤((({⟨(Base‘ndx), 𝑤⟩, ⟨(+g‘ndx), (𝑎𝑤, 𝑏𝑤 ↦ ⟨(((1st𝑎)𝑥(2nd𝑏))(+g𝑟)((1st𝑏)𝑥(2nd𝑎))), ((2nd𝑎)𝑥(2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎𝑤, 𝑏𝑤 ↦ ⟨((1st𝑎)𝑥(1st𝑏)), ((2nd𝑎)𝑥(2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑟)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎𝑤 ↦ ⟨(𝑘( ·𝑠𝑟)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑤𝑏𝑤) ∧ ((1st𝑎)𝑥(2nd𝑏))(le‘𝑟)((1st𝑏)𝑥(2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎𝑤, 𝑏𝑤 ↦ (((1st𝑎)𝑥(2nd𝑏))(dist‘𝑟)((1st𝑏)𝑥(2nd𝑎))))⟩}) /s (𝑟 ~RL 𝑠)))
21reldmmpo 7574 1 Rel dom RLocal
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2108  Vcvv 3481  csb 3911  cun 3964  c0 4342  {ctp 4638  cop 4640   class class class wbr 5151  {copab 5213   × cxp 5691  dom cdm 5693  Rel wrel 5698  cfv 6569  (class class class)co 7438  cmpo 7440  1st c1st 8020  2nd c2nd 8021  ndxcnx 17236  Basecbs 17254  +gcplusg 17307  .rcmulr 17308  Scalarcsca 17310   ·𝑠 cvsca 17311  ·𝑖cip 17312  TopSetcts 17313  lecple 17314  distcds 17316  t crest 17476   /s cqus 17561   ×t ctx 23593   ~RL cerl 33272   RLocal crloc 33273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-br 5152  df-opab 5214  df-xp 5699  df-rel 5700  df-dm 5703  df-oprab 7442  df-mpo 7443  df-rloc 33275
This theorem is referenced by:  fracval  33318
  Copyright terms: Public domain W3C validator