| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngcval | Structured version Visualization version GIF version | ||
| Description: Value of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
| Ref | Expression |
|---|---|
| rngcval.c | ⊢ 𝐶 = (RngCat‘𝑈) |
| rngcval.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| rngcval.b | ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) |
| rngcval.h | ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) |
| Ref | Expression |
|---|---|
| rngcval | ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcval.c | . 2 ⊢ 𝐶 = (RngCat‘𝑈) | |
| 2 | df-rngc 20526 | . . 3 ⊢ RngCat = (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat ( RngHom ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng))))) | |
| 3 | fveq2 6858 | . . . . 5 ⊢ (𝑢 = 𝑈 → (ExtStrCat‘𝑢) = (ExtStrCat‘𝑈)) | |
| 4 | 3 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → (ExtStrCat‘𝑢) = (ExtStrCat‘𝑈)) |
| 5 | ineq1 4176 | . . . . . . . 8 ⊢ (𝑢 = 𝑈 → (𝑢 ∩ Rng) = (𝑈 ∩ Rng)) | |
| 6 | 5 | sqxpeqd 5670 | . . . . . . 7 ⊢ (𝑢 = 𝑈 → ((𝑢 ∩ Rng) × (𝑢 ∩ Rng)) = ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) |
| 7 | rngcval.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) | |
| 8 | 7 | sqxpeqd 5670 | . . . . . . . 8 ⊢ (𝜑 → (𝐵 × 𝐵) = ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) |
| 9 | 8 | eqcomd 2735 | . . . . . . 7 ⊢ (𝜑 → ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)) = (𝐵 × 𝐵)) |
| 10 | 6, 9 | sylan9eqr 2786 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ((𝑢 ∩ Rng) × (𝑢 ∩ Rng)) = (𝐵 × 𝐵)) |
| 11 | 10 | reseq2d 5950 | . . . . 5 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ( RngHom ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng))) = ( RngHom ↾ (𝐵 × 𝐵))) |
| 12 | rngcval.h | . . . . . . 7 ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) | |
| 13 | 12 | eqcomd 2735 | . . . . . 6 ⊢ (𝜑 → ( RngHom ↾ (𝐵 × 𝐵)) = 𝐻) |
| 14 | 13 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ( RngHom ↾ (𝐵 × 𝐵)) = 𝐻) |
| 15 | 11, 14 | eqtrd 2764 | . . . 4 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ( RngHom ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng))) = 𝐻) |
| 16 | 4, 15 | oveq12d 7405 | . . 3 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ((ExtStrCat‘𝑢) ↾cat ( RngHom ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng)))) = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
| 17 | rngcval.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 18 | 17 | elexd 3471 | . . 3 ⊢ (𝜑 → 𝑈 ∈ V) |
| 19 | ovexd 7422 | . . 3 ⊢ (𝜑 → ((ExtStrCat‘𝑈) ↾cat 𝐻) ∈ V) | |
| 20 | 2, 16, 18, 19 | fvmptd2 6976 | . 2 ⊢ (𝜑 → (RngCat‘𝑈) = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
| 21 | 1, 20 | eqtrid 2776 | 1 ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∩ cin 3913 × cxp 5636 ↾ cres 5640 ‘cfv 6511 (class class class)co 7387 ↾cat cresc 17770 ExtStrCatcestrc 18083 Rngcrng 20061 RngHom crnghm 20343 RngCatcrngc 20525 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-res 5650 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-rngc 20526 |
| This theorem is referenced by: rngcbas 20530 rngchomfval 20531 rngccofval 20535 dfrngc2 20537 rngccat 20543 rngcid 20544 rngcifuestrc 20548 funcrngcsetc 20549 |
| Copyright terms: Public domain | W3C validator |