| Metamath
Proof Explorer Theorem List (p. 206 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | subsubrg 20501 | A subring of a subring is a subring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝐵 ∈ (SubRing‘𝑆) ↔ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵 ⊆ 𝐴))) | ||
| Theorem | subsubrg2 20502 | The set of subrings of a subring are the smaller subrings. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → (SubRing‘𝑆) = ((SubRing‘𝑅) ∩ 𝒫 𝐴)) | ||
| Theorem | issubrg3 20503 | A subring is an additive subgroup which is also a multiplicative submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝑆 ∈ (SubRing‘𝑅) ↔ (𝑆 ∈ (SubGrp‘𝑅) ∧ 𝑆 ∈ (SubMnd‘𝑀)))) | ||
| Theorem | resrhm 20504 | Restriction of a ring homomorphism to a subring is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015.) |
| ⊢ 𝑈 = (𝑆 ↾s 𝑋) ⇒ ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRing‘𝑆)) → (𝐹 ↾ 𝑋) ∈ (𝑈 RingHom 𝑇)) | ||
| Theorem | resrhm2b 20505 | Restriction of the codomain of a (ring) homomorphism. resghm2b 19131 analog. (Contributed by SN, 7-Feb-2025.) |
| ⊢ 𝑈 = (𝑇 ↾s 𝑋) ⇒ ⊢ ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 RingHom 𝑇) ↔ 𝐹 ∈ (𝑆 RingHom 𝑈))) | ||
| Theorem | rhmeql 20506 | The equalizer of two ring homomorphisms is a subring. (Contributed by Stefan O'Rear, 7-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
| ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → dom (𝐹 ∩ 𝐺) ∈ (SubRing‘𝑆)) | ||
| Theorem | rhmima 20507 | The homomorphic image of a subring is a subring. (Contributed by Stefan O'Rear, 10-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
| ⊢ ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRing‘𝑀)) → (𝐹 “ 𝑋) ∈ (SubRing‘𝑁)) | ||
| Theorem | rnrhmsubrg 20508 | The range of a ring homomorphism is a subring. (Contributed by SN, 18-Nov-2023.) |
| ⊢ (𝐹 ∈ (𝑀 RingHom 𝑁) → ran 𝐹 ∈ (SubRing‘𝑁)) | ||
| Theorem | cntzsubr 20509 | Centralizers in a ring are subrings. (Contributed by Stefan O'Rear, 6-Sep-2015.) (Revised by Mario Carneiro, 19-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) ∈ (SubRing‘𝑅)) | ||
| Theorem | pwsdiagrhm 20510* | Diagonal homomorphism into a structure power (Rings). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ (𝑅 RingHom 𝑌)) | ||
| Theorem | subrgpropd 20511* | If two structures have the same group components (properties), they have the same set of subrings. (Contributed by Mario Carneiro, 9-Feb-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (SubRing‘𝐾) = (SubRing‘𝐿)) | ||
| Theorem | rhmpropd 20512* | Ring homomorphism depends only on the ring attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐽)) & ⊢ (𝜑 → 𝐶 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → 𝐶 = (Base‘𝑀)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐽)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝑀)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐽)𝑦) = (𝑥(.r‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝑀)𝑦)) ⇒ ⊢ (𝜑 → (𝐽 RingHom 𝐾) = (𝐿 RingHom 𝑀)) | ||
| Syntax | crgspn 20513 | Extend class notation with span of a set of elements over a ring. |
| class RingSpan | ||
| Definition | df-rgspn 20514* | The ring-span of a set of elements in a ring is the smallest subring which contains all of them. (Contributed by Stefan O'Rear, 7-Dec-2014.) |
| ⊢ RingSpan = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ ∩ {𝑡 ∈ (SubRing‘𝑤) ∣ 𝑠 ⊆ 𝑡})) | ||
| Theorem | rgspnval 20515* | Value of the ring-span of a set of elements in a ring. (Contributed by Stefan O'Rear, 7-Dec-2014.) |
| ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝑁 = (RingSpan‘𝑅)) & ⊢ (𝜑 → 𝑈 = (𝑁‘𝐴)) ⇒ ⊢ (𝜑 → 𝑈 = ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡}) | ||
| Theorem | rgspncl 20516 | The ring-span of a set is a subring. (Contributed by Stefan O'Rear, 7-Dec-2014.) |
| ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝑁 = (RingSpan‘𝑅)) & ⊢ (𝜑 → 𝑈 = (𝑁‘𝐴)) ⇒ ⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝑅)) | ||
| Theorem | rgspnssid 20517 | The ring-span of a set contains the set. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
| ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝑁 = (RingSpan‘𝑅)) & ⊢ (𝜑 → 𝑈 = (𝑁‘𝐴)) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝑈) | ||
| Theorem | rgspnmin 20518 | The ring-span is contained in all subrings which contain all the generators. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
| ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝑁 = (RingSpan‘𝑅)) & ⊢ (𝜑 → 𝑈 = (𝑁‘𝐴)) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) ⇒ ⊢ (𝜑 → 𝑈 ⊆ 𝑆) | ||
The "category of non-unital rings" RngCat is the category of all non-unital rings Rng in a universe and non-unital ring homomorphisms RngHom between these rings. This category is defined as "category restriction" of the category of extensible structures ExtStrCat, which restricts the objects to non-unital rings and the morphisms to the non-unital ring homomorphisms, while the composition of morphisms is preserved, see df-rngc 20520. Alternately, the category of non-unital rings could have been defined as extensible structure consisting of three components/slots for the objects, morphisms and composition, see dfrngc2 20531. Since we consider only "small categories" (i.e. categories whose objects and morphisms are actually sets and not proper classes), the objects of the category (i.e. the base set of the category regarded as extensible structure) are a subset of the non-unital rings (relativized to a subset or "universe" 𝑢) (𝑢 ∩ Rng), see rngcbas 20524, and the morphisms/arrows are the non-unital ring homomorphisms restricted to this subset of the non-unital rings ( RngHom ↾ (𝐵 × 𝐵)), see rngchomfval 20525, whereas the composition is the ordinary composition of functions, see rngccofval 20529 and rngcco 20530. By showing that the non-unital ring homomorphisms between non-unital rings are a subcategory subset (⊆cat) of the mappings between base sets of extensible structures, see rnghmsscmap 20533, it can be shown that the non-unital ring homomorphisms between non-unital rings are a subcategory (Subcat) of the category of extensible structures, see rnghmsubcsetc 20536. It follows that the category of non-unital rings RngCat is actually a category, see rngccat 20537 with the identity function as identity arrow, see rngcid 20538. | ||
| Syntax | crngc 20519 | Extend class notation to include the category Rng. |
| class RngCat | ||
| Definition | df-rngc 20520 | Definition of the category Rng, relativized to a subset 𝑢. This is the category of all non-unital rings in 𝑢 and homomorphisms between these rings. Generally, we will take 𝑢 to be a weak universe or Grothendieck universe, because these sets have closure properties as good as the real thing. (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
| ⊢ RngCat = (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat ( RngHom ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng))))) | ||
| Theorem | rngcval 20521 | Value of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
| ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) & ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻)) | ||
| Theorem | rnghmresfn 20522 | The class of non-unital ring homomorphisms restricted to subsets of non-unital rings is a function. (Contributed by AV, 4-Mar-2020.) |
| ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) & ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) | ||
| Theorem | rnghmresel 20523 | An element of the non-unital ring homomorphisms restricted to a subset of non-unital rings is a non-unital ring homomorphisms. (Contributed by AV, 9-Mar-2020.) |
| ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → 𝐹 ∈ (𝑋 RngHom 𝑌)) | ||
| Theorem | rngcbas 20524 | Set of objects of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
| ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) | ||
| Theorem | rngchomfval 20525 | Set of arrows of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
| ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) | ||
