Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-erl Structured version   Visualization version   GIF version

Definition df-erl 33110
Description: Define the operation giving the equivalence relation used in the localization of a ring 𝑟 by a set 𝑠. Two pairs 𝑎 = ⟨𝑥, 𝑦 and 𝑏 = ⟨𝑧, 𝑤 are equivalent if there exists 𝑡𝑠 such that 𝑡 · (𝑥 · 𝑤𝑧 · 𝑦) = 0. This corresponds to the usual comparison of fractions 𝑥 / 𝑦 and 𝑧 / 𝑤. (Contributed by Thierry Arnoux, 28-Apr-2025.)
Assertion
Ref Expression
df-erl ~RL = (𝑟 ∈ V, 𝑠 ∈ V ↦ (.r𝑟) / 𝑥((Base‘𝑟) × 𝑠) / 𝑤{⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑤𝑏𝑤) ∧ ∃𝑡𝑠 (𝑡𝑥(((1st𝑎)𝑥(2nd𝑏))(-g𝑟)((1st𝑏)𝑥(2nd𝑎)))) = (0g𝑟))})
Distinct variable group:   𝑠,𝑟,𝑥,𝑤,𝑎,𝑏,𝑡

Detailed syntax breakdown of Definition df-erl
StepHypRef Expression
1 cerl 33108 . 2 class ~RL
2 vr . . 3 setvar 𝑟
3 vs . . 3 setvar 𝑠
4 cvv 3462 . . 3 class V
5 vx . . . 4 setvar 𝑥
62cv 1533 . . . . 5 class 𝑟
7 cmulr 17267 . . . . 5 class .r
86, 7cfv 6554 . . . 4 class (.r𝑟)
9 vw . . . . 5 setvar 𝑤
10 cbs 17213 . . . . . . 7 class Base
116, 10cfv 6554 . . . . . 6 class (Base‘𝑟)
123cv 1533 . . . . . 6 class 𝑠
1311, 12cxp 5680 . . . . 5 class ((Base‘𝑟) × 𝑠)
14 va . . . . . . . . 9 setvar 𝑎
1514, 9wel 2100 . . . . . . . 8 wff 𝑎𝑤
16 vb . . . . . . . . 9 setvar 𝑏
1716, 9wel 2100 . . . . . . . 8 wff 𝑏𝑤
1815, 17wa 394 . . . . . . 7 wff (𝑎𝑤𝑏𝑤)
19 vt . . . . . . . . . . 11 setvar 𝑡
2019cv 1533 . . . . . . . . . 10 class 𝑡
2114cv 1533 . . . . . . . . . . . . 13 class 𝑎
22 c1st 8001 . . . . . . . . . . . . 13 class 1st
2321, 22cfv 6554 . . . . . . . . . . . 12 class (1st𝑎)
2416cv 1533 . . . . . . . . . . . . 13 class 𝑏
25 c2nd 8002 . . . . . . . . . . . . 13 class 2nd
2624, 25cfv 6554 . . . . . . . . . . . 12 class (2nd𝑏)
275cv 1533 . . . . . . . . . . . 12 class 𝑥
2823, 26, 27co 7424 . . . . . . . . . . 11 class ((1st𝑎)𝑥(2nd𝑏))
2924, 22cfv 6554 . . . . . . . . . . . 12 class (1st𝑏)
3021, 25cfv 6554 . . . . . . . . . . . 12 class (2nd𝑎)
3129, 30, 27co 7424 . . . . . . . . . . 11 class ((1st𝑏)𝑥(2nd𝑎))
32 csg 18930 . . . . . . . . . . . 12 class -g
336, 32cfv 6554 . . . . . . . . . . 11 class (-g𝑟)
3428, 31, 33co 7424 . . . . . . . . . 10 class (((1st𝑎)𝑥(2nd𝑏))(-g𝑟)((1st𝑏)𝑥(2nd𝑎)))
3520, 34, 27co 7424 . . . . . . . . 9 class (𝑡𝑥(((1st𝑎)𝑥(2nd𝑏))(-g𝑟)((1st𝑏)𝑥(2nd𝑎))))
36 c0g 17454 . . . . . . . . . 10 class 0g
376, 36cfv 6554 . . . . . . . . 9 class (0g𝑟)
3835, 37wceq 1534 . . . . . . . 8 wff (𝑡𝑥(((1st𝑎)𝑥(2nd𝑏))(-g𝑟)((1st𝑏)𝑥(2nd𝑎)))) = (0g𝑟)
3938, 19, 12wrex 3060 . . . . . . 7 wff 𝑡𝑠 (𝑡𝑥(((1st𝑎)𝑥(2nd𝑏))(-g𝑟)((1st𝑏)𝑥(2nd𝑎)))) = (0g𝑟)
4018, 39wa 394 . . . . . 6 wff ((𝑎𝑤𝑏𝑤) ∧ ∃𝑡𝑠 (𝑡𝑥(((1st𝑎)𝑥(2nd𝑏))(-g𝑟)((1st𝑏)𝑥(2nd𝑎)))) = (0g𝑟))
4140, 14, 16copab 5215 . . . . 5 class {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑤𝑏𝑤) ∧ ∃𝑡𝑠 (𝑡𝑥(((1st𝑎)𝑥(2nd𝑏))(-g𝑟)((1st𝑏)𝑥(2nd𝑎)))) = (0g𝑟))}
429, 13, 41csb 3892 . . . 4 class ((Base‘𝑟) × 𝑠) / 𝑤{⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑤𝑏𝑤) ∧ ∃𝑡𝑠 (𝑡𝑥(((1st𝑎)𝑥(2nd𝑏))(-g𝑟)((1st𝑏)𝑥(2nd𝑎)))) = (0g𝑟))}
435, 8, 42csb 3892 . . 3 class (.r𝑟) / 𝑥((Base‘𝑟) × 𝑠) / 𝑤{⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑤𝑏𝑤) ∧ ∃𝑡𝑠 (𝑡𝑥(((1st𝑎)𝑥(2nd𝑏))(-g𝑟)((1st𝑏)𝑥(2nd𝑎)))) = (0g𝑟))}
442, 3, 4, 4, 43cmpo 7426 . 2 class (𝑟 ∈ V, 𝑠 ∈ V ↦ (.r𝑟) / 𝑥((Base‘𝑟) × 𝑠) / 𝑤{⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑤𝑏𝑤) ∧ ∃𝑡𝑠 (𝑡𝑥(((1st𝑎)𝑥(2nd𝑏))(-g𝑟)((1st𝑏)𝑥(2nd𝑎)))) = (0g𝑟))})
451, 44wceq 1534 1 wff ~RL = (𝑟 ∈ V, 𝑠 ∈ V ↦ (.r𝑟) / 𝑥((Base‘𝑟) × 𝑠) / 𝑤{⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑤𝑏𝑤) ∧ ∃𝑡𝑠 (𝑡𝑥(((1st𝑎)𝑥(2nd𝑏))(-g𝑟)((1st𝑏)𝑥(2nd𝑎)))) = (0g𝑟))})
Colors of variables: wff setvar class
This definition is referenced by:  erlval  33113
  Copyright terms: Public domain W3C validator