![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rngcval | Structured version Visualization version GIF version |
Description: Value of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
Ref | Expression |
---|---|
rngcval.c | ⊢ 𝐶 = (RngCat‘𝑈) |
rngcval.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rngcval.b | ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) |
rngcval.h | ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) |
Ref | Expression |
---|---|
rngcval | ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngcval.c | . 2 ⊢ 𝐶 = (RngCat‘𝑈) | |
2 | df-rngc 20639 | . . 3 ⊢ RngCat = (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat ( RngHom ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng))))) | |
3 | fveq2 6920 | . . . . 5 ⊢ (𝑢 = 𝑈 → (ExtStrCat‘𝑢) = (ExtStrCat‘𝑈)) | |
4 | 3 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → (ExtStrCat‘𝑢) = (ExtStrCat‘𝑈)) |
5 | ineq1 4234 | . . . . . . . 8 ⊢ (𝑢 = 𝑈 → (𝑢 ∩ Rng) = (𝑈 ∩ Rng)) | |
6 | 5 | sqxpeqd 5732 | . . . . . . 7 ⊢ (𝑢 = 𝑈 → ((𝑢 ∩ Rng) × (𝑢 ∩ Rng)) = ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) |
7 | rngcval.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) | |
8 | 7 | sqxpeqd 5732 | . . . . . . . 8 ⊢ (𝜑 → (𝐵 × 𝐵) = ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) |
9 | 8 | eqcomd 2746 | . . . . . . 7 ⊢ (𝜑 → ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)) = (𝐵 × 𝐵)) |
10 | 6, 9 | sylan9eqr 2802 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ((𝑢 ∩ Rng) × (𝑢 ∩ Rng)) = (𝐵 × 𝐵)) |
11 | 10 | reseq2d 6009 | . . . . 5 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ( RngHom ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng))) = ( RngHom ↾ (𝐵 × 𝐵))) |
12 | rngcval.h | . . . . . . 7 ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) | |
13 | 12 | eqcomd 2746 | . . . . . 6 ⊢ (𝜑 → ( RngHom ↾ (𝐵 × 𝐵)) = 𝐻) |
14 | 13 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ( RngHom ↾ (𝐵 × 𝐵)) = 𝐻) |
15 | 11, 14 | eqtrd 2780 | . . . 4 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ( RngHom ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng))) = 𝐻) |
16 | 4, 15 | oveq12d 7466 | . . 3 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ((ExtStrCat‘𝑢) ↾cat ( RngHom ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng)))) = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
17 | rngcval.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
18 | 17 | elexd 3512 | . . 3 ⊢ (𝜑 → 𝑈 ∈ V) |
19 | ovexd 7483 | . . 3 ⊢ (𝜑 → ((ExtStrCat‘𝑈) ↾cat 𝐻) ∈ V) | |
20 | 2, 16, 18, 19 | fvmptd2 7037 | . 2 ⊢ (𝜑 → (RngCat‘𝑈) = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
21 | 1, 20 | eqtrid 2792 | 1 ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∩ cin 3975 × cxp 5698 ↾ cres 5702 ‘cfv 6573 (class class class)co 7448 ↾cat cresc 17869 ExtStrCatcestrc 18190 Rngcrng 20179 RngHom crnghm 20460 RngCatcrngc 20638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-res 5712 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-rngc 20639 |
This theorem is referenced by: rngcbas 20643 rngchomfval 20644 rngccofval 20648 dfrngc2 20650 rngccat 20656 rngcid 20657 rngcifuestrc 20661 funcrngcsetc 20662 |
Copyright terms: Public domain | W3C validator |