| Metamath
Proof Explorer Theorem List (p. 206 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | issubrg2 20501* | Characterize the subrings of a ring by closure properties. (Contributed by Mario Carneiro, 3-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝐴 ∈ (SubRing‘𝑅) ↔ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴))) | ||
| Theorem | opprsubrg 20502 | Being a subring is a symmetric property. (Contributed by Mario Carneiro, 6-Dec-2014.) |
| ⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (SubRing‘𝑅) = (SubRing‘𝑂) | ||
| Theorem | subrgnzr 20503 | A subring of a nonzero ring is nonzero. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ ((𝑅 ∈ NzRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → 𝑆 ∈ NzRing) | ||
| Theorem | subrgint 20504 | The intersection of a nonempty collection of subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.) |
| ⊢ ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ (SubRing‘𝑅)) | ||
| Theorem | subrgin 20505 | The intersection of two subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.) |
| ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑅)) → (𝐴 ∩ 𝐵) ∈ (SubRing‘𝑅)) | ||
| Theorem | subrgmre 20506 | The subrings of a ring are a Moore system. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (SubRing‘𝑅) ∈ (Moore‘𝐵)) | ||
| Theorem | subsubrg 20507 | A subring of a subring is a subring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝐵 ∈ (SubRing‘𝑆) ↔ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵 ⊆ 𝐴))) | ||
| Theorem | subsubrg2 20508 | The set of subrings of a subring are the smaller subrings. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → (SubRing‘𝑆) = ((SubRing‘𝑅) ∩ 𝒫 𝐴)) | ||
| Theorem | issubrg3 20509 | A subring is an additive subgroup which is also a multiplicative submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝑆 ∈ (SubRing‘𝑅) ↔ (𝑆 ∈ (SubGrp‘𝑅) ∧ 𝑆 ∈ (SubMnd‘𝑀)))) | ||
| Theorem | resrhm 20510 | Restriction of a ring homomorphism to a subring is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015.) |
| ⊢ 𝑈 = (𝑆 ↾s 𝑋) ⇒ ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝐹 ↾ 𝑋) ∈ (𝑈 RingHom 𝑇)) | ||
| Theorem | resrhm2b 20511 | Restriction of the codomain of a (ring) homomorphism. resghm2b 19166 analog. (Contributed by SN, 7-Feb-2025.) |
| ⊢ 𝑈 = (𝑇 ↾s 𝑋) ⇒ ⊢ ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 RingHom 𝑇) ↔ 𝐹 ∈ (𝑆 RingHom 𝑈))) | ||
| Theorem | rhmeql 20512 | The equalizer of two ring homomorphisms is a subring. (Contributed by Stefan O'Rear, 7-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
| ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → dom (𝐹 ∩ 𝐺) ∈ (SubRing‘𝑆)) | ||
| Theorem | rhmima 20513 | The homomorphic image of a subring is a subring. (Contributed by Stefan O'Rear, 10-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
| ⊢ ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRing‘𝑀)) → (𝐹 “ 𝑋) ∈ (SubRing‘𝑁)) | ||
| Theorem | rnrhmsubrg 20514 | The range of a ring homomorphism is a subring. (Contributed by SN, 18-Nov-2023.) |
| ⊢ (𝐹 ∈ (𝑀 RingHom 𝑁) → ran 𝐹 ∈ (SubRing‘𝑁)) | ||
| Theorem | cntzsubr 20515 | Centralizers in a ring are subrings. (Contributed by Stefan O'Rear, 6-Sep-2015.) (Revised by Mario Carneiro, 19-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) ∈ (SubRing‘𝑅)) | ||
| Theorem | pwsdiagrhm 20516* | Diagonal homomorphism into a structure power (Rings). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ (𝑅 RingHom 𝑌)) | ||
| Theorem | subrgpropd 20517* | If two structures have the same group components (properties), they have the same set of subrings. (Contributed by Mario Carneiro, 9-Feb-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (SubRing‘𝐾) = (SubRing‘𝐿)) | ||
| Theorem | rhmpropd 20518* | Ring homomorphism depends only on the ring attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐽)) & ⊢ (𝜑 → 𝐶 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → 𝐶 = (Base‘𝑀)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐽)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝑀)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐽)𝑦) = (𝑥(.r‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝑀)𝑦)) ⇒ ⊢ (𝜑 → (𝐽 RingHom 𝐾) = (𝐿 RingHom 𝑀)) | ||
