Detailed syntax breakdown of Definition df-erl
| Step | Hyp | Ref
| Expression |
| 1 | | cerl 33253 |
. 2
class
~RL |
| 2 | | vr |
. . 3
setvar 𝑟 |
| 3 | | vs |
. . 3
setvar 𝑠 |
| 4 | | cvv 3464 |
. . 3
class
V |
| 5 | | vx |
. . . 4
setvar 𝑥 |
| 6 | 2 | cv 1539 |
. . . . 5
class 𝑟 |
| 7 | | cmulr 17277 |
. . . . 5
class
.r |
| 8 | 6, 7 | cfv 6536 |
. . . 4
class
(.r‘𝑟) |
| 9 | | vw |
. . . . 5
setvar 𝑤 |
| 10 | | cbs 17233 |
. . . . . . 7
class
Base |
| 11 | 6, 10 | cfv 6536 |
. . . . . 6
class
(Base‘𝑟) |
| 12 | 3 | cv 1539 |
. . . . . 6
class 𝑠 |
| 13 | 11, 12 | cxp 5657 |
. . . . 5
class
((Base‘𝑟)
× 𝑠) |
| 14 | | va |
. . . . . . . . 9
setvar 𝑎 |
| 15 | 14, 9 | wel 2110 |
. . . . . . . 8
wff 𝑎 ∈ 𝑤 |
| 16 | | vb |
. . . . . . . . 9
setvar 𝑏 |
| 17 | 16, 9 | wel 2110 |
. . . . . . . 8
wff 𝑏 ∈ 𝑤 |
| 18 | 15, 17 | wa 395 |
. . . . . . 7
wff (𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) |
| 19 | | vt |
. . . . . . . . . . 11
setvar 𝑡 |
| 20 | 19 | cv 1539 |
. . . . . . . . . 10
class 𝑡 |
| 21 | 14 | cv 1539 |
. . . . . . . . . . . . 13
class 𝑎 |
| 22 | | c1st 7991 |
. . . . . . . . . . . . 13
class
1st |
| 23 | 21, 22 | cfv 6536 |
. . . . . . . . . . . 12
class
(1st ‘𝑎) |
| 24 | 16 | cv 1539 |
. . . . . . . . . . . . 13
class 𝑏 |
| 25 | | c2nd 7992 |
. . . . . . . . . . . . 13
class
2nd |
| 26 | 24, 25 | cfv 6536 |
. . . . . . . . . . . 12
class
(2nd ‘𝑏) |
| 27 | 5 | cv 1539 |
. . . . . . . . . . . 12
class 𝑥 |
| 28 | 23, 26, 27 | co 7410 |
. . . . . . . . . . 11
class
((1st ‘𝑎)𝑥(2nd ‘𝑏)) |
| 29 | 24, 22 | cfv 6536 |
. . . . . . . . . . . 12
class
(1st ‘𝑏) |
| 30 | 21, 25 | cfv 6536 |
. . . . . . . . . . . 12
class
(2nd ‘𝑎) |
| 31 | 29, 30, 27 | co 7410 |
. . . . . . . . . . 11
class
((1st ‘𝑏)𝑥(2nd ‘𝑎)) |
| 32 | | csg 18923 |
. . . . . . . . . . . 12
class
-g |
| 33 | 6, 32 | cfv 6536 |
. . . . . . . . . . 11
class
(-g‘𝑟) |
| 34 | 28, 31, 33 | co 7410 |
. . . . . . . . . 10
class
(((1st ‘𝑎)𝑥(2nd ‘𝑏))(-g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))) |
| 35 | 20, 34, 27 | co 7410 |
. . . . . . . . 9
class (𝑡𝑥(((1st ‘𝑎)𝑥(2nd ‘𝑏))(-g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))) |
| 36 | | c0g 17458 |
. . . . . . . . . 10
class
0g |
| 37 | 6, 36 | cfv 6536 |
. . . . . . . . 9
class
(0g‘𝑟) |
| 38 | 35, 37 | wceq 1540 |
. . . . . . . 8
wff (𝑡𝑥(((1st ‘𝑎)𝑥(2nd ‘𝑏))(-g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))) = (0g‘𝑟) |
| 39 | 38, 19, 12 | wrex 3061 |
. . . . . . 7
wff
∃𝑡 ∈
𝑠 (𝑡𝑥(((1st ‘𝑎)𝑥(2nd ‘𝑏))(-g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))) = (0g‘𝑟) |
| 40 | 18, 39 | wa 395 |
. . . . . 6
wff ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ∃𝑡 ∈ 𝑠 (𝑡𝑥(((1st ‘𝑎)𝑥(2nd ‘𝑏))(-g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))) = (0g‘𝑟)) |
| 41 | 40, 14, 16 | copab 5186 |
. . . . 5
class
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ∃𝑡 ∈ 𝑠 (𝑡𝑥(((1st ‘𝑎)𝑥(2nd ‘𝑏))(-g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))) = (0g‘𝑟))} |
| 42 | 9, 13, 41 | csb 3879 |
. . . 4
class
⦋((Base‘𝑟) × 𝑠) / 𝑤⦌{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ∃𝑡 ∈ 𝑠 (𝑡𝑥(((1st ‘𝑎)𝑥(2nd ‘𝑏))(-g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))) = (0g‘𝑟))} |
| 43 | 5, 8, 42 | csb 3879 |
. . 3
class
⦋(.r‘𝑟) / 𝑥⦌⦋((Base‘𝑟) × 𝑠) / 𝑤⦌{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ∃𝑡 ∈ 𝑠 (𝑡𝑥(((1st ‘𝑎)𝑥(2nd ‘𝑏))(-g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))) = (0g‘𝑟))} |
| 44 | 2, 3, 4, 4, 43 | cmpo 7412 |
. 2
class (𝑟 ∈ V, 𝑠 ∈ V ↦
⦋(.r‘𝑟) / 𝑥⦌⦋((Base‘𝑟) × 𝑠) / 𝑤⦌{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ∃𝑡 ∈ 𝑠 (𝑡𝑥(((1st ‘𝑎)𝑥(2nd ‘𝑏))(-g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))) = (0g‘𝑟))}) |
| 45 | 1, 44 | wceq 1540 |
1
wff
~RL = (𝑟
∈ V, 𝑠 ∈ V
↦ ⦋(.r‘𝑟) / 𝑥⦌⦋((Base‘𝑟) × 𝑠) / 𝑤⦌{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ∃𝑡 ∈ 𝑠 (𝑡𝑥(((1st ‘𝑎)𝑥(2nd ‘𝑏))(-g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))) = (0g‘𝑟))}) |