| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrnval | Structured version Visualization version GIF version | ||
| Description: The n-dimensional Euclidean space. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.) |
| Ref | Expression |
|---|---|
| rrnval.1 | ⊢ 𝑋 = (ℝ ↑m 𝐼) |
| Ref | Expression |
|---|---|
| rrnval | ⊢ (𝐼 ∈ Fin → (ℝn‘𝐼) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7361 | . . . 4 ⊢ (𝑖 = 𝐼 → (ℝ ↑m 𝑖) = (ℝ ↑m 𝐼)) | |
| 2 | rrnval.1 | . . . 4 ⊢ 𝑋 = (ℝ ↑m 𝐼) | |
| 3 | 1, 2 | eqtr4di 2782 | . . 3 ⊢ (𝑖 = 𝐼 → (ℝ ↑m 𝑖) = 𝑋) |
| 4 | sumeq1 15614 | . . . 4 ⊢ (𝑖 = 𝐼 → Σ𝑘 ∈ 𝑖 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2) = Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) | |
| 5 | 4 | fveq2d 6830 | . . 3 ⊢ (𝑖 = 𝐼 → (√‘Σ𝑘 ∈ 𝑖 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) = (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) |
| 6 | 3, 3, 5 | mpoeq123dv 7428 | . 2 ⊢ (𝑖 = 𝐼 → (𝑥 ∈ (ℝ ↑m 𝑖), 𝑦 ∈ (ℝ ↑m 𝑖) ↦ (√‘Σ𝑘 ∈ 𝑖 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)))) |
| 7 | df-rrn 37808 | . 2 ⊢ ℝn = (𝑖 ∈ Fin ↦ (𝑥 ∈ (ℝ ↑m 𝑖), 𝑦 ∈ (ℝ ↑m 𝑖) ↦ (√‘Σ𝑘 ∈ 𝑖 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)))) | |
| 8 | fvrn0 6854 | . . . . 5 ⊢ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) ∈ (ran √ ∪ {∅}) | |
| 9 | 8 | rgen2w 3049 | . . . 4 ⊢ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) ∈ (ran √ ∪ {∅}) |
| 10 | eqid 2729 | . . . . 5 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) | |
| 11 | 10 | fmpo 8010 | . . . 4 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) ∈ (ran √ ∪ {∅}) ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))):(𝑋 × 𝑋)⟶(ran √ ∪ {∅})) |
| 12 | 9, 11 | mpbi 230 | . . 3 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))):(𝑋 × 𝑋)⟶(ran √ ∪ {∅}) |
| 13 | ovex 7386 | . . . . 5 ⊢ (ℝ ↑m 𝐼) ∈ V | |
| 14 | 2, 13 | eqeltri 2824 | . . . 4 ⊢ 𝑋 ∈ V |
| 15 | 14, 14 | xpex 7693 | . . 3 ⊢ (𝑋 × 𝑋) ∈ V |
| 16 | cnex 11109 | . . . . 5 ⊢ ℂ ∈ V | |
| 17 | sqrtf 15289 | . . . . . 6 ⊢ √:ℂ⟶ℂ | |
| 18 | frn 6663 | . . . . . 6 ⊢ (√:ℂ⟶ℂ → ran √ ⊆ ℂ) | |
| 19 | 17, 18 | ax-mp 5 | . . . . 5 ⊢ ran √ ⊆ ℂ |
| 20 | 16, 19 | ssexi 5264 | . . . 4 ⊢ ran √ ∈ V |
| 21 | p0ex 5326 | . . . 4 ⊢ {∅} ∈ V | |
| 22 | 20, 21 | unex 7684 | . . 3 ⊢ (ran √ ∪ {∅}) ∈ V |
| 23 | fex2 7876 | . . 3 ⊢ (((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))):(𝑋 × 𝑋)⟶(ran √ ∪ {∅}) ∧ (𝑋 × 𝑋) ∈ V ∧ (ran √ ∪ {∅}) ∈ V) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) ∈ V) | |
| 24 | 12, 15, 22, 23 | mp3an 1463 | . 2 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) ∈ V |
| 25 | 6, 7, 24 | fvmpt 6934 | 1 ⊢ (𝐼 ∈ Fin → (ℝn‘𝐼) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3438 ∪ cun 3903 ⊆ wss 3905 ∅c0 4286 {csn 4579 × cxp 5621 ran crn 5624 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 ↑m cmap 8760 Fincfn 8879 ℂcc 11026 ℝcr 11027 − cmin 11365 2c2 12201 ↑cexp 13986 √csqrt 15158 Σcsu 15611 ℝncrrn 37807 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-seq 13927 df-exp 13987 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-sum 15612 df-rrn 37808 |
| This theorem is referenced by: rrnmval 37810 rrnmet 37811 |
| Copyright terms: Public domain | W3C validator |