| Syntax | crgspn 20519 | Extend class notation with span of a set of elements over a ring. |
| class RingSpan | ||
| Definition | df-rgspn 20520* | The ring-span of a set of elements in a ring is the smallest subring which contains all of them. (Contributed by Stefan O'Rear, 7-Dec-2014.) |
| ⊢ RingSpan = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ ∩ {𝑡 ∈ (SubRing‘𝑤) ∣ 𝑠 ⊆ 𝑡})) | ||
| Theorem | rgspnval 20521* | Value of the ring-span of a set of elements in a ring. (Contributed by Stefan O'Rear, 7-Dec-2014.) |
| ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝑁 = (RingSpan‘𝑅)) & ⊢ (𝜑 → 𝑈 = (𝑁‘𝐴)) ⇒ ⊢ (𝜑 → 𝑈 = ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡}) | ||
| Theorem | rgspncl 20522 | The ring-span of a set is a subring. (Contributed by Stefan O'Rear, 7-Dec-2014.) |
| ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝑁 = (RingSpan‘𝑅)) & ⊢ (𝜑 → 𝑈 = (𝑁‘𝐴)) ⇒ ⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝑅)) | ||
| Theorem | rgspnssid 20523 | The ring-span of a set contains the set. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
| ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝑁 = (RingSpan‘𝑅)) & ⊢ (𝜑 → 𝑈 = (𝑁‘𝐴)) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝑈) | ||
| Theorem | rgspnmin 20524 | The ring-span is contained in all subrings which contain all the generators. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
| ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝑁 = (RingSpan‘𝑅)) & ⊢ (𝜑 → 𝑈 = (𝑁‘𝐴)) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) ⇒ ⊢ (𝜑 → 𝑈 ⊆ 𝑆) | ||
The "category of non-unital rings" RngCat is the category of all non-unital rings Rng in a universe and non-unital ring homomorphisms RngHom between these rings. This category is defined as "category restriction" of the category of extensible structures ExtStrCat, which restricts the objects to non-unital rings and the morphisms to the non-unital ring homomorphisms, while the composition of morphisms is preserved, see df-rngc 20526. Alternately, the category of non-unital rings could have been defined as extensible structure consisting of three components/slots for the objects, morphisms and composition, see dfrngc2 20537. Since we consider only "small categories" (i.e. categories whose objects and morphisms are actually sets and not proper classes), the objects of the category (i.e. the base set of the category regarded as extensible structure) are a subset of the non-unital rings (relativized to a subset or "universe" 𝑢) (𝑢 ∩ Rng), see rngcbas 20530, and the morphisms/arrows are the non-unital ring homomorphisms restricted to this subset of the non-unital rings ( RngHom ↾ (𝐵 × 𝐵)), see rngchomfval 20531, whereas the composition is the ordinary composition of functions, see rngccofval 20535 and rngcco 20536. By showing that the non-unital ring homomorphisms between non-unital rings are a subcategory subset (⊆cat) of the mappings between base sets of extensible structures, see rnghmsscmap 20539, it can be shown that the non-unital ring homomorphisms between non-unital rings are a subcategory (Subcat) of the category of extensible structures, see rnghmsubcsetc 20542. It follows that the category of non-unital rings RngCat is actually a category, see rngccat 20543 with the identity function as identity arrow, see rngcid 20544. | ||
| Syntax | crngc 20525 | Extend class notation to include the category Rng. |
| class RngCat | ||
| Definition | df-rngc 20526 | Definition of the category Rng, relativized to a subset 𝑢. This is the category of all non-unital rings in 𝑢 and homomorphisms between these rings. Generally, we will take 𝑢 to be a weak universe or Grothendieck universe, because these sets have closure properties as good as the real thing. (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