| Theorem | rngchom 20526 | Set of arrows of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020.) |
| ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋 RngHom 𝑌)) | ||
| Theorem | elrngchom 20527 | A morphism of non-unital rings is a function. (Contributed by AV, 27-Feb-2020.) |
| ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹:(Base‘𝑋)⟶(Base‘𝑌))) | ||
| Theorem | rngchomfeqhom 20528 | The functionalized Hom-set operation equals the Hom-set operation in the category of non-unital rings (in a universe). (Contributed by AV, 9-Mar-2020.) |
| ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) ⇒ ⊢ (𝜑 → (Homf ‘𝐶) = (Hom ‘𝐶)) | ||
| Theorem | rngccofval 20529 | Composition in the category of non-unital rings. (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
| ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ · = (comp‘𝐶) ⇒ ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) | ||
| Theorem | rngcco 20530 | Composition in the category of non-unital rings. (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
| ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ (𝜑 → 𝐹:(Base‘𝑋)⟶(Base‘𝑌)) & ⊢ (𝜑 → 𝐺:(Base‘𝑌)⟶(Base‘𝑍)) ⇒ ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘ 𝐹)) | ||
| Theorem | dfrngc2 20531 | Alternate definition of the category of non-unital rings (in a universe). (Contributed by AV, 16-Mar-2020.) |
| ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) & ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) & ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) ⇒ ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) | ||
| Theorem | rnghmsscmap2 20532* | The non-unital ring homomorphisms between non-unital rings (in a universe) are a subcategory subset of the mappings between base sets of non-unital rings (in the same universe). (Contributed by AV, 6-Mar-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 = (Rng ∩ 𝑈)) ⇒ ⊢ (𝜑 → ( RngHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) | ||
| Theorem | rnghmsscmap 20533* | The non-unital ring homomorphisms between non-unital rings (in a universe) are a subcategory subset of the mappings between base sets of extensible structures (in the same universe). (Contributed by AV, 9-Mar-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 = (Rng ∩ 𝑈)) ⇒ ⊢ (𝜑 → ( RngHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) | ||
| Theorem | rnghmsubcsetclem1 20534 | Lemma 1 for rnghmsubcsetc 20536. (Contributed by AV, 9-Mar-2020.) |
| ⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Rng ∩ 𝑈)) & ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥)) | ||
| Theorem | rnghmsubcsetclem2 20535* | Lemma 2 for rnghmsubcsetc 20536. (Contributed by AV, 9-Mar-2020.) |
| ⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Rng ∩ 𝑈)) & ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧)) | ||
| Theorem | rnghmsubcsetc 20536 | The non-unital ring homomorphisms between non-unital rings (in a universe) are a subcategory of the category of extensible structures. (Contributed by AV, 9-Mar-2020.) |
| ⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Rng ∩ 𝑈)) & ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ (𝜑 → 𝐻 ∈ (Subcat‘𝐶)) | ||
| Theorem | rngccat 20537 | The category of non-unital rings is a category. (Contributed by AV, 27-Feb-2020.) (Revised by AV, 9-Mar-2020.) |
| ⊢ 𝐶 = (RngCat‘𝑈) ⇒ ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) | ||
| Theorem | rngcid 20538 | The identity arrow in the category of non-unital rings is the identity function. (Contributed by AV, 27-Feb-2020.) (Revised by AV, 10-Mar-2020.) |
| ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝑆 = (Base‘𝑋) ⇒ ⊢ (𝜑 → ( 1 ‘𝑋) = ( I ↾ 𝑆)) | ||
| Theorem | rngcsect 20539 | A section in the category of non-unital rings, written out. (Contributed by AV, 28-Feb-2020.) |
| ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐸 = (Base‘𝑋) & ⊢ 𝑆 = (Sect‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngHom 𝑌) ∧ 𝐺 ∈ (𝑌 RngHom 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)))) | ||
