Detailed syntax breakdown of Definition df-rrn
| Step | Hyp | Ref
| Expression |
| 1 | | crrn 37773 |
. 2
class
ℝn |
| 2 | | vi |
. . 3
setvar 𝑖 |
| 3 | | cfn 8968 |
. . 3
class
Fin |
| 4 | | vx |
. . . 4
setvar 𝑥 |
| 5 | | vy |
. . . 4
setvar 𝑦 |
| 6 | | cr 11137 |
. . . . 5
class
ℝ |
| 7 | 2 | cv 1538 |
. . . . 5
class 𝑖 |
| 8 | | cmap 8849 |
. . . . 5
class
↑m |
| 9 | 6, 7, 8 | co 7414 |
. . . 4
class (ℝ
↑m 𝑖) |
| 10 | | vk |
. . . . . . . . . 10
setvar 𝑘 |
| 11 | 10 | cv 1538 |
. . . . . . . . 9
class 𝑘 |
| 12 | 4 | cv 1538 |
. . . . . . . . 9
class 𝑥 |
| 13 | 11, 12 | cfv 6542 |
. . . . . . . 8
class (𝑥‘𝑘) |
| 14 | 5 | cv 1538 |
. . . . . . . . 9
class 𝑦 |
| 15 | 11, 14 | cfv 6542 |
. . . . . . . 8
class (𝑦‘𝑘) |
| 16 | | cmin 11475 |
. . . . . . . 8
class
− |
| 17 | 13, 15, 16 | co 7414 |
. . . . . . 7
class ((𝑥‘𝑘) − (𝑦‘𝑘)) |
| 18 | | c2 12304 |
. . . . . . 7
class
2 |
| 19 | | cexp 14085 |
. . . . . . 7
class
↑ |
| 20 | 17, 18, 19 | co 7414 |
. . . . . 6
class (((𝑥‘𝑘) − (𝑦‘𝑘))↑2) |
| 21 | 7, 20, 10 | csu 15705 |
. . . . 5
class
Σ𝑘 ∈
𝑖 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2) |
| 22 | | csqrt 15255 |
. . . . 5
class
√ |
| 23 | 21, 22 | cfv 6542 |
. . . 4
class
(√‘Σ𝑘 ∈ 𝑖 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) |
| 24 | 4, 5, 9, 9, 23 | cmpo 7416 |
. . 3
class (𝑥 ∈ (ℝ
↑m 𝑖),
𝑦 ∈ (ℝ
↑m 𝑖)
↦ (√‘Σ𝑘 ∈ 𝑖 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) |
| 25 | 2, 3, 24 | cmpt 5207 |
. 2
class (𝑖 ∈ Fin ↦ (𝑥 ∈ (ℝ
↑m 𝑖),
𝑦 ∈ (ℝ
↑m 𝑖)
↦ (√‘Σ𝑘 ∈ 𝑖 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)))) |
| 26 | 1, 25 | wceq 1539 |
1
wff
ℝn = (𝑖 ∈ Fin ↦ (𝑥 ∈ (ℝ ↑m 𝑖), 𝑦 ∈ (ℝ ↑m 𝑖) ↦
(√‘Σ𝑘
∈ 𝑖 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)))) |