| ⊢ RngCat = (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat ( RngHom ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng))))) | ||
| Theorem | rngcval 20527 | Value of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
| ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) & ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻)) | ||
| Theorem | rnghmresfn 20528 | The class of non-unital ring homomorphisms restricted to subsets of non-unital rings is a function. (Contributed by AV, 4-Mar-2020.) |
| ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) & ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) | ||
| Theorem | rnghmresel 20529 | An element of the non-unital ring homomorphisms restricted to a subset of non-unital rings is a non-unital ring homomorphisms. (Contributed by AV, 9-Mar-2020.) |
| ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → 𝐹 ∈ (𝑋 RngHom 𝑌)) | ||
| Theorem | rngcbas 20530 | Set of objects of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
| ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) | ||
| Theorem | rngchomfval 20531 | Set of arrows of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
| ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) | ||
| Theorem | rngchom 20532 | Set of arrows of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020.) |
| ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋 RngHom 𝑌)) | ||
| Theorem | elrngchom 20533 | A morphism of non-unital rings is a function. (Contributed by AV, 27-Feb-2020.) |
| ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹:(Base‘𝑋)⟶(Base‘𝑌))) | ||
| Theorem | rngchomfeqhom 20534 | The functionalized Hom-set operation equals the Hom-set operation in the category of non-unital rings (in a universe). (Contributed by AV, 9-Mar-2020.) |
| ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) ⇒ ⊢ (𝜑 → (Homf ‘𝐶) = (Hom ‘𝐶)) | ||
| Theorem | rngccofval 20535 | Composition in the category of non-unital rings. (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
| ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ · = (comp‘𝐶) ⇒ ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) | ||
| Theorem | rngcco 20536 | Composition in the category of non-unital rings. (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
| ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ (𝜑 → 𝐹:(Base‘𝑋)⟶(Base‘𝑌)) & ⊢ (𝜑 → 𝐺:(Base‘𝑌)⟶(Base‘𝑍)) ⇒ ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘ 𝐹)) | ||
| Theorem | dfrngc2 20537 | Alternate definition of the category of non-unital rings (in a universe). (Contributed by AV, 16-Mar-2020.) |
| ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) & ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) & ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) ⇒ ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) | ||
| Theorem | rnghmsscmap2 20538* | The non-unital ring homomorphisms between non-unital rings (in a universe) are a subcategory subset of the mappings between base sets of non-unital rings (in the same universe). (Contributed by AV, 6-Mar-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 = (Rng ∩ 𝑈)) ⇒ ⊢ (𝜑 → ( RngHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) | ||
| Theorem | rnghmsscmap 20539* | The non-unital ring homomorphisms between non-unital rings (in a universe) are a subcategory subset of the mappings between base sets of extensible structures (in the same universe). (Contributed by AV, 9-Mar-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 = (Rng ∩ 𝑈)) ⇒ ⊢ (𝜑 → ( RngHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) | ||
| Theorem | rnghmsubcsetclem1 20540 | Lemma 1 for rnghmsubcsetc 20542. (Contributed by AV, 9-Mar-2020.) |
| ⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Rng ∩ 𝑈)) & ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥)) | ||
| Theorem | rnghmsubcsetclem2 20541* | Lemma 2 for rnghmsubcsetc 20542. (Contributed by AV, 9-Mar-2020.) |
| ⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Rng ∩ 𝑈)) & ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧)) | ||
