Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngcval Structured version   Visualization version   GIF version

Theorem rngcval 45531
Description: Value of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.)
Hypotheses
Ref Expression
rngcval.c 𝐶 = (RngCat‘𝑈)
rngcval.u (𝜑𝑈𝑉)
rngcval.b (𝜑𝐵 = (𝑈 ∩ Rng))
rngcval.h (𝜑𝐻 = ( RngHomo ↾ (𝐵 × 𝐵)))
Assertion
Ref Expression
rngcval (𝜑𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻))

Proof of Theorem rngcval
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 rngcval.c . 2 𝐶 = (RngCat‘𝑈)
2 df-rngc 45528 . . 3 RngCat = (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat ( RngHomo ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng)))))
3 fveq2 6783 . . . . 5 (𝑢 = 𝑈 → (ExtStrCat‘𝑢) = (ExtStrCat‘𝑈))
43adantl 482 . . . 4 ((𝜑𝑢 = 𝑈) → (ExtStrCat‘𝑢) = (ExtStrCat‘𝑈))
5 ineq1 4140 . . . . . . . 8 (𝑢 = 𝑈 → (𝑢 ∩ Rng) = (𝑈 ∩ Rng))
65sqxpeqd 5622 . . . . . . 7 (𝑢 = 𝑈 → ((𝑢 ∩ Rng) × (𝑢 ∩ Rng)) = ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))
7 rngcval.b . . . . . . . . 9 (𝜑𝐵 = (𝑈 ∩ Rng))
87sqxpeqd 5622 . . . . . . . 8 (𝜑 → (𝐵 × 𝐵) = ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))
98eqcomd 2745 . . . . . . 7 (𝜑 → ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)) = (𝐵 × 𝐵))
106, 9sylan9eqr 2801 . . . . . 6 ((𝜑𝑢 = 𝑈) → ((𝑢 ∩ Rng) × (𝑢 ∩ Rng)) = (𝐵 × 𝐵))
1110reseq2d 5894 . . . . 5 ((𝜑𝑢 = 𝑈) → ( RngHomo ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng))) = ( RngHomo ↾ (𝐵 × 𝐵)))
12 rngcval.h . . . . . . 7 (𝜑𝐻 = ( RngHomo ↾ (𝐵 × 𝐵)))
1312eqcomd 2745 . . . . . 6 (𝜑 → ( RngHomo ↾ (𝐵 × 𝐵)) = 𝐻)
1413adantr 481 . . . . 5 ((𝜑𝑢 = 𝑈) → ( RngHomo ↾ (𝐵 × 𝐵)) = 𝐻)
1511, 14eqtrd 2779 . . . 4 ((𝜑𝑢 = 𝑈) → ( RngHomo ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng))) = 𝐻)
164, 15oveq12d 7302 . . 3 ((𝜑𝑢 = 𝑈) → ((ExtStrCat‘𝑢) ↾cat ( RngHomo ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng)))) = ((ExtStrCat‘𝑈) ↾cat 𝐻))
17 rngcval.u . . . 4 (𝜑𝑈𝑉)
1817elexd 3453 . . 3 (𝜑𝑈 ∈ V)
19 ovexd 7319 . . 3 (𝜑 → ((ExtStrCat‘𝑈) ↾cat 𝐻) ∈ V)
202, 16, 18, 19fvmptd2 6892 . 2 (𝜑 → (RngCat‘𝑈) = ((ExtStrCat‘𝑈) ↾cat 𝐻))
211, 20eqtrid 2791 1 (𝜑𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2107  Vcvv 3433  cin 3887   × cxp 5588  cres 5592  cfv 6437  (class class class)co 7284  cat cresc 17529  ExtStrCatcestrc 17847  Rngcrng 45443   RngHomo crngh 45454  RngCatcrngc 45526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pr 5353
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4258  df-if 4461  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-br 5076  df-opab 5138  df-mpt 5159  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-res 5602  df-iota 6395  df-fun 6439  df-fv 6445  df-ov 7287  df-rngc 45528
This theorem is referenced by:  rngcbas  45534  rngchomfval  45535  rngccofval  45539  dfrngc2  45541  rngccat  45547  rngcid  45548  rngcifuestrc  45566  funcrngcsetc  45567
  Copyright terms: Public domain W3C validator