| Theorem | rngcinv 20540 | An inverse in the category of non-unital rings is the converse operation. (Contributed by AV, 28-Feb-2020.) |
| ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑁 = (Inv‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngIso 𝑌) ∧ 𝐺 = ◡𝐹))) | ||
| Theorem | rngciso 20541 | An isomorphism in the category of non-unital rings is a bijection. (Contributed by AV, 28-Feb-2020.) |
| ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐼 = (Iso‘𝐶) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ (𝑋 RngIso 𝑌))) | ||
| Theorem | rngcifuestrc 20542* | The "inclusion functor" from the category of non-unital rings into the category of extensible structures. (Contributed by AV, 30-Mar-2020.) |
| ⊢ 𝑅 = (RngCat‘𝑈) & ⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 = ( I ↾ 𝐵)) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RngHom 𝑦)))) ⇒ ⊢ (𝜑 → 𝐹(𝑅 Func 𝐸)𝐺) | ||
| Theorem | funcrngcsetc 20543* | The "natural forgetful functor" from the category of non-unital rings into the category of sets which sends each non-unital ring to its underlying set (base set) and the morphisms (non-unital ring homomorphisms) to mappings of the corresponding base sets. An alternate proof is provided in funcrngcsetcALT 20544, using cofuval2 17812 to construct the "natural forgetful functor" from the category of non-unital rings into the category of sets by composing the "inclusion functor" from the category of non-unital rings into the category of extensible structures, see rngcifuestrc 20542, and the "natural forgetful functor" from the category of extensible structures into the category of sets, see funcestrcsetc 18073. (Contributed by AV, 26-Mar-2020.) |
| ⊢ 𝑅 = (RngCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RngHom 𝑦)))) ⇒ ⊢ (𝜑 → 𝐹(𝑅 Func 𝑆)𝐺) | ||
| Theorem | funcrngcsetcALT 20544* | Alternate proof of funcrngcsetc 20543, using cofuval2 17812 to construct the "natural forgetful functor" from the category of non-unital rings into the category of sets by composing the "inclusion functor" from the category of non-unital rings into the category of extensible structures, see rngcifuestrc 20542, and the "natural forgetful functor" from the category of extensible structures into the category of sets, see funcestrcsetc 18073. Surprisingly, this proof is longer than the direct proof given in funcrngcsetc 20543. (Contributed by AV, 30-Mar-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑅 = (RngCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RngHom 𝑦)))) ⇒ ⊢ (𝜑 → 𝐹(𝑅 Func 𝑆)𝐺) | ||
| Theorem | zrinitorngc 20545 | The zero ring is an initial object in the category of non-unital rings. (Contributed by AV, 18-Apr-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑍 ∈ (Ring ∖ NzRing)) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝑍 ∈ (InitO‘𝐶)) | ||
| Theorem | zrtermorngc 20546 | The zero ring is a terminal object in the category of non-unital rings. (Contributed by AV, 17-Apr-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑍 ∈ (Ring ∖ NzRing)) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝑍 ∈ (TermO‘𝐶)) | ||
| Theorem | zrzeroorngc 20547 | The zero ring is a zero object in the category of non-unital rings. (Contributed by AV, 18-Apr-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑍 ∈ (Ring ∖ NzRing)) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝑍 ∈ (ZeroO‘𝐶)) | ||
The "category of unital rings" RingCat is the category of all (unital) rings Ring in a universe and (unital) ring homomorphisms RingHom between these rings. This category is defined as "category restriction" of the category of extensible structures ExtStrCat, which restricts the objects to (unital) rings and the morphisms to the (unital) ring homomorphisms, while the composition of morphisms is preserved, see df-ringc 20549. Alternately, the category of unital rings could have been defined as extensible structure consisting of three components/slots for the objects, morphisms and composition, see dfringc2 20560. In the following, we omit the predicate "unital", so that "ring" and "ring homomorphism" (without predicate) always mean "unital ring" and "unital ring homomorphism". Since we consider only "small categories" (i.e., categories whose objects and morphisms are actually sets and not proper classes), the objects of the category (i.e. the base set of the category regarded as extensible structure) are a subset of the rings (relativized to a subset or "universe" 𝑢) (𝑢 ∩ Ring), see ringcbas 20553, and the morphisms/arrows are the ring homomorphisms restricted to this subset of the rings ( RingHom ↾ (𝐵 × 𝐵)), see ringchomfval 20554, whereas the composition is the ordinary composition of functions, see ringccofval 20558 and ringcco 20559. By showing that the ring homomorphisms between rings are a subcategory subset (⊆cat) of the mappings between base sets of extensible structures, see rhmsscmap 20562, it can be shown that the ring homomorphisms between rings are a subcategory (Subcat) of the category of extensible structures, see rhmsubcsetc 20565. It follows that the category of rings RingCat is actually a category, see ringccat 20566 with the identity function as identity arrow, see ringcid 20567. Furthermore, it is shown that the ring homomorphisms between rings are a subcategory subset of the non-unital ring homomorphisms between non-unital rings, see rhmsscrnghm 20568, and that the ring homomorphisms between rings are a subcategory of the category of non-unital rings, see rhmsubcrngc 20571. By this, the restriction of the category of non-unital rings to the set of unital ring homomorphisms is the category of unital rings, see rngcresringcat 20572: ((RngCat‘𝑈) ↾cat ( RingHom ↾ (𝐵 × 𝐵))) = (RingCat‘𝑈)). Finally, it is shown that the "natural forgetful functor" from the category of rings into the category of sets is the function which sends each ring to its underlying set (base set) and the morphisms (ring homomorphisms) to mappings of the corresponding base sets, see funcringcsetc 20577. | ||
| Syntax | cringc 20548 | Extend class notation to include the category Ring. |
| class RingCat | ||
| Definition | df-ringc 20549 | Definition of the category Ring, relativized to a subset 𝑢. See also the note in [Lang] p. 91, and the item Rng in [Adamek] p. 478. This is the category of all unital rings in 𝑢 and homomorphisms between these rings. Generally, we will take 𝑢 to be a weak universe or Grothendieck universe, because these sets have closure properties as good as the real thing. (Contributed by AV, 13-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
| ⊢ RingCat = (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring))))) | ||
| Theorem | ringcval 20550 | Value of the category of unital rings (in a universe). (Contributed by AV, 13-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
| ⊢ 𝐶 = (RingCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻)) | ||
| Theorem | rhmresfn 20551 | The class of unital ring homomorphisms restricted to subsets of unital rings is a function. (Contributed by AV, 10-Mar-2020.) |
| ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) | ||
| Theorem | rhmresel 20552 | An element of the unital ring homomorphisms restricted to a subset of unital rings is a unital ring homomorphism. (Contributed by AV, 10-Mar-2020.) |
| ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → 𝐹 ∈ (𝑋 RingHom 𝑌)) | ||
| Theorem | ringcbas 20553 | Set of objects of the category of unital rings (in a universe). (Contributed by AV, 13-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
| ⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) | ||
| Theorem | ringchomfval 20554 | Set of arrows of the category of unital rings (in a universe). (Contributed by AV, 14-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
| ⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) | ||
| Theorem | ringchom 20555 | Set of arrows of the category of unital rings (in a universe). (Contributed by AV, 14-Feb-2020.) |
| ⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋 RingHom 𝑌)) | ||