| Theorem | rnghmsubcsetc 20542 | The non-unital ring homomorphisms between non-unital rings (in a universe) are a subcategory of the category of extensible structures. (Contributed by AV, 9-Mar-2020.) |
| ⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Rng ∩ 𝑈)) & ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ (𝜑 → 𝐻 ∈ (Subcat‘𝐶)) | ||
| Theorem | rngccat 20543 | The category of non-unital rings is a category. (Contributed by AV, 27-Feb-2020.) (Revised by AV, 9-Mar-2020.) |
| ⊢ 𝐶 = (RngCat‘𝑈) ⇒ ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) | ||
| Theorem | rngcid 20544 | The identity arrow in the category of non-unital rings is the identity function. (Contributed by AV, 27-Feb-2020.) (Revised by AV, 10-Mar-2020.) |
| ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝑆 = (Base‘𝑋) ⇒ ⊢ (𝜑 → ( 1 ‘𝑋) = ( I ↾ 𝑆)) | ||
| Theorem | rngcsect 20545 | A section in the category of non-unital rings, written out. (Contributed by AV, 28-Feb-2020.) |
| ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐸 = (Base‘𝑋) & ⊢ 𝑆 = (Sect‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)))) | ||
| Theorem | rngcinv 20546 | An inverse in the category of non-unital rings is the converse operation. (Contributed by AV, 28-Feb-2020.) |
| ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑁 = (Inv‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngIso 𝑌) ∧ 𝐺 = ◡𝐹))) | ||
| Theorem | rngciso 20547 | An isomorphism in the category of non-unital rings is a bijection. (Contributed by AV, 28-Feb-2020.) |
| ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐼 = (Iso‘𝐶) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ (𝑋 RngIso 𝑌))) | ||
| Theorem | rngcifuestrc 20548* | The "inclusion functor" from the category of non-unital rings into the category of extensible structures. (Contributed by AV, 30-Mar-2020.) |
| ⊢ 𝑅 = (RngCat‘𝑈) & ⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 = ( I ↾ 𝐵)) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RngHom 𝑦)))) ⇒ ⊢ (𝜑 → 𝐹(𝑅 Func 𝐸)𝐺) | ||
| Theorem | funcrngcsetc 20549* | The "natural forgetful functor" from the category of non-unital rings into the category of sets which sends each non-unital ring to its underlying set (base set) and the morphisms (non-unital ring homomorphisms) to mappings of the corresponding base sets. An alternate proof is provided in funcrngcsetcALT 20550, using cofuval2 17849 to construct the "natural forgetful functor" from the category of non-unital rings into the category of sets by composing the "inclusion functor" from the category of non-unital rings into the category of extensible structures, see rngcifuestrc 20548, and the "natural forgetful functor" from the category of extensible structures into the category of sets, see funcestrcsetc 18110. (Contributed by AV, 26-Mar-2020.) |
| ⊢ 𝑅 = (RngCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RngHom 𝑦)))) ⇒ ⊢ (𝜑 → 𝐹(𝑅 Func 𝑆)𝐺) | ||
| Theorem | funcrngcsetcALT 20550* | Alternate proof of funcrngcsetc 20549, using cofuval2 17849 to construct the "natural forgetful functor" from the category of non-unital rings into the category of sets by composing the "inclusion functor" from the category of non-unital rings into the category of extensible structures, see rngcifuestrc 20548, and the "natural forgetful functor" from the category of extensible structures into the category of sets, see funcestrcsetc 18110. Surprisingly, this proof is longer than the direct proof given in funcrngcsetc 20549. (Contributed by AV, 30-Mar-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑅 = (RngCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RngHom 𝑦)))) ⇒ ⊢ (𝜑 → 𝐹(𝑅 Func 𝑆)𝐺) | ||
| Theorem | zrinitorngc 20551 | The zero ring is an initial object in the category of non-unital rings. (Contributed by AV, 18-Apr-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑍 ∈ (Ring ∖ NzRing)) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝑍 ∈ (InitO‘𝐶)) | ||
