Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reldmrloc Structured version   Visualization version   GIF version

Theorem reldmrloc 33200
Description: Ring localization is a proper operator, so it can be used with ovprc1 7452. (Contributed by Thierry Arnoux, 10-May-2025.)
Assertion
Ref Expression
reldmrloc Rel dom RLocal

Proof of Theorem reldmrloc
Dummy variables 𝑎 𝑏 𝑘 𝑟 𝑠 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rloc 33199 . 2 RLocal = (𝑟 ∈ V, 𝑠 ∈ V ↦ (.r𝑟) / 𝑥((Base‘𝑟) × 𝑠) / 𝑤((({⟨(Base‘ndx), 𝑤⟩, ⟨(+g‘ndx), (𝑎𝑤, 𝑏𝑤 ↦ ⟨(((1st𝑎)𝑥(2nd𝑏))(+g𝑟)((1st𝑏)𝑥(2nd𝑎))), ((2nd𝑎)𝑥(2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎𝑤, 𝑏𝑤 ↦ ⟨((1st𝑎)𝑥(1st𝑏)), ((2nd𝑎)𝑥(2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑟)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎𝑤 ↦ ⟨(𝑘( ·𝑠𝑟)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑤𝑏𝑤) ∧ ((1st𝑎)𝑥(2nd𝑏))(le‘𝑟)((1st𝑏)𝑥(2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎𝑤, 𝑏𝑤 ↦ (((1st𝑎)𝑥(2nd𝑏))(dist‘𝑟)((1st𝑏)𝑥(2nd𝑎))))⟩}) /s (𝑟 ~RL 𝑠)))
21reldmmpo 7549 1 Rel dom RLocal
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2107  Vcvv 3463  csb 3879  cun 3929  c0 4313  {ctp 4610  cop 4612   class class class wbr 5123  {copab 5185   × cxp 5663  dom cdm 5665  Rel wrel 5670  cfv 6541  (class class class)co 7413  cmpo 7415  1st c1st 7994  2nd c2nd 7995  ndxcnx 17212  Basecbs 17229  +gcplusg 17273  .rcmulr 17274  Scalarcsca 17276   ·𝑠 cvsca 17277  ·𝑖cip 17278  TopSetcts 17279  lecple 17280  distcds 17282  t crest 17436   /s cqus 17521   ×t ctx 23514   ~RL cerl 33196   RLocal crloc 33197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-xp 5671  df-rel 5672  df-dm 5675  df-oprab 7417  df-mpo 7418  df-rloc 33199
This theorem is referenced by:  fracval  33246
  Copyright terms: Public domain W3C validator