Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrnval Structured version   Visualization version   GIF version

Theorem rrnval 37809
Description: The n-dimensional Euclidean space. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.)
Hypothesis
Ref Expression
rrnval.1 𝑋 = (ℝ ↑m 𝐼)
Assertion
Ref Expression
rrnval (𝐼 ∈ Fin → (ℝn𝐼) = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))))
Distinct variable groups:   𝑥,𝑘,𝑦,𝐼   𝑘,𝑋,𝑥,𝑦

Proof of Theorem rrnval
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7361 . . . 4 (𝑖 = 𝐼 → (ℝ ↑m 𝑖) = (ℝ ↑m 𝐼))
2 rrnval.1 . . . 4 𝑋 = (ℝ ↑m 𝐼)
31, 2eqtr4di 2782 . . 3 (𝑖 = 𝐼 → (ℝ ↑m 𝑖) = 𝑋)
4 sumeq1 15614 . . . 4 (𝑖 = 𝐼 → Σ𝑘𝑖 (((𝑥𝑘) − (𝑦𝑘))↑2) = Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))
54fveq2d 6830 . . 3 (𝑖 = 𝐼 → (√‘Σ𝑘𝑖 (((𝑥𝑘) − (𝑦𝑘))↑2)) = (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)))
63, 3, 5mpoeq123dv 7428 . 2 (𝑖 = 𝐼 → (𝑥 ∈ (ℝ ↑m 𝑖), 𝑦 ∈ (ℝ ↑m 𝑖) ↦ (√‘Σ𝑘𝑖 (((𝑥𝑘) − (𝑦𝑘))↑2))) = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))))
7 df-rrn 37808 . 2 n = (𝑖 ∈ Fin ↦ (𝑥 ∈ (ℝ ↑m 𝑖), 𝑦 ∈ (ℝ ↑m 𝑖) ↦ (√‘Σ𝑘𝑖 (((𝑥𝑘) − (𝑦𝑘))↑2))))
8 fvrn0 6854 . . . . 5 (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) ∈ (ran √ ∪ {∅})
98rgen2w 3049 . . . 4 𝑥𝑋𝑦𝑋 (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) ∈ (ran √ ∪ {∅})
10 eqid 2729 . . . . 5 (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))) = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)))
1110fmpo 8010 . . . 4 (∀𝑥𝑋𝑦𝑋 (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) ∈ (ran √ ∪ {∅}) ↔ (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))):(𝑋 × 𝑋)⟶(ran √ ∪ {∅}))
129, 11mpbi 230 . . 3 (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))):(𝑋 × 𝑋)⟶(ran √ ∪ {∅})
13 ovex 7386 . . . . 5 (ℝ ↑m 𝐼) ∈ V
142, 13eqeltri 2824 . . . 4 𝑋 ∈ V
1514, 14xpex 7693 . . 3 (𝑋 × 𝑋) ∈ V
16 cnex 11109 . . . . 5 ℂ ∈ V
17 sqrtf 15289 . . . . . 6 √:ℂ⟶ℂ
18 frn 6663 . . . . . 6 (√:ℂ⟶ℂ → ran √ ⊆ ℂ)
1917, 18ax-mp 5 . . . . 5 ran √ ⊆ ℂ
2016, 19ssexi 5264 . . . 4 ran √ ∈ V
21 p0ex 5326 . . . 4 {∅} ∈ V
2220, 21unex 7684 . . 3 (ran √ ∪ {∅}) ∈ V
23 fex2 7876 . . 3 (((𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))):(𝑋 × 𝑋)⟶(ran √ ∪ {∅}) ∧ (𝑋 × 𝑋) ∈ V ∧ (ran √ ∪ {∅}) ∈ V) → (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))) ∈ V)
2412, 15, 22, 23mp3an 1463 . 2 (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))) ∈ V
256, 7, 24fvmpt 6934 1 (𝐼 ∈ Fin → (ℝn𝐼) = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3044  Vcvv 3438  cun 3903  wss 3905  c0 4286  {csn 4579   × cxp 5621  ran crn 5624  wf 6482  cfv 6486  (class class class)co 7353  cmpo 7355  m cmap 8760  Fincfn 8879  cc 11026  cr 11027  cmin 11365  2c2 12201  cexp 13986  csqrt 15158  Σcsu 15611  ncrrn 37807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-sum 15612  df-rrn 37808
This theorem is referenced by:  rrnmval  37810  rrnmet  37811
  Copyright terms: Public domain W3C validator