![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrnval | Structured version Visualization version GIF version |
Description: The n-dimensional Euclidean space. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.) |
Ref | Expression |
---|---|
rrnval.1 | ⊢ 𝑋 = (ℝ ↑m 𝐼) |
Ref | Expression |
---|---|
rrnval | ⊢ (𝐼 ∈ Fin → (ℝn‘𝐼) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7443 | . . . 4 ⊢ (𝑖 = 𝐼 → (ℝ ↑m 𝑖) = (ℝ ↑m 𝐼)) | |
2 | rrnval.1 | . . . 4 ⊢ 𝑋 = (ℝ ↑m 𝐼) | |
3 | 1, 2 | eqtr4di 2794 | . . 3 ⊢ (𝑖 = 𝐼 → (ℝ ↑m 𝑖) = 𝑋) |
4 | sumeq1 15728 | . . . 4 ⊢ (𝑖 = 𝐼 → Σ𝑘 ∈ 𝑖 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2) = Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) | |
5 | 4 | fveq2d 6915 | . . 3 ⊢ (𝑖 = 𝐼 → (√‘Σ𝑘 ∈ 𝑖 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) = (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) |
6 | 3, 3, 5 | mpoeq123dv 7512 | . 2 ⊢ (𝑖 = 𝐼 → (𝑥 ∈ (ℝ ↑m 𝑖), 𝑦 ∈ (ℝ ↑m 𝑖) ↦ (√‘Σ𝑘 ∈ 𝑖 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)))) |
7 | df-rrn 37825 | . 2 ⊢ ℝn = (𝑖 ∈ Fin ↦ (𝑥 ∈ (ℝ ↑m 𝑖), 𝑦 ∈ (ℝ ↑m 𝑖) ↦ (√‘Σ𝑘 ∈ 𝑖 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)))) | |
8 | fvrn0 6941 | . . . . 5 ⊢ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) ∈ (ran √ ∪ {∅}) | |
9 | 8 | rgen2w 3065 | . . . 4 ⊢ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) ∈ (ran √ ∪ {∅}) |
10 | eqid 2736 | . . . . 5 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) | |
11 | 10 | fmpo 8098 | . . . 4 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) ∈ (ran √ ∪ {∅}) ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))):(𝑋 × 𝑋)⟶(ran √ ∪ {∅})) |
12 | 9, 11 | mpbi 230 | . . 3 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))):(𝑋 × 𝑋)⟶(ran √ ∪ {∅}) |
13 | ovex 7468 | . . . . 5 ⊢ (ℝ ↑m 𝐼) ∈ V | |
14 | 2, 13 | eqeltri 2836 | . . . 4 ⊢ 𝑋 ∈ V |
15 | 14, 14 | xpex 7776 | . . 3 ⊢ (𝑋 × 𝑋) ∈ V |
16 | cnex 11240 | . . . . 5 ⊢ ℂ ∈ V | |
17 | sqrtf 15405 | . . . . . 6 ⊢ √:ℂ⟶ℂ | |
18 | frn 6748 | . . . . . 6 ⊢ (√:ℂ⟶ℂ → ran √ ⊆ ℂ) | |
19 | 17, 18 | ax-mp 5 | . . . . 5 ⊢ ran √ ⊆ ℂ |
20 | 16, 19 | ssexi 5329 | . . . 4 ⊢ ran √ ∈ V |
21 | p0ex 5391 | . . . 4 ⊢ {∅} ∈ V | |
22 | 20, 21 | unex 7767 | . . 3 ⊢ (ran √ ∪ {∅}) ∈ V |
23 | fex2 7963 | . . 3 ⊢ (((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))):(𝑋 × 𝑋)⟶(ran √ ∪ {∅}) ∧ (𝑋 × 𝑋) ∈ V ∧ (ran √ ∪ {∅}) ∈ V) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) ∈ V) | |
24 | 12, 15, 22, 23 | mp3an 1461 | . 2 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) ∈ V |
25 | 6, 7, 24 | fvmpt 7020 | 1 ⊢ (𝐼 ∈ Fin → (ℝn‘𝐼) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2107 ∀wral 3060 Vcvv 3479 ∪ cun 3962 ⊆ wss 3964 ∅c0 4340 {csn 4632 × cxp 5688 ran crn 5691 ⟶wf 6562 ‘cfv 6566 (class class class)co 7435 ∈ cmpo 7437 ↑m cmap 8871 Fincfn 8990 ℂcc 11157 ℝcr 11158 − cmin 11496 2c2 12325 ↑cexp 14105 √csqrt 15275 Σcsu 15725 ℝncrrn 37824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 ax-pre-sup 11237 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-om 7892 df-1st 8019 df-2nd 8020 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-er 8750 df-en 8991 df-dom 8992 df-sdom 8993 df-sup 9486 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-div 11925 df-nn 12271 df-2 12333 df-3 12334 df-n0 12531 df-z 12618 df-uz 12883 df-rp 13039 df-seq 14046 df-exp 14106 df-cj 15141 df-re 15142 df-im 15143 df-sqrt 15277 df-abs 15278 df-sum 15726 df-rrn 37825 |
This theorem is referenced by: rrnmval 37827 rrnmet 37828 |
Copyright terms: Public domain | W3C validator |