| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrnval | Structured version Visualization version GIF version | ||
| Description: The n-dimensional Euclidean space. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.) |
| Ref | Expression |
|---|---|
| rrnval.1 | ⊢ 𝑋 = (ℝ ↑m 𝐼) |
| Ref | Expression |
|---|---|
| rrnval | ⊢ (𝐼 ∈ Fin → (ℝn‘𝐼) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7402 | . . . 4 ⊢ (𝑖 = 𝐼 → (ℝ ↑m 𝑖) = (ℝ ↑m 𝐼)) | |
| 2 | rrnval.1 | . . . 4 ⊢ 𝑋 = (ℝ ↑m 𝐼) | |
| 3 | 1, 2 | eqtr4di 2783 | . . 3 ⊢ (𝑖 = 𝐼 → (ℝ ↑m 𝑖) = 𝑋) |
| 4 | sumeq1 15662 | . . . 4 ⊢ (𝑖 = 𝐼 → Σ𝑘 ∈ 𝑖 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2) = Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) | |
| 5 | 4 | fveq2d 6869 | . . 3 ⊢ (𝑖 = 𝐼 → (√‘Σ𝑘 ∈ 𝑖 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) = (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) |
| 6 | 3, 3, 5 | mpoeq123dv 7471 | . 2 ⊢ (𝑖 = 𝐼 → (𝑥 ∈ (ℝ ↑m 𝑖), 𝑦 ∈ (ℝ ↑m 𝑖) ↦ (√‘Σ𝑘 ∈ 𝑖 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)))) |
| 7 | df-rrn 37817 | . 2 ⊢ ℝn = (𝑖 ∈ Fin ↦ (𝑥 ∈ (ℝ ↑m 𝑖), 𝑦 ∈ (ℝ ↑m 𝑖) ↦ (√‘Σ𝑘 ∈ 𝑖 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)))) | |
| 8 | fvrn0 6895 | . . . . 5 ⊢ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) ∈ (ran √ ∪ {∅}) | |
| 9 | 8 | rgen2w 3051 | . . . 4 ⊢ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) ∈ (ran √ ∪ {∅}) |
| 10 | eqid 2730 | . . . . 5 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) | |
| 11 | 10 | fmpo 8056 | . . . 4 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) ∈ (ran √ ∪ {∅}) ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))):(𝑋 × 𝑋)⟶(ran √ ∪ {∅})) |
| 12 | 9, 11 | mpbi 230 | . . 3 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))):(𝑋 × 𝑋)⟶(ran √ ∪ {∅}) |
| 13 | ovex 7427 | . . . . 5 ⊢ (ℝ ↑m 𝐼) ∈ V | |
| 14 | 2, 13 | eqeltri 2825 | . . . 4 ⊢ 𝑋 ∈ V |
| 15 | 14, 14 | xpex 7736 | . . 3 ⊢ (𝑋 × 𝑋) ∈ V |
| 16 | cnex 11167 | . . . . 5 ⊢ ℂ ∈ V | |
| 17 | sqrtf 15339 | . . . . . 6 ⊢ √:ℂ⟶ℂ | |
| 18 | frn 6702 | . . . . . 6 ⊢ (√:ℂ⟶ℂ → ran √ ⊆ ℂ) | |
| 19 | 17, 18 | ax-mp 5 | . . . . 5 ⊢ ran √ ⊆ ℂ |
| 20 | 16, 19 | ssexi 5285 | . . . 4 ⊢ ran √ ∈ V |
| 21 | p0ex 5347 | . . . 4 ⊢ {∅} ∈ V | |
| 22 | 20, 21 | unex 7727 | . . 3 ⊢ (ran √ ∪ {∅}) ∈ V |
| 23 | fex2 7921 | . . 3 ⊢ (((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))):(𝑋 × 𝑋)⟶(ran √ ∪ {∅}) ∧ (𝑋 × 𝑋) ∈ V ∧ (ran √ ∪ {∅}) ∈ V) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) ∈ V) | |
| 24 | 12, 15, 22, 23 | mp3an 1463 | . 2 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) ∈ V |
| 25 | 6, 7, 24 | fvmpt 6975 | 1 ⊢ (𝐼 ∈ Fin → (ℝn‘𝐼) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3046 Vcvv 3455 ∪ cun 3920 ⊆ wss 3922 ∅c0 4304 {csn 4597 × cxp 5644 ran crn 5647 ⟶wf 6515 ‘cfv 6519 (class class class)co 7394 ∈ cmpo 7396 ↑m cmap 8803 Fincfn 8922 ℂcc 11084 ℝcr 11085 − cmin 11423 2c2 12252 ↑cexp 14036 √csqrt 15209 Σcsu 15659 ℝncrrn 37816 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-pre-sup 11164 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-sup 9411 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-div 11852 df-nn 12198 df-2 12260 df-3 12261 df-n0 12459 df-z 12546 df-uz 12810 df-rp 12966 df-seq 13977 df-exp 14037 df-cj 15075 df-re 15076 df-im 15077 df-sqrt 15211 df-abs 15212 df-sum 15660 df-rrn 37817 |
| This theorem is referenced by: rrnmval 37819 rrnmet 37820 |
| Copyright terms: Public domain | W3C validator |