Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrnval Structured version   Visualization version   GIF version

Theorem rrnval 37775
Description: The n-dimensional Euclidean space. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.)
Hypothesis
Ref Expression
rrnval.1 𝑋 = (ℝ ↑m 𝐼)
Assertion
Ref Expression
rrnval (𝐼 ∈ Fin → (ℝn𝐼) = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))))
Distinct variable groups:   𝑥,𝑘,𝑦,𝐼   𝑘,𝑋,𝑥,𝑦

Proof of Theorem rrnval
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7422 . . . 4 (𝑖 = 𝐼 → (ℝ ↑m 𝑖) = (ℝ ↑m 𝐼))
2 rrnval.1 . . . 4 𝑋 = (ℝ ↑m 𝐼)
31, 2eqtr4di 2787 . . 3 (𝑖 = 𝐼 → (ℝ ↑m 𝑖) = 𝑋)
4 sumeq1 15708 . . . 4 (𝑖 = 𝐼 → Σ𝑘𝑖 (((𝑥𝑘) − (𝑦𝑘))↑2) = Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))
54fveq2d 6891 . . 3 (𝑖 = 𝐼 → (√‘Σ𝑘𝑖 (((𝑥𝑘) − (𝑦𝑘))↑2)) = (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)))
63, 3, 5mpoeq123dv 7491 . 2 (𝑖 = 𝐼 → (𝑥 ∈ (ℝ ↑m 𝑖), 𝑦 ∈ (ℝ ↑m 𝑖) ↦ (√‘Σ𝑘𝑖 (((𝑥𝑘) − (𝑦𝑘))↑2))) = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))))
7 df-rrn 37774 . 2 n = (𝑖 ∈ Fin ↦ (𝑥 ∈ (ℝ ↑m 𝑖), 𝑦 ∈ (ℝ ↑m 𝑖) ↦ (√‘Σ𝑘𝑖 (((𝑥𝑘) − (𝑦𝑘))↑2))))
8 fvrn0 6917 . . . . 5 (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) ∈ (ran √ ∪ {∅})
98rgen2w 3055 . . . 4 𝑥𝑋𝑦𝑋 (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) ∈ (ran √ ∪ {∅})
10 eqid 2734 . . . . 5 (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))) = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)))
1110fmpo 8076 . . . 4 (∀𝑥𝑋𝑦𝑋 (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) ∈ (ran √ ∪ {∅}) ↔ (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))):(𝑋 × 𝑋)⟶(ran √ ∪ {∅}))
129, 11mpbi 230 . . 3 (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))):(𝑋 × 𝑋)⟶(ran √ ∪ {∅})
13 ovex 7447 . . . . 5 (ℝ ↑m 𝐼) ∈ V
142, 13eqeltri 2829 . . . 4 𝑋 ∈ V
1514, 14xpex 7756 . . 3 (𝑋 × 𝑋) ∈ V
16 cnex 11219 . . . . 5 ℂ ∈ V
17 sqrtf 15385 . . . . . 6 √:ℂ⟶ℂ
18 frn 6724 . . . . . 6 (√:ℂ⟶ℂ → ran √ ⊆ ℂ)
1917, 18ax-mp 5 . . . . 5 ran √ ⊆ ℂ
2016, 19ssexi 5304 . . . 4 ran √ ∈ V
21 p0ex 5366 . . . 4 {∅} ∈ V
2220, 21unex 7747 . . 3 (ran √ ∪ {∅}) ∈ V
23 fex2 7941 . . 3 (((𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))):(𝑋 × 𝑋)⟶(ran √ ∪ {∅}) ∧ (𝑋 × 𝑋) ∈ V ∧ (ran √ ∪ {∅}) ∈ V) → (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))) ∈ V)
2412, 15, 22, 23mp3an 1462 . 2 (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))) ∈ V
256, 7, 24fvmpt 6997 1 (𝐼 ∈ Fin → (ℝn𝐼) = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wral 3050  Vcvv 3464  cun 3931  wss 3933  c0 4315  {csn 4608   × cxp 5665  ran crn 5668  wf 6538  cfv 6542  (class class class)co 7414  cmpo 7416  m cmap 8849  Fincfn 8968  cc 11136  cr 11137  cmin 11475  2c2 12304  cexp 14085  csqrt 15255  Σcsu 15705  ncrrn 37773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-er 8728  df-en 8969  df-dom 8970  df-sdom 8971  df-sup 9465  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-div 11904  df-nn 12250  df-2 12312  df-3 12313  df-n0 12511  df-z 12598  df-uz 12862  df-rp 13018  df-seq 14026  df-exp 14086  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-sum 15706  df-rrn 37774
This theorem is referenced by:  rrnmval  37776  rrnmet  37777
  Copyright terms: Public domain W3C validator