| Theorem | elringchom 20556 | A morphism of unital rings is a function. (Contributed by AV, 14-Feb-2020.) |
| ⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹:(Base‘𝑋)⟶(Base‘𝑌))) | ||
| Theorem | ringchomfeqhom 20557 | The functionalized Hom-set operation equals the Hom-set operation in the category of unital rings (in a universe). (Contributed by AV, 9-Mar-2020.) |
| ⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) ⇒ ⊢ (𝜑 → (Homf ‘𝐶) = (Hom ‘𝐶)) | ||
| Theorem | ringccofval 20558 | Composition in the category of unital rings. (Contributed by AV, 14-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
| ⊢ 𝐶 = (RingCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ · = (comp‘𝐶) ⇒ ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) | ||
| Theorem | ringcco 20559 | Composition in the category of unital rings. (Contributed by AV, 14-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
| ⊢ 𝐶 = (RingCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ (𝜑 → 𝐹:(Base‘𝑋)⟶(Base‘𝑌)) & ⊢ (𝜑 → 𝐺:(Base‘𝑌)⟶(Base‘𝑍)) ⇒ ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘ 𝐹)) | ||
| Theorem | dfringc2 20560 | Alternate definition of the category of unital rings (in a universe). (Contributed by AV, 16-Mar-2020.) |
| ⊢ 𝐶 = (RingCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) & ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) ⇒ ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) | ||
| Theorem | rhmsscmap2 20561* | The unital ring homomorphisms between unital rings (in a universe) are a subcategory subset of the mappings between base sets of unital rings (in the same universe). (Contributed by AV, 6-Mar-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) ⇒ ⊢ (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) | ||
| Theorem | rhmsscmap 20562* | The unital ring homomorphisms between unital rings (in a universe) are a subcategory subset of the mappings between base sets of extensible structures (in the same universe). (Contributed by AV, 9-Mar-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) ⇒ ⊢ (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) | ||
| Theorem | rhmsubcsetclem1 20563 | Lemma 1 for rhmsubcsetc 20565. (Contributed by AV, 9-Mar-2020.) |
| ⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥)) | ||
| Theorem | rhmsubcsetclem2 20564* | Lemma 2 for rhmsubcsetc 20565. (Contributed by AV, 9-Mar-2020.) |
| ⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧)) | ||
| Theorem | rhmsubcsetc 20565 | The unital ring homomorphisms between unital rings (in a universe) are a subcategory of the category of extensible structures. (Contributed by AV, 9-Mar-2020.) |
| ⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ (𝜑 → 𝐻 ∈ (Subcat‘𝐶)) | ||
| Theorem | ringccat 20566 | The category of unital rings is a category. (Contributed by AV, 14-Feb-2020.) (Revised by AV, 9-Mar-2020.) |
| ⊢ 𝐶 = (RingCat‘𝑈) ⇒ ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) | ||
| Theorem | ringcid 20567 | The identity arrow in the category of unital rings is the identity function. (Contributed by AV, 14-Feb-2020.) (Revised by AV, 10-Mar-2020.) |
| ⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝑆 = (Base‘𝑋) ⇒ ⊢ (𝜑 → ( 1 ‘𝑋) = ( I ↾ 𝑆)) | ||
| Theorem | rhmsscrnghm 20568 | The unital ring homomorphisms between unital rings (in a universe) are a subcategory subset of the non-unital ring homomorphisms between non-unital rings (in the same universe). (Contributed by AV, 1-Mar-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ (𝜑 → 𝑆 = (Rng ∩ 𝑈)) ⇒ ⊢ (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) ⊆cat ( RngHom ↾ (𝑆 × 𝑆))) | ||
| Theorem | rhmsubcrngclem1 20569 | Lemma 1 for rhmsubcrngc 20571. (Contributed by AV, 9-Mar-2020.) |
| ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥)) | ||
| Theorem | rhmsubcrngclem2 20570* | Lemma 2 for rhmsubcrngc 20571. (Contributed by AV, 12-Mar-2020.) |
| ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧)) | ||
