Detailed syntax breakdown of Definition df-erl
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cerl 33258 | . 2
class 
~RL | 
| 2 |  | vr | . . 3
setvar 𝑟 | 
| 3 |  | vs | . . 3
setvar 𝑠 | 
| 4 |  | cvv 3479 | . . 3
class
V | 
| 5 |  | vx | . . . 4
setvar 𝑥 | 
| 6 | 2 | cv 1538 | . . . . 5
class 𝑟 | 
| 7 |  | cmulr 17299 | . . . . 5
class
.r | 
| 8 | 6, 7 | cfv 6560 | . . . 4
class
(.r‘𝑟) | 
| 9 |  | vw | . . . . 5
setvar 𝑤 | 
| 10 |  | cbs 17248 | . . . . . . 7
class
Base | 
| 11 | 6, 10 | cfv 6560 | . . . . . 6
class
(Base‘𝑟) | 
| 12 | 3 | cv 1538 | . . . . . 6
class 𝑠 | 
| 13 | 11, 12 | cxp 5682 | . . . . 5
class
((Base‘𝑟)
× 𝑠) | 
| 14 |  | va | . . . . . . . . 9
setvar 𝑎 | 
| 15 | 14, 9 | wel 2108 | . . . . . . . 8
wff 𝑎 ∈ 𝑤 | 
| 16 |  | vb | . . . . . . . . 9
setvar 𝑏 | 
| 17 | 16, 9 | wel 2108 | . . . . . . . 8
wff 𝑏 ∈ 𝑤 | 
| 18 | 15, 17 | wa 395 | . . . . . . 7
wff (𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) | 
| 19 |  | vt | . . . . . . . . . . 11
setvar 𝑡 | 
| 20 | 19 | cv 1538 | . . . . . . . . . 10
class 𝑡 | 
| 21 | 14 | cv 1538 | . . . . . . . . . . . . 13
class 𝑎 | 
| 22 |  | c1st 8013 | . . . . . . . . . . . . 13
class
1st | 
| 23 | 21, 22 | cfv 6560 | . . . . . . . . . . . 12
class
(1st ‘𝑎) | 
| 24 | 16 | cv 1538 | . . . . . . . . . . . . 13
class 𝑏 | 
| 25 |  | c2nd 8014 | . . . . . . . . . . . . 13
class
2nd | 
| 26 | 24, 25 | cfv 6560 | . . . . . . . . . . . 12
class
(2nd ‘𝑏) | 
| 27 | 5 | cv 1538 | . . . . . . . . . . . 12
class 𝑥 | 
| 28 | 23, 26, 27 | co 7432 | . . . . . . . . . . 11
class
((1st ‘𝑎)𝑥(2nd ‘𝑏)) | 
| 29 | 24, 22 | cfv 6560 | . . . . . . . . . . . 12
class
(1st ‘𝑏) | 
| 30 | 21, 25 | cfv 6560 | . . . . . . . . . . . 12
class
(2nd ‘𝑎) | 
| 31 | 29, 30, 27 | co 7432 | . . . . . . . . . . 11
class
((1st ‘𝑏)𝑥(2nd ‘𝑎)) | 
| 32 |  | csg 18954 | . . . . . . . . . . . 12
class
-g | 
| 33 | 6, 32 | cfv 6560 | . . . . . . . . . . 11
class
(-g‘𝑟) | 
| 34 | 28, 31, 33 | co 7432 | . . . . . . . . . 10
class
(((1st ‘𝑎)𝑥(2nd ‘𝑏))(-g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))) | 
| 35 | 20, 34, 27 | co 7432 | . . . . . . . . 9
class (𝑡𝑥(((1st ‘𝑎)𝑥(2nd ‘𝑏))(-g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))) | 
| 36 |  | c0g 17485 | . . . . . . . . . 10
class
0g | 
| 37 | 6, 36 | cfv 6560 | . . . . . . . . 9
class
(0g‘𝑟) | 
| 38 | 35, 37 | wceq 1539 | . . . . . . . 8
wff (𝑡𝑥(((1st ‘𝑎)𝑥(2nd ‘𝑏))(-g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))) = (0g‘𝑟) | 
| 39 | 38, 19, 12 | wrex 3069 | . . . . . . 7
wff
∃𝑡 ∈
𝑠 (𝑡𝑥(((1st ‘𝑎)𝑥(2nd ‘𝑏))(-g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))) = (0g‘𝑟) | 
| 40 | 18, 39 | wa 395 | . . . . . 6
wff ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ∃𝑡 ∈ 𝑠 (𝑡𝑥(((1st ‘𝑎)𝑥(2nd ‘𝑏))(-g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))) = (0g‘𝑟)) | 
| 41 | 40, 14, 16 | copab 5204 | . . . . 5
class
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ∃𝑡 ∈ 𝑠 (𝑡𝑥(((1st ‘𝑎)𝑥(2nd ‘𝑏))(-g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))) = (0g‘𝑟))} | 
| 42 | 9, 13, 41 | csb 3898 | . . . 4
class
⦋((Base‘𝑟) × 𝑠) / 𝑤⦌{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ∃𝑡 ∈ 𝑠 (𝑡𝑥(((1st ‘𝑎)𝑥(2nd ‘𝑏))(-g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))) = (0g‘𝑟))} | 
| 43 | 5, 8, 42 | csb 3898 | . . 3
class
⦋(.r‘𝑟) / 𝑥⦌⦋((Base‘𝑟) × 𝑠) / 𝑤⦌{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ∃𝑡 ∈ 𝑠 (𝑡𝑥(((1st ‘𝑎)𝑥(2nd ‘𝑏))(-g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))) = (0g‘𝑟))} | 
| 44 | 2, 3, 4, 4, 43 | cmpo 7434 | . 2
class (𝑟 ∈ V, 𝑠 ∈ V ↦
⦋(.r‘𝑟) / 𝑥⦌⦋((Base‘𝑟) × 𝑠) / 𝑤⦌{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ∃𝑡 ∈ 𝑠 (𝑡𝑥(((1st ‘𝑎)𝑥(2nd ‘𝑏))(-g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))) = (0g‘𝑟))}) | 
| 45 | 1, 44 | wceq 1539 | 1
wff 
~RL = (𝑟
∈ V, 𝑠 ∈ V
↦ ⦋(.r‘𝑟) / 𝑥⦌⦋((Base‘𝑟) × 𝑠) / 𝑤⦌{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ∃𝑡 ∈ 𝑠 (𝑡𝑥(((1st ‘𝑎)𝑥(2nd ‘𝑏))(-g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))) = (0g‘𝑟))}) |