MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-rngc Structured version   Visualization version   GIF version

Definition df-rngc 20639
Description: Definition of the category Rng, relativized to a subset 𝑢. This is the category of all non-unital rings in 𝑢 and homomorphisms between these rings. Generally, we will take 𝑢 to be a weak universe or Grothendieck universe, because these sets have closure properties as good as the real thing. (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.)
Assertion
Ref Expression
df-rngc RngCat = (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat ( RngHom ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng)))))

Detailed syntax breakdown of Definition df-rngc
StepHypRef Expression
1 crngc 20638 . 2 class RngCat
2 vu . . 3 setvar 𝑢
3 cvv 3488 . . 3 class V
42cv 1536 . . . . 5 class 𝑢
5 cestrc 18190 . . . . 5 class ExtStrCat
64, 5cfv 6573 . . . 4 class (ExtStrCat‘𝑢)
7 crnghm 20460 . . . . 5 class RngHom
8 crng 20179 . . . . . . 7 class Rng
94, 8cin 3975 . . . . . 6 class (𝑢 ∩ Rng)
109, 9cxp 5698 . . . . 5 class ((𝑢 ∩ Rng) × (𝑢 ∩ Rng))
117, 10cres 5702 . . . 4 class ( RngHom ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng)))
12 cresc 17869 . . . 4 class cat
136, 11, 12co 7448 . . 3 class ((ExtStrCat‘𝑢) ↾cat ( RngHom ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng))))
142, 3, 13cmpt 5249 . 2 class (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat ( RngHom ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng)))))
151, 14wceq 1537 1 wff RngCat = (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat ( RngHom ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng)))))
Colors of variables: wff setvar class
This definition is referenced by:  rngcval  20640
  Copyright terms: Public domain W3C validator