MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngcval Structured version   Visualization version   GIF version

Theorem rngcval 20537
Description: Value of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.)
Hypotheses
Ref Expression
rngcval.c 𝐶 = (RngCat‘𝑈)
rngcval.u (𝜑𝑈𝑉)
rngcval.b (𝜑𝐵 = (𝑈 ∩ Rng))
rngcval.h (𝜑𝐻 = ( RngHom ↾ (𝐵 × 𝐵)))
Assertion
Ref Expression
rngcval (𝜑𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻))

Proof of Theorem rngcval
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 rngcval.c . 2 𝐶 = (RngCat‘𝑈)
2 df-rngc 20536 . . 3 RngCat = (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat ( RngHom ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng)))))
3 fveq2 6830 . . . . 5 (𝑢 = 𝑈 → (ExtStrCat‘𝑢) = (ExtStrCat‘𝑈))
43adantl 481 . . . 4 ((𝜑𝑢 = 𝑈) → (ExtStrCat‘𝑢) = (ExtStrCat‘𝑈))
5 ineq1 4162 . . . . . . . 8 (𝑢 = 𝑈 → (𝑢 ∩ Rng) = (𝑈 ∩ Rng))
65sqxpeqd 5653 . . . . . . 7 (𝑢 = 𝑈 → ((𝑢 ∩ Rng) × (𝑢 ∩ Rng)) = ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))
7 rngcval.b . . . . . . . . 9 (𝜑𝐵 = (𝑈 ∩ Rng))
87sqxpeqd 5653 . . . . . . . 8 (𝜑 → (𝐵 × 𝐵) = ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))
98eqcomd 2739 . . . . . . 7 (𝜑 → ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)) = (𝐵 × 𝐵))
106, 9sylan9eqr 2790 . . . . . 6 ((𝜑𝑢 = 𝑈) → ((𝑢 ∩ Rng) × (𝑢 ∩ Rng)) = (𝐵 × 𝐵))
1110reseq2d 5934 . . . . 5 ((𝜑𝑢 = 𝑈) → ( RngHom ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng))) = ( RngHom ↾ (𝐵 × 𝐵)))
12 rngcval.h . . . . . . 7 (𝜑𝐻 = ( RngHom ↾ (𝐵 × 𝐵)))
1312eqcomd 2739 . . . . . 6 (𝜑 → ( RngHom ↾ (𝐵 × 𝐵)) = 𝐻)
1413adantr 480 . . . . 5 ((𝜑𝑢 = 𝑈) → ( RngHom ↾ (𝐵 × 𝐵)) = 𝐻)
1511, 14eqtrd 2768 . . . 4 ((𝜑𝑢 = 𝑈) → ( RngHom ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng))) = 𝐻)
164, 15oveq12d 7372 . . 3 ((𝜑𝑢 = 𝑈) → ((ExtStrCat‘𝑢) ↾cat ( RngHom ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng)))) = ((ExtStrCat‘𝑈) ↾cat 𝐻))
17 rngcval.u . . . 4 (𝜑𝑈𝑉)
1817elexd 3461 . . 3 (𝜑𝑈 ∈ V)
19 ovexd 7389 . . 3 (𝜑 → ((ExtStrCat‘𝑈) ↾cat 𝐻) ∈ V)
202, 16, 18, 19fvmptd2 6945 . 2 (𝜑 → (RngCat‘𝑈) = ((ExtStrCat‘𝑈) ↾cat 𝐻))
211, 20eqtrid 2780 1 (𝜑𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  cin 3897   × cxp 5619  cres 5623  cfv 6488  (class class class)co 7354  cat cresc 17719  ExtStrCatcestrc 18032  Rngcrng 20074   RngHom crnghm 20356  RngCatcrngc 20535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-res 5633  df-iota 6444  df-fun 6490  df-fv 6496  df-ov 7357  df-rngc 20536
This theorem is referenced by:  rngcbas  20540  rngchomfval  20541  rngccofval  20545  dfrngc2  20547  rngccat  20553  rngcid  20554  rngcifuestrc  20558  funcrngcsetc  20559
  Copyright terms: Public domain W3C validator