| Metamath
Proof Explorer Theorem List (p. 367 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | bj-mt2bi 36601 | Version of mt2 200 where the major premise is a biconditional. Another proof is also possible via con2bii 357 and mpbi 230. The current mt2bi 363 should be relabeled, maybe to imfal. (Contributed by BJ, 5-Oct-2024.) |
| ⊢ 𝜑 & ⊢ (𝜓 ↔ ¬ 𝜑) ⇒ ⊢ ¬ 𝜓 | ||
| Theorem | bj-ntrufal 36602 | The negation of a theorem is equivalent to false. This can shorten dfnul2 4286. (Contributed by BJ, 5-Oct-2024.) |
| ⊢ 𝜑 ⇒ ⊢ (¬ 𝜑 ↔ ⊥) | ||
| Theorem | bj-fal 36603 | Shortening of fal 1555 using bj-mt2bi 36601. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Mel L. O'Cat, 11-Mar-2012.) (Proof modification is discouraged.) |
| ⊢ ¬ ⊥ | ||
A few lemmas about disjunction. The fundamental theorems in this family are the dual statements pm4.71 557 and pm4.72 951. See also biort 935 and biorf 936. | ||
| Theorem | bj-jaoi1 36604 | Shortens orfa2 38125 (58>53), pm1.2 903 (20>18), pm1.2 903 (20>18), pm2.4 906 (31>25), pm2.41 907 (31>25), pm2.42 944 (38>32), pm3.2ni 880 (43>39), pm4.44 998 (55>51). (Contributed by BJ, 30-Sep-2019.) |
| ⊢ (𝜑 → 𝜓) ⇒ ⊢ ((𝜑 ∨ 𝜓) → 𝜓) | ||
| Theorem | bj-jaoi2 36605 | Shortens consensus 1052 (110>106), elnn0z 12478 (336>329), pm1.2 903 (20>19), pm3.2ni 880 (43>39), pm4.44 998 (55>51). (Contributed by BJ, 30-Sep-2019.) |
| ⊢ (𝜑 → 𝜓) ⇒ ⊢ ((𝜓 ∨ 𝜑) → 𝜓) | ||
A few other characterizations of the biconditional. The inter-definability of logical connectives offers many ways to express a given statement. Some useful theorems in this regard are df-or 848, df-an 396, pm4.64 849, imor 853, pm4.62 856 through pm4.67 398, and, for the De Morgan laws, ianor 983 through pm4.57 992. | ||
| Theorem | bj-dfbi4 36606 | Alternate definition of the biconditional. (Contributed by BJ, 4-Oct-2019.) |
| ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∨ ¬ (𝜑 ∨ 𝜓))) | ||
| Theorem | bj-dfbi5 36607 | Alternate definition of the biconditional. (Contributed by BJ, 4-Oct-2019.) |
| ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 ∨ 𝜓) → (𝜑 ∧ 𝜓))) | ||
| Theorem | bj-dfbi6 36608 | Alternate definition of the biconditional. (Contributed by BJ, 4-Oct-2019.) |
| ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 ∨ 𝜓) ↔ (𝜑 ∧ 𝜓))) | ||
| Theorem | bj-bijust0ALT 36609 | Alternate proof of bijust0 204; shorter but using additional intermediate results. (Contributed by NM, 11-May-1999.) (Proof shortened by Josh Purinton, 29-Dec-2000.) (Revised by BJ, 19-Mar-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ¬ ((𝜑 → 𝜑) → ¬ (𝜑 → 𝜑)) | ||
| Theorem | bj-bijust00 36610 | A self-implication does not imply the negation of a self-implication. Most general theorem of which bijust 205 is an instance (bijust0 204 and bj-bijust0ALT 36609 are therefore also instances of it). (Contributed by BJ, 7-Sep-2022.) |
| ⊢ ¬ ((𝜑 → 𝜑) → ¬ (𝜓 → 𝜓)) | ||
| Theorem | bj-consensus 36611 | Version of consensus 1052 expressed using the conditional operator. (Remark: it may be better to express it as consensus 1052, using only binary connectives, and hinting at the fact that it is a Boolean algebra identity, like the absorption identities.) (Contributed by BJ, 30-Sep-2019.) |
| ⊢ ((if-(𝜑, 𝜓, 𝜒) ∨ (𝜓 ∧ 𝜒)) ↔ if-(𝜑, 𝜓, 𝜒)) | ||
| Theorem | bj-consensusALT 36612 | Alternate proof of bj-consensus 36611. (Contributed by BJ, 30-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((if-(𝜑, 𝜓, 𝜒) ∨ (𝜓 ∧ 𝜒)) ↔ if-(𝜑, 𝜓, 𝜒)) | ||
| Theorem | bj-df-ifc 36613* | Candidate definition for the conditional operator for classes. This is in line with the definition of a class as the extension of a predicate in df-clab 2710. We reprove the current df-if 4476 from it in bj-dfif 36614. (Contributed by BJ, 20-Sep-2019.) (Proof modification is discouraged.) |
| ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ if-(𝜑, 𝑥 ∈ 𝐴, 𝑥 ∈ 𝐵)} | ||
| Theorem | bj-dfif 36614* | Alternate definition of the conditional operator for classes, which used to be the main definition. (Contributed by BJ, 26-Dec-2023.) (Proof modification is discouraged.) |
| ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝜑 ∧ 𝑥 ∈ 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 ∈ 𝐵))} | ||