| Theorem | zrtermorngc 20552 | The zero ring is a terminal object in the category of non-unital rings. (Contributed by AV, 17-Apr-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑍 ∈ (Ring ∖ NzRing)) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝑍 ∈ (TermO‘𝐶)) | ||
| Theorem | zrzeroorngc 20553 | The zero ring is a zero object in the category of non-unital rings. (Contributed by AV, 18-Apr-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑍 ∈ (Ring ∖ NzRing)) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝑍 ∈ (ZeroO‘𝐶)) | ||
The "category of unital rings" RingCat is the category of all (unital) rings Ring in a universe and (unital) ring homomorphisms RingHom between these rings. This category is defined as "category restriction" of the category of extensible structures ExtStrCat, which restricts the objects to (unital) rings and the morphisms to the (unital) ring homomorphisms, while the composition of morphisms is preserved, see df-ringc 20555. Alternately, the category of unital rings could have been defined as extensible structure consisting of three components/slots for the objects, morphisms and composition, see dfringc2 20566. In the following, we omit the predicate "unital", so that "ring" and "ring homomorphism" (without predicate) always mean "unital ring" and "unital ring homomorphism". Since we consider only "small categories" (i.e., categories whose objects and morphisms are actually sets and not proper classes), the objects of the category (i.e. the base set of the category regarded as extensible structure) are a subset of the rings (relativized to a subset or "universe" 𝑢) (𝑢 ∩ Ring), see ringcbas 20559, and the morphisms/arrows are the ring homomorphisms restricted to this subset of the rings ( RingHom ↾ (𝐵 × 𝐵)), see ringchomfval 20560, whereas the composition is the ordinary composition of functions, see ringccofval 20564 and ringcco 20565. By showing that the ring homomorphisms between rings are a subcategory subset (⊆cat) of the mappings between base sets of extensible structures, see rhmsscmap 20568, it can be shown that the ring homomorphisms between rings are a subcategory (Subcat) of the category of extensible structures, see rhmsubcsetc 20571. It follows that the category of rings RingCat is actually a category, see ringccat 20572 with the identity function as identity arrow, see ringcid 20573. Furthermore, it is shown that the ring homomorphisms between rings are a subcategory subset of the non-unital ring homomorphisms between non-unital rings, see rhmsscrnghm 20574, and that the ring homomorphisms between rings are a subcategory of the category of non-unital rings, see rhmsubcrngc 20577. By this, the restriction of the category of non-unital rings to the set of unital ring homomorphisms is the category of unital rings, see rngcresringcat 20578: ((RngCat‘𝑈) ↾cat ( RingHom ↾ (𝐵 × 𝐵))) = (RingCat‘𝑈)). Finally, it is shown that the "natural forgetful functor" from the category of rings into the category of sets is the function which sends each ring to its underlying set (base set) and the morphisms (ring homomorphisms) to mappings of the corresponding base sets, see funcringcsetc 20583. | ||
| Syntax | cringc 20554 | Extend class notation to include the category Ring. |
| class RingCat | ||
| Definition | df-ringc 20555 | Definition of the category Ring, relativized to a subset 𝑢. See also the note in [Lang] p. 91, and the item Rng in [Adamek] p. 478. This is the category of all unital rings in 𝑢 and homomorphisms between these rings. Generally, we will take 𝑢 to be a weak universe or Grothendieck universe, because these sets have closure properties as good as the real thing. (Contributed by AV, 13-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
| ⊢ RingCat = (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring))))) | ||
| Theorem | ringcval 20556 | Value of the category of unital rings (in a universe). (Contributed by AV, 13-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
