![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > reldmrloc | Structured version Visualization version GIF version |
Description: Ring localization is a proper operator, so it can be used with ovprc1 7458. (Contributed by Thierry Arnoux, 10-May-2025.) |
Ref | Expression |
---|---|
reldmrloc | ⊢ Rel dom RLocal |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rloc 33046 | . 2 ⊢ RLocal = (𝑟 ∈ V, 𝑠 ∈ V ↦ ⦋(.r‘𝑟) / 𝑥⦌⦋((Base‘𝑟) × 𝑠) / 𝑤⦌((({〈(Base‘ndx), 𝑤〉, 〈(+g‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈(((1st ‘𝑎)𝑥(2nd ‘𝑏))(+g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉, 〈(.r‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈((1st ‘𝑎)𝑥(1st ‘𝑏)), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉} ∪ {〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎 ∈ 𝑤 ↦ 〈(𝑘( ·𝑠 ‘𝑟)(1st ‘𝑎)), (2nd ‘𝑎)〉)〉, 〈(·𝑖‘ndx), ∅〉}) ∪ {〈(TopSet‘ndx), ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))〉, 〈(le‘ndx), {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ((1st ‘𝑎)𝑥(2nd ‘𝑏))(le‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))}〉, 〈(dist‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ (((1st ‘𝑎)𝑥(2nd ‘𝑏))(dist‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))))〉}) /s (𝑟 ~RL 𝑠))) | |
2 | 1 | reldmmpo 7555 | 1 ⊢ Rel dom RLocal |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 ∈ wcel 2098 Vcvv 3461 ⦋csb 3889 ∪ cun 3942 ∅c0 4322 {ctp 4634 〈cop 4636 class class class wbr 5149 {copab 5211 × cxp 5676 dom cdm 5678 Rel wrel 5683 ‘cfv 6549 (class class class)co 7419 ∈ cmpo 7421 1st c1st 7992 2nd c2nd 7993 ndxcnx 17165 Basecbs 17183 +gcplusg 17236 .rcmulr 17237 Scalarcsca 17239 ·𝑠 cvsca 17240 ·𝑖cip 17241 TopSetcts 17242 lecple 17243 distcds 17245 ↾t crest 17405 /s cqus 17490 ×t ctx 23508 ~RL cerl 33043 RLocal crloc 33044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5150 df-opab 5212 df-xp 5684 df-rel 5685 df-dm 5688 df-oprab 7423 df-mpo 7424 df-rloc 33046 |
This theorem is referenced by: fracval 33090 |
Copyright terms: Public domain | W3C validator |