| Theorem | bj-ififc 36615 | A biconditional connecting the conditional operator for propositions and the conditional operator for classes. Note that there is no sethood hypothesis on 𝑋: it is implied by either side. (Contributed by BJ, 24-Sep-2019.) Generalize statement from setvar 𝑥 to class 𝑋. (Revised by BJ, 26-Dec-2023.) |
| ⊢ (𝑋 ∈ if(𝜑, 𝐴, 𝐵) ↔ if-(𝜑, 𝑋 ∈ 𝐴, 𝑋 ∈ 𝐵)) | ||
Miscellaneous theorems of propositional calculus. | ||
| Theorem | bj-imbi12 36616 | Uncurried (imported) form of imbi12 346. (Contributed by BJ, 6-May-2019.) |
| ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃))) | ||
| Theorem | bj-falor 36617 | Dual of truan 1552 (which has biconditional reversed). (Contributed by BJ, 26-Oct-2019.) (Proof modification is discouraged.) |
| ⊢ (𝜑 ↔ (⊥ ∨ 𝜑)) | ||
| Theorem | bj-falor2 36618 | Dual of truan 1552. (Contributed by BJ, 26-Oct-2019.) (Proof modification is discouraged.) |
| ⊢ ((⊥ ∨ 𝜑) ↔ 𝜑) | ||
| Theorem | bj-bibibi 36619 | A property of the biconditional. (Contributed by BJ, 26-Oct-2019.) (Proof modification is discouraged.) |
| ⊢ (𝜑 ↔ (𝜓 ↔ (𝜑 ↔ 𝜓))) | ||
| Theorem | bj-imn3ani 36620 | Duplication of bnj1224 34808. Three-fold version of imnani 400. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Revised by BJ, 22-Oct-2019.) (Proof modification is discouraged.) |
| ⊢ ¬ (𝜑 ∧ 𝜓 ∧ 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝜒) | ||
| Theorem | bj-andnotim 36621 | Two ways of expressing a certain ternary connective. Note the respective positions of the three formulas on each side of the biconditional. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (((𝜑 ∧ ¬ 𝜓) → 𝜒) ↔ ((𝜑 → 𝜓) ∨ 𝜒)) | ||
| Theorem | bj-bi3ant 36622 | This used to be in the main part. (Contributed by Wolf Lammen, 14-May-2013.) (Revised by BJ, 14-Jun-2019.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (((𝜃 → 𝜏) → 𝜑) → (((𝜏 → 𝜃) → 𝜓) → ((𝜃 ↔ 𝜏) → 𝜒))) | ||
| Theorem | bj-bisym 36623 | This used to be in the main part. (Contributed by Wolf Lammen, 14-May-2013.) (Revised by BJ, 14-Jun-2019.) |
| ⊢ (((𝜑 → 𝜓) → (𝜒 → 𝜃)) → (((𝜓 → 𝜑) → (𝜃 → 𝜒)) → ((𝜑 ↔ 𝜓) → (𝜒 ↔ 𝜃)))) | ||
| Theorem | bj-bixor 36624 | Equivalence of two ternary operations. Note the identical order and parenthesizing of the three arguments in both expressions. (Contributed by BJ, 31-Dec-2023.) |
| ⊢ ((𝜑 ↔ (𝜓 ⊻ 𝜒)) ↔ (𝜑 ⊻ (𝜓 ↔ 𝜒))) | ||
In this section, we prove some theorems related to modal logic. For modal logic, we refer to https://en.wikipedia.org/wiki/Kripke_semantics, https://en.wikipedia.org/wiki/Modal_logic and https://plato.stanford.edu/entries/logic-modal/. Monadic first-order logic (i.e., with quantification over only one variable) is bi-interpretable with modal logic, by mapping ∀𝑥 to "necessity" (generally denoted by a box) and ∃𝑥 to "possibility" (generally denoted by a diamond). Therefore, we use these quantifiers so as not to introduce new symbols. (To be strictly within modal logic, we should add disjoint variable conditions between 𝑥 and any other metavariables appearing in the statements.) For instance, ax-gen 1796 corresponds to the necessitation rule of modal logic, and ax-4 1810 corresponds to the distributivity axiom (K) of modal logic, also called the Kripke scheme. Modal logics satisfying these rule and axiom are called "normal modal logics", of which the most important modal logics are. The minimal normal modal logic is also denoted by (K). Here are a few normal modal logics with their axiomatizations (on top of (K)): (K) axiomatized by no supplementary axioms; (T) axiomatized by the axiom T; (K4) axiomatized by the axiom 4; (S4) axiomatized by the axioms T,4; (S5) axiomatized by the axioms T,5 or D,B,4; (GL) axiomatized by the axiom GL. The last one, called Gödel–Löb logic or provability logic, is important because it describes exactly the properties of provability in Peano arithmetic, as proved by Robert Solovay. See for instance https://plato.stanford.edu/entries/logic-provability/ 1810. A basic result in this logic is bj-gl4 36628. | ||
| Theorem | bj-axdd2 36625 | This implication, proved using only ax-gen 1796 and ax-4 1810 on top of propositional calculus (hence holding, up to the standard interpretation, in any normal modal logic), shows that the axiom scheme ⊢ ∃𝑥⊤ implies the axiom scheme ⊢ (∀𝑥𝜑 → ∃𝑥𝜑). These correspond to the modal axiom (D), and in predicate calculus, they assert that the universe of discourse is nonempty. For the converse, see bj-axd2d 36626. (Contributed by BJ, 16-May-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (∃𝑥𝜑 → (∀𝑥𝜓 → ∃𝑥𝜓)) | ||