| ⊢ 𝐶 = (RingCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻)) | ||
| Theorem | rhmresfn 20557 | The class of unital ring homomorphisms restricted to subsets of unital rings is a function. (Contributed by AV, 10-Mar-2020.) |
| ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) | ||
| Theorem | rhmresel 20558 | An element of the unital ring homomorphisms restricted to a subset of unital rings is a unital ring homomorphism. (Contributed by AV, 10-Mar-2020.) |
| ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → 𝐹 ∈ (𝑋 RingHom 𝑌)) | ||
| Theorem | ringcbas 20559 | Set of objects of the category of unital rings (in a universe). (Contributed by AV, 13-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
| ⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) | ||
| Theorem | ringchomfval 20560 | Set of arrows of the category of unital rings (in a universe). (Contributed by AV, 14-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
| ⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) | ||
| Theorem | ringchom 20561 | Set of arrows of the category of unital rings (in a universe). (Contributed by AV, 14-Feb-2020.) |
| ⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋 RingHom 𝑌)) | ||
| Theorem | elringchom 20562 | A morphism of unital rings is a function. (Contributed by AV, 14-Feb-2020.) |
| ⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹:(Base‘𝑋)⟶(Base‘𝑌))) | ||
| Theorem | ringchomfeqhom 20563 | The functionalized Hom-set operation equals the Hom-set operation in the category of unital rings (in a universe). (Contributed by AV, 9-Mar-2020.) |
| ⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) ⇒ ⊢ (𝜑 → (Homf ‘𝐶) = (Hom ‘𝐶)) | ||
| Theorem | ringccofval 20564 | Composition in the category of unital rings. (Contributed by AV, 14-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
| ⊢ 𝐶 = (RingCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ · = (comp‘𝐶) ⇒ ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) | ||
| Theorem | ringcco 20565 | Composition in the category of unital rings. (Contributed by AV, 14-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
| ⊢ 𝐶 = (RingCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ (𝜑 → 𝐹:(Base‘𝑋)⟶(Base‘𝑌)) & ⊢ (𝜑 → 𝐺:(Base‘𝑌)⟶(Base‘𝑍)) ⇒ ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘ 𝐹)) | ||
| Theorem | dfringc2 20566 | Alternate definition of the category of unital rings (in a universe). (Contributed by AV, 16-Mar-2020.) |
| ⊢ 𝐶 = (RingCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) & ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) ⇒ ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) | ||
| Theorem | rhmsscmap2 20567* | The unital ring homomorphisms between unital rings (in a universe) are a subcategory subset of the mappings between base sets of unital rings (in the same universe). (Contributed by AV, 6-Mar-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) ⇒ ⊢ (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) | ||
| Theorem | rhmsscmap 20568* | The unital ring homomorphisms between unital rings (in a universe) are a subcategory subset of the mappings between base sets of extensible structures (in the same universe). (Contributed by AV, 9-Mar-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) ⇒ ⊢ (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) | ||
| Theorem | rhmsubcsetclem1 20569 | Lemma 1 for rhmsubcsetc 20571. (Contributed by AV, 9-Mar-2020.) |
| ⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥)) | ||
| Theorem | rhmsubcsetclem2 20570* | Lemma 2 for rhmsubcsetc 20571. (Contributed by AV, 9-Mar-2020.) |
| ⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧)) | ||
| Theorem | rhmsubcsetc 20571 | The unital ring homomorphisms between unital rings (in a universe) are a subcategory of the category of extensible structures. (Contributed by AV, 9-Mar-2020.) |
| ⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ (𝜑 → 𝐻 ∈ (Subcat‘𝐶)) | ||
| Theorem | ringccat 20572 | The category of unital rings is a category. (Contributed by AV, 14-Feb-2020.) (Revised by AV, 9-Mar-2020.) |
