Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngcval | Structured version Visualization version GIF version |
Description: Value of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
Ref | Expression |
---|---|
rngcval.c | ⊢ 𝐶 = (RngCat‘𝑈) |
rngcval.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rngcval.b | ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) |
rngcval.h | ⊢ (𝜑 → 𝐻 = ( RngHomo ↾ (𝐵 × 𝐵))) |
Ref | Expression |
---|---|
rngcval | ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngcval.c | . 2 ⊢ 𝐶 = (RngCat‘𝑈) | |
2 | df-rngc 45528 | . . 3 ⊢ RngCat = (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat ( RngHomo ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng))))) | |
3 | fveq2 6783 | . . . . 5 ⊢ (𝑢 = 𝑈 → (ExtStrCat‘𝑢) = (ExtStrCat‘𝑈)) | |
4 | 3 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → (ExtStrCat‘𝑢) = (ExtStrCat‘𝑈)) |
5 | ineq1 4140 | . . . . . . . 8 ⊢ (𝑢 = 𝑈 → (𝑢 ∩ Rng) = (𝑈 ∩ Rng)) | |
6 | 5 | sqxpeqd 5622 | . . . . . . 7 ⊢ (𝑢 = 𝑈 → ((𝑢 ∩ Rng) × (𝑢 ∩ Rng)) = ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) |
7 | rngcval.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) | |
8 | 7 | sqxpeqd 5622 | . . . . . . . 8 ⊢ (𝜑 → (𝐵 × 𝐵) = ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) |
9 | 8 | eqcomd 2745 | . . . . . . 7 ⊢ (𝜑 → ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)) = (𝐵 × 𝐵)) |
10 | 6, 9 | sylan9eqr 2801 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ((𝑢 ∩ Rng) × (𝑢 ∩ Rng)) = (𝐵 × 𝐵)) |
11 | 10 | reseq2d 5894 | . . . . 5 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ( RngHomo ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng))) = ( RngHomo ↾ (𝐵 × 𝐵))) |
12 | rngcval.h | . . . . . . 7 ⊢ (𝜑 → 𝐻 = ( RngHomo ↾ (𝐵 × 𝐵))) | |
13 | 12 | eqcomd 2745 | . . . . . 6 ⊢ (𝜑 → ( RngHomo ↾ (𝐵 × 𝐵)) = 𝐻) |
14 | 13 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ( RngHomo ↾ (𝐵 × 𝐵)) = 𝐻) |
15 | 11, 14 | eqtrd 2779 | . . . 4 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ( RngHomo ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng))) = 𝐻) |
16 | 4, 15 | oveq12d 7302 | . . 3 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ((ExtStrCat‘𝑢) ↾cat ( RngHomo ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng)))) = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
17 | rngcval.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
18 | 17 | elexd 3453 | . . 3 ⊢ (𝜑 → 𝑈 ∈ V) |
19 | ovexd 7319 | . . 3 ⊢ (𝜑 → ((ExtStrCat‘𝑈) ↾cat 𝐻) ∈ V) | |
20 | 2, 16, 18, 19 | fvmptd2 6892 | . 2 ⊢ (𝜑 → (RngCat‘𝑈) = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
21 | 1, 20 | eqtrid 2791 | 1 ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2107 Vcvv 3433 ∩ cin 3887 × cxp 5588 ↾ cres 5592 ‘cfv 6437 (class class class)co 7284 ↾cat cresc 17529 ExtStrCatcestrc 17847 Rngcrng 45443 RngHomo crngh 45454 RngCatcrngc 45526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pr 5353 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-res 5602 df-iota 6395 df-fun 6439 df-fv 6445 df-ov 7287 df-rngc 45528 |
This theorem is referenced by: rngcbas 45534 rngchomfval 45535 rngccofval 45539 dfrngc2 45541 rngccat 45547 rngcid 45548 rngcifuestrc 45566 funcrngcsetc 45567 |
Copyright terms: Public domain | W3C validator |