| Theorem | rhmsubcrngc 20571 | The unital ring homomorphisms between unital rings (in a universe) are a subcategory of the category of non-unital rings. (Contributed by AV, 12-Mar-2020.) |
| ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ (𝜑 → 𝐻 ∈ (Subcat‘𝐶)) | ||
| Theorem | rngcresringcat 20572 | The restriction of the category of non-unital rings to the set of unital ring homomorphisms is the category of unital rings. (Contributed by AV, 16-Mar-2020.) |
| ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ (𝜑 → (𝐶 ↾cat 𝐻) = (RingCat‘𝑈)) | ||
| Theorem | ringcsect 20573 | A section in the category of unital rings, written out. (Contributed by AV, 14-Feb-2020.) |
| ⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐸 = (Base‘𝑋) & ⊢ 𝑆 = (Sect‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)))) | ||
| Theorem | ringcinv 20574 | An inverse in the category of unital rings is the converse operation. (Contributed by AV, 14-Feb-2020.) |
| ⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑁 = (Inv‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹))) | ||
| Theorem | ringciso 20575 | An isomorphism in the category of unital rings is a bijection. (Contributed by AV, 14-Feb-2020.) |
| ⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐼 = (Iso‘𝐶) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ (𝑋 RingIso 𝑌))) | ||
| Theorem | ringcbasbas 20576 | An element of the base set of the base set of the category of unital rings (i.e. the base set of a ring) belongs to the considered weak universe. (Contributed by AV, 15-Feb-2020.) |
| ⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ WUni) ⇒ ⊢ ((𝜑 ∧ 𝑅 ∈ 𝐵) → (Base‘𝑅) ∈ 𝑈) | ||
| Theorem | funcringcsetc 20577* | The "natural forgetful functor" from the category of unital rings into the category of sets which sends each ring to its underlying set (base set) and the morphisms (ring homomorphisms) to mappings of the corresponding base sets. (Contributed by AV, 26-Mar-2020.) |
| ⊢ 𝑅 = (RingCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) ⇒ ⊢ (𝜑 → 𝐹(𝑅 Func 𝑆)𝐺) | ||
| Theorem | zrtermoringc 20578 | The zero ring is a terminal object in the category of unital rings. (Contributed by AV, 17-Apr-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RingCat‘𝑈) & ⊢ (𝜑 → 𝑍 ∈ (Ring ∖ NzRing)) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝑍 ∈ (TermO‘𝐶)) | ||
| Theorem | zrninitoringc 20579* | The zero ring is not an initial object in the category of unital rings (if the universe contains at least one unital ring different from the zero ring). (Contributed by AV, 18-Apr-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RingCat‘𝑈) & ⊢ (𝜑 → 𝑍 ∈ (Ring ∖ NzRing)) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ (𝜑 → ∃𝑟 ∈ (Base‘𝐶)𝑟 ∈ NzRing) ⇒ ⊢ (𝜑 → 𝑍 ∉ (InitO‘𝐶)) | ||
| Theorem | srhmsubclem1 20580* | Lemma 1 for srhmsubc 20583. (Contributed by AV, 19-Feb-2020.) |
| ⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring & ⊢ 𝐶 = (𝑈 ∩ 𝑆) ⇒ ⊢ (𝑋 ∈ 𝐶 → 𝑋 ∈ (𝑈 ∩ Ring)) | ||
| Theorem | srhmsubclem2 20581* | Lemma 2 for srhmsubc 20583. (Contributed by AV, 19-Feb-2020.) |
| ⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring & ⊢ 𝐶 = (𝑈 ∩ 𝑆) ⇒ ⊢ ((𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶) → 𝑋 ∈ (Base‘(RingCat‘𝑈))) | ||
| Theorem | srhmsubclem3 20582* | Lemma 3 for srhmsubc 20583. (Contributed by AV, 19-Feb-2020.) |
| ⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring & ⊢ 𝐶 = (𝑈 ∩ 𝑆) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋𝐽𝑌) = (𝑋(Hom ‘(RingCat‘𝑈))𝑌)) | ||
| Theorem | srhmsubc 20583* | According to df-subc 17737, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17765 and subcss2 17768). Therefore, the set of special ring homomorphisms (i.e., ring homomorphisms from a special ring to another ring of that kind) is a subcategory of the category of (unital) rings. (Contributed by AV, 19-Feb-2020.) |
| ⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring & ⊢ 𝐶 = (𝑈 ∩ 𝑆) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → 𝐽 ∈ (Subcat‘(RingCat‘𝑈))) | ||