| ⊢ 𝐶 = (RingCat‘𝑈) ⇒ ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) | ||
| Theorem | ringcid 20573 | The identity arrow in the category of unital rings is the identity function. (Contributed by AV, 14-Feb-2020.) (Revised by AV, 10-Mar-2020.) |
| ⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝑆 = (Base‘𝑋) ⇒ ⊢ (𝜑 → ( 1 ‘𝑋) = ( I ↾ 𝑆)) | ||
| Theorem | rhmsscrnghm 20574 | The unital ring homomorphisms between unital rings (in a universe) are a subcategory subset of the non-unital ring homomorphisms between non-unital rings (in the same universe). (Contributed by AV, 1-Mar-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ (𝜑 → 𝑆 = (Rng ∩ 𝑈)) ⇒ ⊢ (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) ⊆cat ( RngHom ↾ (𝑆 × 𝑆))) | ||
| Theorem | rhmsubcrngclem1 20575 | Lemma 1 for rhmsubcrngc 20577. (Contributed by AV, 9-Mar-2020.) |
| ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥)) | ||
| Theorem | rhmsubcrngclem2 20576* | Lemma 2 for rhmsubcrngc 20577. (Contributed by AV, 12-Mar-2020.) |
| ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧)) | ||
| Theorem | rhmsubcrngc 20577 | The unital ring homomorphisms between unital rings (in a universe) are a subcategory of the category of non-unital rings. (Contributed by AV, 12-Mar-2020.) |
| ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ (𝜑 → 𝐻 ∈ (Subcat‘𝐶)) | ||
| Theorem | rngcresringcat 20578 | The restriction of the category of non-unital rings to the set of unital ring homomorphisms is the category of unital rings. (Contributed by AV, 16-Mar-2020.) |
| ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ (𝜑 → (𝐶 ↾cat 𝐻) = (RingCat‘𝑈)) | ||
| Theorem | ringcsect 20579 | A section in the category of unital rings, written out. (Contributed by AV, 14-Feb-2020.) |
| ⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐸 = (Base‘𝑋) & ⊢ 𝑆 = (Sect‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)))) | ||
| Theorem | ringcinv 20580 | An inverse in the category of unital rings is the converse operation. (Contributed by AV, 14-Feb-2020.) |
| ⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑁 = (Inv‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹))) | ||
| Theorem | ringciso 20581 | An isomorphism in the category of unital rings is a bijection. (Contributed by AV, 14-Feb-2020.) |
| ⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐼 = (Iso‘𝐶) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ (𝑋 RingIso 𝑌))) | ||
| Theorem | ringcbasbas 20582 | An element of the base set of the base set of the category of unital rings (i.e. the base set of a ring) belongs to the considered weak universe. (Contributed by AV, 15-Feb-2020.) |
| ⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ WUni) ⇒ ⊢ ((𝜑 ∧ 𝑅 ∈ 𝐵) → (Base‘𝑅) ∈ 𝑈) | ||
| Theorem | funcringcsetc 20583* | The "natural forgetful functor" from the category of unital rings into the category of sets which sends each ring to its underlying set (base set) and the morphisms (ring homomorphisms) to mappings of the corresponding base sets. (Contributed by AV, 26-Mar-2020.) |
| ⊢ 𝑅 = (RingCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) ⇒ ⊢ (𝜑 → 𝐹(𝑅 Func 𝑆)𝐺) | ||
| Theorem | zrtermoringc 20584 | The zero ring is a terminal object in the category of unital rings. (Contributed by AV, 17-Apr-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RingCat‘𝑈) & ⊢ (𝜑 → 𝑍 ∈ (Ring ∖ NzRing)) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝑍 ∈ (TermO‘𝐶)) | ||
| Theorem | zrninitoringc 20585* | The zero ring is not an initial object in the category of unital rings (if the universe contains at least one unital ring different from the zero ring). (Contributed by AV, 18-Apr-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RingCat‘𝑈) & ⊢ (𝜑 → 𝑍 ∈ (Ring ∖ NzRing)) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ (𝜑 → ∃𝑟 ∈ (Base‘𝐶)𝑟 ∈ NzRing) ⇒ ⊢ (𝜑 → 𝑍 ∉ (InitO‘𝐶)) | ||
| Theorem | srhmsubclem1 20586* | Lemma 1 for srhmsubc 20589. (Contributed by AV, 19-Feb-2020.) |
| ⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring & ⊢ 𝐶 = (𝑈 ∩ 𝑆) ⇒ ⊢ (𝑋 ∈ 𝐶 → 𝑋 ∈ (𝑈 ∩ Ring)) | ||
| Theorem | srhmsubclem2 20587* | Lemma 2 for srhmsubc 20589. (Contributed by AV, 19-Feb-2020.) |
| ⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring & ⊢ 𝐶 = (𝑈 ∩ 𝑆) ⇒ ⊢ ((𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶) → 𝑋 ∈ (Base‘(RingCat‘𝑈))) | ||
| Theorem | srhmsubclem3 20588* | Lemma 3 for srhmsubc 20589. (Contributed by AV, 19-Feb-2020.) |
| ⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring & ⊢ 𝐶 = (𝑈 ∩ 𝑆) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋𝐽𝑌) = (𝑋(Hom ‘(RingCat‘𝑈))𝑌)) | ||
| Theorem | srhmsubc 20589* | According to df-subc 17774, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17802 and subcss2 17805). Therefore, the set of special ring homomorphisms (i.e., ring homomorphisms from a special ring to another ring of that kind) is a subcategory of the category of (unital) rings. (Contributed by AV, 19-Feb-2020.) |
| ⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring & ⊢ 𝐶 = (𝑈 ∩ 𝑆) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → 𝐽 ∈ (Subcat‘(RingCat‘𝑈))) | ||
| Theorem | sringcat 20590* | The restriction of the category of (unital) rings to the set of special ring homomorphisms is a category. (Contributed by AV, 19-Feb-2020.) |
| ⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring & ⊢ 𝐶 = (𝑈 ∩ 𝑆) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → ((RingCat‘𝑈) ↾cat 𝐽) ∈ Cat) | ||
| Theorem | crhmsubc 20591* | According to df-subc 17774, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17802 and subcss2 17805). Therefore, the set of commutative ring homomorphisms (i.e. ring homomorphisms from a commutative ring to a commutative ring) is a "subcategory" of the category of (unital) rings. (Contributed by AV, 19-Feb-2020.) |
| ⊢ 𝐶 = (𝑈 ∩ CRing) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → 𝐽 ∈ (Subcat‘(RingCat‘𝑈))) | ||
| Theorem | cringcat 20592* | The restriction of the category of (unital) rings to the set of commutative ring homomorphisms is a category, the "category of commutative rings". (Contributed by AV, 19-Feb-2020.) |
| ⊢ 𝐶 = (𝑈 ∩ CRing) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → ((RingCat‘𝑈) ↾cat 𝐽) ∈ Cat) | ||
| Theorem | rngcrescrhm 20593 | The category of non-unital rings (in a universe) restricted to the ring homomorphisms between unital rings (in the same universe). (Contributed by AV, 1-Mar-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ (𝜑 → (𝐶 ↾cat 𝐻) = ((𝐶 ↾s 𝑅) sSet 〈(Hom ‘ndx), 𝐻〉)) | ||
| Theorem | rhmsubclem1 20594 | Lemma 1 for rhmsubc 20598. (Contributed by AV, 2-Mar-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ (𝜑 → 𝐻 Fn (𝑅 × 𝑅)) | ||
| Theorem | rhmsubclem2 20595 | Lemma 2 for rhmsubc 20598. (Contributed by AV, 2-Mar-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → (𝑋𝐻𝑌) = (𝑋 RingHom 𝑌)) | ||
| Theorem | rhmsubclem3 20596* | Lemma 3 for rhmsubc 20598. (Contributed by AV, 2-Mar-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥)) | ||
| Theorem | rhmsubclem4 20597* | Lemma 4 for rhmsubc 20598. (Contributed by AV, 2-Mar-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘(RngCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧)) | ||
| Theorem | rhmsubc 20598 | According to df-subc 17774, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17802 and subcss2 17805). Therefore, the set of unital ring homomorphisms is a "subcategory" of the category of non-unital rings. (Contributed by AV, 2-Mar-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ (𝜑 → 𝐻 ∈ (Subcat‘(RngCat‘𝑈))) | ||
| Theorem | rhmsubccat 20599 | The restriction of the category of non-unital rings to the set of unital ring homomorphisms is a category. (Contributed by AV, 4-Mar-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ (𝜑 → ((RngCat‘𝑈) ↾cat 𝐻) ∈ Cat) | ||
| Syntax | crlreg 20600 | Set of left-regular elements in a ring. |
| class RLReg | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |