Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrnval Structured version   Visualization version   GIF version

Theorem rrnval 37159
Description: The n-dimensional Euclidean space. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.)
Hypothesis
Ref Expression
rrnval.1 𝑋 = (ℝ ↑m 𝐼)
Assertion
Ref Expression
rrnval (𝐼 ∈ Fin β†’ (ℝnβ€˜πΌ) = (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (βˆšβ€˜Ξ£π‘˜ ∈ 𝐼 (((π‘₯β€˜π‘˜) βˆ’ (π‘¦β€˜π‘˜))↑2))))
Distinct variable groups:   π‘₯,π‘˜,𝑦,𝐼   π‘˜,𝑋,π‘₯,𝑦

Proof of Theorem rrnval
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7420 . . . 4 (𝑖 = 𝐼 β†’ (ℝ ↑m 𝑖) = (ℝ ↑m 𝐼))
2 rrnval.1 . . . 4 𝑋 = (ℝ ↑m 𝐼)
31, 2eqtr4di 2789 . . 3 (𝑖 = 𝐼 β†’ (ℝ ↑m 𝑖) = 𝑋)
4 sumeq1 15642 . . . 4 (𝑖 = 𝐼 β†’ Ξ£π‘˜ ∈ 𝑖 (((π‘₯β€˜π‘˜) βˆ’ (π‘¦β€˜π‘˜))↑2) = Ξ£π‘˜ ∈ 𝐼 (((π‘₯β€˜π‘˜) βˆ’ (π‘¦β€˜π‘˜))↑2))
54fveq2d 6895 . . 3 (𝑖 = 𝐼 β†’ (βˆšβ€˜Ξ£π‘˜ ∈ 𝑖 (((π‘₯β€˜π‘˜) βˆ’ (π‘¦β€˜π‘˜))↑2)) = (βˆšβ€˜Ξ£π‘˜ ∈ 𝐼 (((π‘₯β€˜π‘˜) βˆ’ (π‘¦β€˜π‘˜))↑2)))
63, 3, 5mpoeq123dv 7487 . 2 (𝑖 = 𝐼 β†’ (π‘₯ ∈ (ℝ ↑m 𝑖), 𝑦 ∈ (ℝ ↑m 𝑖) ↦ (βˆšβ€˜Ξ£π‘˜ ∈ 𝑖 (((π‘₯β€˜π‘˜) βˆ’ (π‘¦β€˜π‘˜))↑2))) = (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (βˆšβ€˜Ξ£π‘˜ ∈ 𝐼 (((π‘₯β€˜π‘˜) βˆ’ (π‘¦β€˜π‘˜))↑2))))
7 df-rrn 37158 . 2 ℝn = (𝑖 ∈ Fin ↦ (π‘₯ ∈ (ℝ ↑m 𝑖), 𝑦 ∈ (ℝ ↑m 𝑖) ↦ (βˆšβ€˜Ξ£π‘˜ ∈ 𝑖 (((π‘₯β€˜π‘˜) βˆ’ (π‘¦β€˜π‘˜))↑2))))
8 fvrn0 6921 . . . . 5 (βˆšβ€˜Ξ£π‘˜ ∈ 𝐼 (((π‘₯β€˜π‘˜) βˆ’ (π‘¦β€˜π‘˜))↑2)) ∈ (ran √ βˆͺ {βˆ…})
98rgen2w 3065 . . . 4 βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (βˆšβ€˜Ξ£π‘˜ ∈ 𝐼 (((π‘₯β€˜π‘˜) βˆ’ (π‘¦β€˜π‘˜))↑2)) ∈ (ran √ βˆͺ {βˆ…})
10 eqid 2731 . . . . 5 (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (βˆšβ€˜Ξ£π‘˜ ∈ 𝐼 (((π‘₯β€˜π‘˜) βˆ’ (π‘¦β€˜π‘˜))↑2))) = (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (βˆšβ€˜Ξ£π‘˜ ∈ 𝐼 (((π‘₯β€˜π‘˜) βˆ’ (π‘¦β€˜π‘˜))↑2)))
1110fmpo 8058 . . . 4 (βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (βˆšβ€˜Ξ£π‘˜ ∈ 𝐼 (((π‘₯β€˜π‘˜) βˆ’ (π‘¦β€˜π‘˜))↑2)) ∈ (ran √ βˆͺ {βˆ…}) ↔ (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (βˆšβ€˜Ξ£π‘˜ ∈ 𝐼 (((π‘₯β€˜π‘˜) βˆ’ (π‘¦β€˜π‘˜))↑2))):(𝑋 Γ— 𝑋)⟢(ran √ βˆͺ {βˆ…}))
129, 11mpbi 229 . . 3 (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (βˆšβ€˜Ξ£π‘˜ ∈ 𝐼 (((π‘₯β€˜π‘˜) βˆ’ (π‘¦β€˜π‘˜))↑2))):(𝑋 Γ— 𝑋)⟢(ran √ βˆͺ {βˆ…})
13 ovex 7445 . . . . 5 (ℝ ↑m 𝐼) ∈ V
142, 13eqeltri 2828 . . . 4 𝑋 ∈ V
1514, 14xpex 7744 . . 3 (𝑋 Γ— 𝑋) ∈ V
16 cnex 11197 . . . . 5 β„‚ ∈ V
17 sqrtf 15317 . . . . . 6 √:β„‚βŸΆβ„‚
18 frn 6724 . . . . . 6 (√:β„‚βŸΆβ„‚ β†’ ran √ βŠ† β„‚)
1917, 18ax-mp 5 . . . . 5 ran √ βŠ† β„‚
2016, 19ssexi 5322 . . . 4 ran √ ∈ V
21 p0ex 5382 . . . 4 {βˆ…} ∈ V
2220, 21unex 7737 . . 3 (ran √ βˆͺ {βˆ…}) ∈ V
23 fex2 7928 . . 3 (((π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (βˆšβ€˜Ξ£π‘˜ ∈ 𝐼 (((π‘₯β€˜π‘˜) βˆ’ (π‘¦β€˜π‘˜))↑2))):(𝑋 Γ— 𝑋)⟢(ran √ βˆͺ {βˆ…}) ∧ (𝑋 Γ— 𝑋) ∈ V ∧ (ran √ βˆͺ {βˆ…}) ∈ V) β†’ (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (βˆšβ€˜Ξ£π‘˜ ∈ 𝐼 (((π‘₯β€˜π‘˜) βˆ’ (π‘¦β€˜π‘˜))↑2))) ∈ V)
2412, 15, 22, 23mp3an 1460 . 2 (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (βˆšβ€˜Ξ£π‘˜ ∈ 𝐼 (((π‘₯β€˜π‘˜) βˆ’ (π‘¦β€˜π‘˜))↑2))) ∈ V
256, 7, 24fvmpt 6998 1 (𝐼 ∈ Fin β†’ (ℝnβ€˜πΌ) = (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (βˆšβ€˜Ξ£π‘˜ ∈ 𝐼 (((π‘₯β€˜π‘˜) βˆ’ (π‘¦β€˜π‘˜))↑2))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1540   ∈ wcel 2105  βˆ€wral 3060  Vcvv 3473   βˆͺ cun 3946   βŠ† wss 3948  βˆ…c0 4322  {csn 4628   Γ— cxp 5674  ran crn 5677  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7412   ∈ cmpo 7414   ↑m cmap 8826  Fincfn 8945  β„‚cc 11114  β„cr 11115   βˆ’ cmin 11451  2c2 12274  β†‘cexp 14034  βˆšcsqrt 15187  Ξ£csu 15639  β„ncrrn 37157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-sup 9443  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-3 12283  df-n0 12480  df-z 12566  df-uz 12830  df-rp 12982  df-seq 13974  df-exp 14035  df-cj 15053  df-re 15054  df-im 15055  df-sqrt 15189  df-abs 15190  df-sum 15640  df-rrn 37158
This theorem is referenced by:  rrnmval  37160  rrnmet  37161
  Copyright terms: Public domain W3C validator