| Theorem | sringcat 20584* | The restriction of the category of (unital) rings to the set of special ring homomorphisms is a category. (Contributed by AV, 19-Feb-2020.) |
| ⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring & ⊢ 𝐶 = (𝑈 ∩ 𝑆) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → ((RingCat‘𝑈) ↾cat 𝐽) ∈ Cat) | ||
| Theorem | crhmsubc 20585* | According to df-subc 17737, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17765 and subcss2 17768). Therefore, the set of commutative ring homomorphisms (i.e. ring homomorphisms from a commutative ring to a commutative ring) is a "subcategory" of the category of (unital) rings. (Contributed by AV, 19-Feb-2020.) |
| ⊢ 𝐶 = (𝑈 ∩ CRing) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → 𝐽 ∈ (Subcat‘(RingCat‘𝑈))) | ||
| Theorem | cringcat 20586* | The restriction of the category of (unital) rings to the set of commutative ring homomorphisms is a category, the "category of commutative rings". (Contributed by AV, 19-Feb-2020.) |
| ⊢ 𝐶 = (𝑈 ∩ CRing) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → ((RingCat‘𝑈) ↾cat 𝐽) ∈ Cat) | ||
| Theorem | rngcrescrhm 20587 | The category of non-unital rings (in a universe) restricted to the ring homomorphisms between unital rings (in the same universe). (Contributed by AV, 1-Mar-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ (𝜑 → (𝐶 ↾cat 𝐻) = ((𝐶 ↾s 𝑅) sSet 〈(Hom ‘ndx), 𝐻〉)) | ||
| Theorem | rhmsubclem1 20588 | Lemma 1 for rhmsubc 20592. (Contributed by AV, 2-Mar-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ (𝜑 → 𝐻 Fn (𝑅 × 𝑅)) | ||
| Theorem | rhmsubclem2 20589 | Lemma 2 for rhmsubc 20592. (Contributed by AV, 2-Mar-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → (𝑋𝐻𝑌) = (𝑋 RingHom 𝑌)) | ||
| Theorem | rhmsubclem3 20590* | Lemma 3 for rhmsubc 20592. (Contributed by AV, 2-Mar-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥)) | ||
| Theorem | rhmsubclem4 20591* | Lemma 4 for rhmsubc 20592. (Contributed by AV, 2-Mar-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘(RngCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧)) | ||
| Theorem | rhmsubc 20592 | According to df-subc 17737, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17765 and subcss2 17768). Therefore, the set of unital ring homomorphisms is a "subcategory" of the category of non-unital rings. (Contributed by AV, 2-Mar-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ (𝜑 → 𝐻 ∈ (Subcat‘(RngCat‘𝑈))) | ||
| Theorem | rhmsubccat 20593 | The restriction of the category of non-unital rings to the set of unital ring homomorphisms is a category. (Contributed by AV, 4-Mar-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ (𝜑 → ((RngCat‘𝑈) ↾cat 𝐻) ∈ Cat) | ||
| Syntax | crlreg 20594 | Set of left-regular elements in a ring. |
| class RLReg | ||
| Syntax | cdomn 20595 | Class of (ring theoretic) domains. |
| class Domn | ||
| Syntax | cidom 20596 | Class of integral domains. |
| class IDomn | ||
| Definition | df-rlreg 20597* | Define the set of left-regular elements in a ring as those elements which are not left zero divisors, meaning that multiplying a nonzero element on the left by a left-regular element gives a nonzero product. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
| ⊢ RLReg = (𝑟 ∈ V ↦ {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r‘𝑟)𝑦) = (0g‘𝑟) → 𝑦 = (0g‘𝑟))}) | ||
| Definition | df-domn 20598* | A domain is a nonzero ring in which there are no nontrivial zero divisors. (Contributed by Mario Carneiro, 28-Mar-2015.) |
| ⊢ Domn = {𝑟 ∈ NzRing ∣ [(Base‘𝑟) / 𝑏][(0g‘𝑟) / 𝑧]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥(.r‘𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧 ∨ 𝑦 = 𝑧))} | ||
| Definition | df-idom 20599 | An integral domain is a commutative domain. (Contributed by Mario Carneiro, 17-Jun-2015.) |
| ⊢ IDomn = (CRing ∩ Domn) | ||
| Theorem | rrgval 20600* | Value of the set or left-regular elements in a ring. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
| ⊢ 𝐸 = (RLReg‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → 𝑦 = 0 )} | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |