Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrnval Structured version   Visualization version   GIF version

Theorem rrnval 37826
Description: The n-dimensional Euclidean space. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.)
Hypothesis
Ref Expression
rrnval.1 𝑋 = (ℝ ↑m 𝐼)
Assertion
Ref Expression
rrnval (𝐼 ∈ Fin → (ℝn𝐼) = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))))
Distinct variable groups:   𝑥,𝑘,𝑦,𝐼   𝑘,𝑋,𝑥,𝑦

Proof of Theorem rrnval
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7443 . . . 4 (𝑖 = 𝐼 → (ℝ ↑m 𝑖) = (ℝ ↑m 𝐼))
2 rrnval.1 . . . 4 𝑋 = (ℝ ↑m 𝐼)
31, 2eqtr4di 2794 . . 3 (𝑖 = 𝐼 → (ℝ ↑m 𝑖) = 𝑋)
4 sumeq1 15728 . . . 4 (𝑖 = 𝐼 → Σ𝑘𝑖 (((𝑥𝑘) − (𝑦𝑘))↑2) = Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))
54fveq2d 6915 . . 3 (𝑖 = 𝐼 → (√‘Σ𝑘𝑖 (((𝑥𝑘) − (𝑦𝑘))↑2)) = (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)))
63, 3, 5mpoeq123dv 7512 . 2 (𝑖 = 𝐼 → (𝑥 ∈ (ℝ ↑m 𝑖), 𝑦 ∈ (ℝ ↑m 𝑖) ↦ (√‘Σ𝑘𝑖 (((𝑥𝑘) − (𝑦𝑘))↑2))) = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))))
7 df-rrn 37825 . 2 n = (𝑖 ∈ Fin ↦ (𝑥 ∈ (ℝ ↑m 𝑖), 𝑦 ∈ (ℝ ↑m 𝑖) ↦ (√‘Σ𝑘𝑖 (((𝑥𝑘) − (𝑦𝑘))↑2))))
8 fvrn0 6941 . . . . 5 (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) ∈ (ran √ ∪ {∅})
98rgen2w 3065 . . . 4 𝑥𝑋𝑦𝑋 (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) ∈ (ran √ ∪ {∅})
10 eqid 2736 . . . . 5 (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))) = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)))
1110fmpo 8098 . . . 4 (∀𝑥𝑋𝑦𝑋 (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) ∈ (ran √ ∪ {∅}) ↔ (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))):(𝑋 × 𝑋)⟶(ran √ ∪ {∅}))
129, 11mpbi 230 . . 3 (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))):(𝑋 × 𝑋)⟶(ran √ ∪ {∅})
13 ovex 7468 . . . . 5 (ℝ ↑m 𝐼) ∈ V
142, 13eqeltri 2836 . . . 4 𝑋 ∈ V
1514, 14xpex 7776 . . 3 (𝑋 × 𝑋) ∈ V
16 cnex 11240 . . . . 5 ℂ ∈ V
17 sqrtf 15405 . . . . . 6 √:ℂ⟶ℂ
18 frn 6748 . . . . . 6 (√:ℂ⟶ℂ → ran √ ⊆ ℂ)
1917, 18ax-mp 5 . . . . 5 ran √ ⊆ ℂ
2016, 19ssexi 5329 . . . 4 ran √ ∈ V
21 p0ex 5391 . . . 4 {∅} ∈ V
2220, 21unex 7767 . . 3 (ran √ ∪ {∅}) ∈ V
23 fex2 7963 . . 3 (((𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))):(𝑋 × 𝑋)⟶(ran √ ∪ {∅}) ∧ (𝑋 × 𝑋) ∈ V ∧ (ran √ ∪ {∅}) ∈ V) → (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))) ∈ V)
2412, 15, 22, 23mp3an 1461 . 2 (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))) ∈ V
256, 7, 24fvmpt 7020 1 (𝐼 ∈ Fin → (ℝn𝐼) = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2107  wral 3060  Vcvv 3479  cun 3962  wss 3964  c0 4340  {csn 4632   × cxp 5688  ran crn 5691  wf 6562  cfv 6566  (class class class)co 7435  cmpo 7437  m cmap 8871  Fincfn 8990  cc 11157  cr 11158  cmin 11496  2c2 12325  cexp 14105  csqrt 15275  Σcsu 15725  ncrrn 37824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5303  ax-nul 5313  ax-pow 5372  ax-pr 5439  ax-un 7758  ax-cnex 11215  ax-resscn 11216  ax-1cn 11217  ax-icn 11218  ax-addcl 11219  ax-addrcl 11220  ax-mulcl 11221  ax-mulrcl 11222  ax-mulcom 11223  ax-addass 11224  ax-mulass 11225  ax-distr 11226  ax-i2m1 11227  ax-1ne0 11228  ax-1rid 11229  ax-rnegex 11230  ax-rrecex 11231  ax-cnre 11232  ax-pre-lttri 11233  ax-pre-lttrn 11234  ax-pre-ltadd 11235  ax-pre-mulgt0 11236  ax-pre-sup 11237
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-pss 3984  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5584  df-eprel 5590  df-po 5598  df-so 5599  df-fr 5642  df-we 5644  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-pred 6326  df-ord 6392  df-on 6393  df-lim 6394  df-suc 6395  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-fv 6574  df-riota 7392  df-ov 7438  df-oprab 7439  df-mpo 7440  df-om 7892  df-1st 8019  df-2nd 8020  df-frecs 8311  df-wrecs 8342  df-recs 8416  df-rdg 8455  df-er 8750  df-en 8991  df-dom 8992  df-sdom 8993  df-sup 9486  df-pnf 11301  df-mnf 11302  df-xr 11303  df-ltxr 11304  df-le 11305  df-sub 11498  df-neg 11499  df-div 11925  df-nn 12271  df-2 12333  df-3 12334  df-n0 12531  df-z 12618  df-uz 12883  df-rp 13039  df-seq 14046  df-exp 14106  df-cj 15141  df-re 15142  df-im 15143  df-sqrt 15277  df-abs 15278  df-sum 15726  df-rrn 37825
This theorem is referenced by:  rrnmval  37827  rrnmet  37828
  Copyright terms: Public domain W3C validator