| Theorem | bj-axd2d 36626 | This implication, proved using only ax-gen 1796 on top of propositional calculus (hence holding, up to the standard interpretation, in any modal logic), shows that the axiom scheme ⊢ (∀𝑥𝜑 → ∃𝑥𝜑) implies the axiom scheme ⊢ ∃𝑥⊤. These correspond to the modal axiom (D), and in predicate calculus, they assert that the universe of discourse is nonempty. For the converse, see bj-axdd2 36625. (Contributed by BJ, 16-May-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((∀𝑥⊤ → ∃𝑥⊤) → ∃𝑥⊤) | ||
| Theorem | bj-axtd 36627 | This implication, proved from propositional calculus only (hence holding, up to the standard interpretation, in any modal logic), shows that the axiom scheme ⊢ (∀𝑥𝜑 → 𝜑) (modal T) implies the axiom scheme ⊢ (∀𝑥𝜑 → ∃𝑥𝜑) (modal D). See also bj-axdd2 36625 and bj-axd2d 36626. (Contributed by BJ, 16-May-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((∀𝑥 ¬ 𝜑 → ¬ 𝜑) → ((∀𝑥𝜑 → 𝜑) → (∀𝑥𝜑 → ∃𝑥𝜑))) | ||
| Theorem | bj-gl4 36628 | In a normal modal logic, the modal axiom GL implies the modal axiom (4). Translated to first-order logic, Axiom GL reads ⊢ (∀𝑥(∀𝑥𝜑 → 𝜑) → ∀𝑥𝜑). Note that the antecedent of bj-gl4 36628 is an instance of the axiom GL, with 𝜑 replaced by (∀𝑥𝜑 ∧ 𝜑), which is a modality sometimes called the "strong necessity" of 𝜑. (Contributed by BJ, 12-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((∀𝑥(∀𝑥(∀𝑥𝜑 ∧ 𝜑) → (∀𝑥𝜑 ∧ 𝜑)) → ∀𝑥(∀𝑥𝜑 ∧ 𝜑)) → (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑)) | ||
| Theorem | bj-axc4 36629 | Over minimal calculus, the modal axiom (4) (hba1 2295) and the modal axiom (K) (ax-4 1810) together imply axc4 2322. (Contributed by BJ, 29-Nov-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) → ((∀𝑥(∀𝑥𝜑 → 𝜓) → (∀𝑥∀𝑥𝜑 → ∀𝑥𝜓)) → (∀𝑥(∀𝑥𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)))) | ||
In this section, we assume that, on top of propositional calculus, there is given a provability predicate Prv satisfying the three axioms ax-prv1 36631 and ax-prv2 36632 and ax-prv3 36633. Note the similarity with ax-gen 1796, ax-4 1810 and hba1 2295 respectively. These three properties of Prv are often called the Hilbert–Bernays–Löb derivability conditions, or the Hilbert–Bernays provability conditions. This corresponds to the modal logic (K4) (see previous section for modal logic). The interpretation of provability logic is the following: we are given a background first-order theory T, the wff Prv 𝜑 means "𝜑 is provable in T", and the turnstile ⊢ indicates provability in T. Beware that "provability logic" often means (K) augmented with the Gödel–Löb axiom GL, which we do not assume here (at least for the moment). See for instance https://plato.stanford.edu/entries/logic-provability/ 2295. Provability logic is worth studying because whenever T is a first-order theory containing Robinson arithmetic (a fragment of Peano arithmetic), one can prove (using Gödel numbering, and in the much weaker primitive recursive arithmetic) that there exists in T a provability predicate Prv satisfying the above three axioms. (We do not construct this predicate in this section; this is still a project.) The main theorems of this section are the "easy parts" of the proofs of Gödel's second incompleteness theorem (bj-babygodel 36636) and Löb's theorem (bj-babylob 36637). See the comments of these theorems for details. | ||
| Syntax | cprvb 36630 | Syntax for the provability predicate. |
| wff Prv 𝜑 | ||
| Axiom | ax-prv1 36631 | First property of three of the provability predicate. (Contributed by BJ, 3-Apr-2019.) |
| ⊢ 𝜑 ⇒ ⊢ Prv 𝜑 | ||
| Axiom | ax-prv2 36632 | Second property of three of the provability predicate. (Contributed by BJ, 3-Apr-2019.) |
| ⊢ (Prv (𝜑 → 𝜓) → (Prv 𝜑 → Prv 𝜓)) | ||
| Axiom | ax-prv3 36633 | Third property of three of the provability predicate. (Contributed by BJ, 3-Apr-2019.) |
| ⊢ (Prv 𝜑 → Prv Prv 𝜑) | ||
| Theorem | prvlem1 36634 | An elementary property of the provability predicate. (Contributed by BJ, 3-Apr-2019.) |
| ⊢ (𝜑 → 𝜓) ⇒ ⊢ (Prv 𝜑 → Prv 𝜓) | ||
| Theorem | prvlem2 36635 | An elementary property of the provability predicate. (Contributed by BJ, 3-Apr-2019.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (Prv 𝜑 → (Prv 𝜓 → Prv 𝜒)) | ||
| Theorem | bj-babygodel 36636 |
See the section header comments for the context.
The first hypothesis reads "𝜑 is true if and only if it is not provable in T" (and having this first hypothesis means that we can prove this fact in T). The wff 𝜑 is a formal version of the sentence "This sentence is not provable". The hard part of the proof of Gödel's theorem is to construct such a 𝜑, called a "Gödel–Rosser sentence", for a first-order theory T which is effectively axiomatizable and contains Robinson arithmetic, through Gödel diagonalization (this can be done in primitive recursive arithmetic). The second hypothesis means that ⊥ is not provable in T, that is, that the theory T is consistent (and having this second hypothesis means that we can prove in T that the theory T is consistent). The conclusion is the falsity, so having the conclusion means that T can prove the falsity, that is, T is inconsistent. Therefore, taking the contrapositive, this theorem expresses that if a first-order theory is consistent (and one can prove in it that some formula is true if and only if it is not provable in it), then this theory does not prove its own consistency. This proof is due to George Boolos, Gödel's Second Incompleteness Theorem Explained in Words of One Syllable, Mind, New Series, Vol. 103, No. 409 (January 1994), pp. 1--3. (Contributed by BJ, 3-Apr-2019.) |
| ⊢ (𝜑 ↔ ¬ Prv 𝜑) & ⊢ ¬ Prv ⊥ ⇒ ⊢ ⊥ | ||
| Theorem | bj-babylob 36637 |
See the section header comments for the context, as well as the comments
for bj-babygodel 36636.
Löb's theorem when the Löb sentence is given as a hypothesis (the hard part of the proof of Löb's theorem is to construct this Löb sentence; this can be done, using Gödel diagonalization, for any first-order effectively axiomatizable theory containing Robinson arithmetic). More precisely, the present theorem states that if a first-order theory proves that the provability of a given sentence entails its truth (and if one can construct in this theory a provability predicate and a Löb sentence, given here as the first hypothesis), then the theory actually proves that sentence. See for instance, Eliezer Yudkowsky, The Cartoon Guide to Löb's Theorem (available at http://yudkowsky.net/rational/lobs-theorem/ 36636). (Contributed by BJ, 20-Apr-2019.) |
| ⊢ (𝜓 ↔ (Prv 𝜓 → 𝜑)) & ⊢ (Prv 𝜑 → 𝜑) ⇒ ⊢ 𝜑 | ||
| Theorem | bj-godellob 36638 | Proof of Gödel's theorem from Löb's theorem (see comments at bj-babygodel 36636 and bj-babylob 36637 for details). (Contributed by BJ, 20-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 ↔ ¬ Prv 𝜑) & ⊢ ¬ Prv ⊥ ⇒ ⊢ ⊥ | ||
Utility lemmas or strengthenings of theorems in the main part (biconditional or closed forms, or fewer disjoint variable conditions, or disjoint variable conditions replaced with nonfreeness hypotheses...). Sorted in the same order as in the main part. | ||
| Theorem | bj-genr 36639 | Generalization rule on the right conjunct. See 19.28 2231. (Contributed by BJ, 7-Jul-2021.) |
| ⊢ (𝜑 ∧ 𝜓) ⇒ ⊢ (𝜑 ∧ ∀𝑥𝜓) | ||
| Theorem | bj-genl 36640 | Generalization rule on the left conjunct. See 19.27 2230. (Contributed by BJ, 7-Jul-2021.) |
| ⊢ (𝜑 ∧ 𝜓) ⇒ ⊢ (∀𝑥𝜑 ∧ 𝜓) | ||
| Theorem | bj-genan 36641 | Generalization rule on a conjunction. Forward inference associated with 19.26 1871. (Contributed by BJ, 7-Jul-2021.) |
| ⊢ (𝜑 ∧ 𝜓) ⇒ ⊢ (∀𝑥𝜑 ∧ ∀𝑥𝜓) | ||
| Theorem | bj-mpgs 36642 | From a closed form theorem (the major premise) with an antecedent in the "strong necessity" modality (in the language of modal logic), deduce the inference ⊢ 𝜑 ⇒ ⊢ 𝜓. Strong necessity is stronger than necessity, and equivalent to it when sp 2186 (modal T) is available. Therefore, this theorem is stronger than mpg 1798 when sp 2186 is not available. (Contributed by BJ, 1-Nov-2023.) |
| ⊢ 𝜑 & ⊢ ((𝜑 ∧ ∀𝑥𝜑) → 𝜓) ⇒ ⊢ 𝜓 | ||
| Theorem | bj-2alim 36643 | Closed form of 2alimi 1813. (Contributed by BJ, 6-May-2019.) |
| ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → (∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑦𝜓)) | ||
| Theorem | bj-2exim 36644 | Closed form of 2eximi 1837. (Contributed by BJ, 6-May-2019.) |
| ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦𝜓)) | ||
| Theorem | bj-alanim 36645 | Closed form of alanimi 1817. (Contributed by BJ, 6-May-2019.) |
| ⊢ (∀𝑥((𝜑 ∧ 𝜓) → 𝜒) → ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥𝜒)) | ||
| Theorem | bj-2albi 36646 | Closed form of 2albii 1821. (Contributed by BJ, 6-May-2019.) |
| ⊢ (∀𝑥∀𝑦(𝜑 ↔ 𝜓) → (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓)) | ||
| Theorem | bj-notalbii 36647 | Equivalence of universal quantification of negation of equivalent formulas. Shortens ab0 4330 (103>94), ballotlem2 34497 (2655>2648), bnj1143 34797 (522>519), hausdiag 23558 (2119>2104). (Contributed by BJ, 17-Jul-2021.) |
| ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑥 ¬ 𝜓) | ||
| Theorem | bj-2exbi 36648 | Closed form of 2exbii 1850. (Contributed by BJ, 6-May-2019.) |
| ⊢ (∀𝑥∀𝑦(𝜑 ↔ 𝜓) → (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓)) | ||
| Theorem | bj-3exbi 36649 | Closed form of 3exbii 1851. (Contributed by BJ, 6-May-2019.) |
| ⊢ (∀𝑥∀𝑦∀𝑧(𝜑 ↔ 𝜓) → (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑥∃𝑦∃𝑧𝜓)) | ||
| Theorem | bj-sylggt 36650 | Stronger form of sylgt 1823, closer to ax-2 7. (Contributed by BJ, 30-Jul-2025.) |
| ⊢ ((𝜑 → ∀𝑥(𝜓 → 𝜒)) → ((𝜑 → ∀𝑥𝜓) → (𝜑 → ∀𝑥𝜒))) | ||
| Theorem | bj-sylgt2 36651 | Uncurried (imported) form of sylgt 1823. (Contributed by BJ, 2-May-2019.) |
| ⊢ ((∀𝑥(𝜓 → 𝜒) ∧ (𝜑 → ∀𝑥𝜓)) → (𝜑 → ∀𝑥𝜒)) | ||
| Theorem | bj-alrimg 36652 | The general form of the *alrim* family of theorems: if 𝜑 is substituted for 𝜓, then the antecedent expresses a form of nonfreeness of 𝑥 in 𝜑, so the theorem means that under a nonfreeness condition in an antecedent, one can deduce from the universally quantified implication an implication where the consequent is universally quantified. Dual of bj-exlimg 36656. (Contributed by BJ, 9-Dec-2023.) |
| ⊢ ((𝜑 → ∀𝑥𝜓) → (∀𝑥(𝜓 → 𝜒) → (𝜑 → ∀𝑥𝜒))) | ||
| Theorem | bj-alrimd 36653 | A slightly more general alrimd 2218. A common usage will have 𝜑 substituted for 𝜓 and 𝜒 substituted for 𝜃, giving a form closer to alrimd 2218. (Contributed by BJ, 25-Dec-2023.) |
| ⊢ (𝜑 → ∀𝑥𝜓) & ⊢ (𝜑 → (𝜒 → ∀𝑥𝜃)) & ⊢ (𝜓 → (𝜃 → 𝜏)) ⇒ ⊢ (𝜑 → (𝜒 → ∀𝑥𝜏)) | ||
| Theorem | bj-sylget 36654 | Dual statement of sylgt 1823. Closed form of bj-sylge 36657. (Contributed by BJ, 2-May-2019.) |
| ⊢ (∀𝑥(𝜒 → 𝜑) → ((∃𝑥𝜑 → 𝜓) → (∃𝑥𝜒 → 𝜓))) | ||
| Theorem | bj-sylget2 36655 | Uncurried (imported) form of bj-sylget 36654. (Contributed by BJ, 2-May-2019.) |
| ⊢ ((∀𝑥(𝜑 → 𝜓) ∧ (∃𝑥𝜓 → 𝜒)) → (∃𝑥𝜑 → 𝜒)) | ||
| Theorem | bj-exlimg 36656 | The general form of the *exlim* family of theorems: if 𝜑 is substituted for 𝜓, then the antecedent expresses a form of nonfreeness of 𝑥 in 𝜑, so the theorem means that under a nonfreeness condition in a consequent, one can deduce from the universally quantified implication an implication where the antecedent is existentially quantified. Dual of bj-alrimg 36652. (Contributed by BJ, 9-Dec-2023.) |
| ⊢ ((∃𝑥𝜑 → 𝜓) → (∀𝑥(𝜒 → 𝜑) → (∃𝑥𝜒 → 𝜓))) | ||
| Theorem | bj-sylge 36657 | Dual statement of sylg 1824 (the final "e" in the label stands for "existential (version of sylg 1824)". Variant of exlimih 2291. (Contributed by BJ, 25-Dec-2023.) |
| ⊢ (∃𝑥𝜑 → 𝜓) & ⊢ (𝜒 → 𝜑) ⇒ ⊢ (∃𝑥𝜒 → 𝜓) | ||
| Theorem | bj-exlimd 36658 | A slightly more general exlimd 2221. A common usage will have 𝜑 substituted for 𝜓 and 𝜃 substituted for 𝜏, giving a form closer to exlimd 2221. (Contributed by BJ, 25-Dec-2023.) |
| ⊢ (𝜑 → ∀𝑥𝜓) & ⊢ (𝜑 → (∃𝑥𝜃 → 𝜏)) & ⊢ (𝜓 → (𝜒 → 𝜃)) ⇒ ⊢ (𝜑 → (∃𝑥𝜒 → 𝜏)) | ||
| Theorem | bj-nfimexal 36659 | A weak from of nonfreeness in either an antecedent or a consequent implies that a universally quantified implication is equivalent to the associated implication where the antecedent is existentially quantified and the consequent is universally quantified. The forward implication always holds (this is 19.38 1840) and the converse implication is the join of instances of bj-alrimg 36652 and bj-exlimg 36656 (see 19.38a 1841 and 19.38b 1842). TODO: prove a version where the antecedents use the nonfreeness quantifier. (Contributed by BJ, 9-Dec-2023.) |
| ⊢ (((∃𝑥𝜑 → ∀𝑥𝜑) ∨ (∃𝑥𝜓 → ∀𝑥𝜓)) → ((∃𝑥𝜑 → ∀𝑥𝜓) ↔ ∀𝑥(𝜑 → 𝜓))) | ||
| Theorem | bj-alexim 36660 | Closed form of aleximi 1833. Note: this proof is shorter, so aleximi 1833 could be deduced from it (exim 1835 would have to be proved first, see bj-eximALT 36674 but its proof is shorter (currently almost a subproof of aleximi 1833)). (Contributed by BJ, 8-Nov-2021.) |
| ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))) | ||
| Theorem | bj-nexdh 36661 | Closed form of nexdh 1866 (actually, its general instance). (Contributed by BJ, 6-May-2019.) |
| ⊢ (∀𝑥(𝜑 → ¬ 𝜓) → ((𝜒 → ∀𝑥𝜑) → (𝜒 → ¬ ∃𝑥𝜓))) | ||
| Theorem | bj-nexdh2 36662 | Uncurried (imported) form of bj-nexdh 36661. (Contributed by BJ, 6-May-2019.) |
| ⊢ ((∀𝑥(𝜑 → ¬ 𝜓) ∧ (𝜒 → ∀𝑥𝜑)) → (𝜒 → ¬ ∃𝑥𝜓)) | ||
| Theorem | bj-hbxfrbi 36663 | Closed form of hbxfrbi 1826. Note: it is less important than nfbiit 1852. The antecedent is in the "strong necessity" modality of modal logic (see also bj-nnftht 36774) in order not to require sp 2186 (modal T). See bj-hbyfrbi 36664 for its version with existential quantifiers. (Contributed by BJ, 6-May-2019.) |
| ⊢ (((𝜑 ↔ 𝜓) ∧ ∀𝑥(𝜑 ↔ 𝜓)) → ((𝜑 → ∀𝑥𝜑) ↔ (𝜓 → ∀𝑥𝜓))) | ||
| Theorem | bj-hbyfrbi 36664 | Version of bj-hbxfrbi 36663 with existential quantifiers. (Contributed by BJ, 23-Aug-2023.) |
| ⊢ (((𝜑 ↔ 𝜓) ∧ ∀𝑥(𝜑 ↔ 𝜓)) → ((∃𝑥𝜑 → 𝜑) ↔ (∃𝑥𝜓 → 𝜓))) | ||
| Theorem | bj-exalim 36665 |
Distribute quantifiers over a nested implication.
This and the following theorems are the general instances of already proved theorems. They could be moved to the main part, before ax-5 1911. I propose to move to the main part: bj-exalim 36665, bj-exalimi 36666, bj-exalims 36667, bj-exalimsi 36668, bj-ax12i 36670, bj-ax12wlem 36677, bj-ax12w 36710. A new label is needed for bj-ax12i 36670 and label suggestions are welcome for the others. I also propose to change ¬ ∀𝑥¬ to ∃𝑥 in speimfw 1964 and spimfw 1966 (other spim* theorems use ∃𝑥 and very few theorems in set.mm use ¬ ∀𝑥¬). (Contributed by BJ, 8-Nov-2021.) |
| ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → (∃𝑥𝜑 → (∀𝑥𝜓 → ∃𝑥𝜒))) | ||
| Theorem | bj-exalimi 36666 | An inference for distributing quantifiers over a nested implication. The canonical derivation from its closed form bj-exalim 36665 (using mpg 1798) has fewer essential steps, but more steps in total (yielding a longer compressed proof). (Almost) the general statement that speimfw 1964 proves. (Contributed by BJ, 29-Sep-2019.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (∃𝑥𝜑 → (∀𝑥𝜓 → ∃𝑥𝜒)) | ||
| Theorem | bj-exalims 36667 | Distributing quantifiers over a nested implication. (Almost) the general statement that spimfw 1966 proves. (Contributed by BJ, 29-Sep-2019.) |
| ⊢ (∃𝑥𝜑 → (¬ 𝜒 → ∀𝑥 ¬ 𝜒)) ⇒ ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → (∃𝑥𝜑 → (∀𝑥𝜓 → 𝜒))) | ||
| Theorem | bj-exalimsi 36668 | An inference for distributing quantifiers over a nested implication. (Almost) the general statement that spimfw 1966 proves. (Contributed by BJ, 29-Sep-2019.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (∃𝑥𝜑 → (¬ 𝜒 → ∀𝑥 ¬ 𝜒)) ⇒ ⊢ (∃𝑥𝜑 → (∀𝑥𝜓 → 𝜒)) | ||
| Theorem | bj-ax12ig 36669 | A lemma used to prove a weak form of the axiom of substitution. A generalization of bj-ax12i 36670. (Contributed by BJ, 19-Dec-2020.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) ⇒ ⊢ (𝜑 → (𝜓 → ∀𝑥(𝜑 → 𝜓))) | ||
| Theorem | bj-ax12i 36670 | A weakening of bj-ax12ig 36669 that is sufficient to prove a weak form of the axiom of substitution ax-12 2180. The general statement of which ax12i 1967 is an instance. (Contributed by BJ, 29-Sep-2019.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜒 → ∀𝑥𝜒) ⇒ ⊢ (𝜑 → (𝜓 → ∀𝑥(𝜑 → 𝜓))) | ||
| Theorem | bj-nfimt 36671 | Closed form of nfim 1897 and curried (exported) form of nfimt 1896. (Contributed by BJ, 20-Oct-2021.) |
| ⊢ (Ⅎ𝑥𝜑 → (Ⅎ𝑥𝜓 → Ⅎ𝑥(𝜑 → 𝜓))) | ||
| Theorem | bj-cbvalimt 36672 | A lemma in closed form used to prove bj-cbval 36682 in a weak axiomatization. (Contributed by BJ, 12-Mar-2023.) Do not use 19.35 1878 since only the direction of the biconditional used here holds in intuitionistic logic. (Proof modification is discouraged.) |
| ⊢ (∀𝑦∃𝑥𝜒 → (∀𝑦∀𝑥(𝜒 → (𝜑 → 𝜓)) → ((∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) → (∀𝑦(∃𝑥𝜓 → 𝜓) → (∀𝑥𝜑 → ∀𝑦𝜓))))) | ||
| Theorem | bj-cbveximt 36673 | A lemma in closed form used to prove bj-cbvex 36683 in a weak axiomatization. (Contributed by BJ, 12-Mar-2023.) Do not use 19.35 1878 since only the direction of the biconditional used here holds in intuitionistic logic. (Proof modification is discouraged.) |
| ⊢ (∀𝑥∃𝑦𝜒 → (∀𝑥∀𝑦(𝜒 → (𝜑 → 𝜓)) → (∀𝑥(𝜑 → ∀𝑦𝜑) → ((∃𝑥∃𝑦𝜓 → ∃𝑦𝜓) → (∃𝑥𝜑 → ∃𝑦𝜓))))) | ||
| Theorem | bj-eximALT 36674 | Alternate proof of exim 1835 directly from alim 1811 by using df-ex 1781 (using duality of ∀ and ∃. (Contributed by BJ, 9-Dec-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) | ||
| Theorem | bj-aleximiALT 36675 | Alternate proof of aleximi 1833 from exim 1835, which is sometimes used as an axiom in instuitionistic modal logic. (Contributed by BJ, 9-Dec-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) | ||
| Theorem | bj-eximcom 36676 | A commuted form of exim 1835 which is sometimes posited as an axiom in instuitionistic modal logic. (Contributed by BJ, 9-Dec-2023.) |
| ⊢ (∃𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓)) | ||
| Theorem | bj-ax12wlem 36677* | A lemma used to prove a weak version of the axiom of substitution ax-12 2180. (Temporary comment: The general statement that ax12wlem 2135 proves.) (Contributed by BJ, 20-Mar-2020.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (𝜓 → ∀𝑥(𝜑 → 𝜓))) | ||
| Theorem | bj-cbvalim 36678* | A lemma used to prove bj-cbval 36682 in a weak axiomatization. (Contributed by BJ, 12-Mar-2023.) (Proof modification is discouraged.) |
| ⊢ (∀𝑦∃𝑥𝜒 → (∀𝑦∀𝑥(𝜒 → (𝜑 → 𝜓)) → (∀𝑥𝜑 → ∀𝑦𝜓))) | ||
| Theorem | bj-cbvexim 36679* | A lemma used to prove bj-cbvex 36683 in a weak axiomatization. (Contributed by BJ, 12-Mar-2023.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥∃𝑦𝜒 → (∀𝑥∀𝑦(𝜒 → (𝜑 → 𝜓)) → (∃𝑥𝜑 → ∃𝑦𝜓))) | ||
| Theorem | bj-cbvalimi 36680* | An equality-free general instance of one half of a precise form of bj-cbval 36682. (Contributed by BJ, 12-Mar-2023.) (Proof modification is discouraged.) |
| ⊢ (𝜒 → (𝜑 → 𝜓)) & ⊢ ∀𝑦∃𝑥𝜒 ⇒ ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) | ||
| Theorem | bj-cbveximi 36681* | An equality-free general instance of one half of a precise form of bj-cbvex 36683. (Contributed by BJ, 12-Mar-2023.) (Proof modification is discouraged.) |
| ⊢ (𝜒 → (𝜑 → 𝜓)) & ⊢ ∀𝑥∃𝑦𝜒 ⇒ ⊢ (∃𝑥𝜑 → ∃𝑦𝜓) | ||
| Theorem | bj-cbval 36682* | Changing a bound variable (universal quantification case) in a weak axiomatization, assuming that all variables denote (which is valid in inclusive free logic) and that equality is symmetric. (Contributed by BJ, 12-Mar-2023.) (Proof modification is discouraged.) |
| ⊢ ∀𝑦∃𝑥 𝑥 = 𝑦 & ⊢ ∀𝑥∃𝑦 𝑦 = 𝑥 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) ⇒ ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) | ||
| Theorem | bj-cbvex 36683* | Changing a bound variable (existential quantification case) in a weak axiomatization, assuming that all variables denote (which is valid in inclusive free logic) and that equality is symmetric. (Contributed by BJ, 12-Mar-2023.) (Proof modification is discouraged.) |
| ⊢ ∀𝑦∃𝑥 𝑥 = 𝑦 & ⊢ ∀𝑥∃𝑦 𝑦 = 𝑥 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) ⇒ ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) | ||
| Syntax | wmoo 36684 | Syntax for BJ's version of the uniqueness quantifier. |
| wff ∃**𝑥𝜑 | ||
| Definition | df-bj-mo 36685* | Definition of the uniqueness quantifier which is correct on the empty domain. Instead of the fresh variable 𝑧, one could save a dummy variable by using 𝑥 or 𝑦 at the cost of having nested quantifiers on the same variable. (Contributed by BJ, 12-Mar-2023.) |
| ⊢ (∃**𝑥𝜑 ↔ ∀𝑧∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | ||
| Theorem | bj-ssbeq 36686* | Substitution in an equality, disjoint variables case. Uses only ax-1 6 through ax-6 1968. It might be shorter to prove the result about composition of two substitutions and prove bj-ssbeq 36686 first with a DV condition on 𝑥, 𝑡, and then in the general case. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.) |
| ⊢ ([𝑡 / 𝑥]𝑦 = 𝑧 ↔ 𝑦 = 𝑧) | ||
| Theorem | bj-ssblem1 36687* | A lemma for the definiens of df-sb 2068. An instance of sp 2186 proved without it. Note: it has a common subproof with sbjust 2066. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.) |
| ⊢ (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) → (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
| Theorem | bj-ssblem2 36688* | An instance of ax-11 2160 proved without it. The converse may not be provable without ax-11 2160 (since using alcomimw 2044 would require a DV on 𝜑, 𝑥, which defeats the purpose). (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥∀𝑦(𝑦 = 𝑡 → (𝑥 = 𝑦 → 𝜑)) → ∀𝑦∀𝑥(𝑦 = 𝑡 → (𝑥 = 𝑦 → 𝜑))) | ||
| Theorem | bj-ax12v 36689* | A weaker form of ax-12 2180 and ax12v 2181, namely the generalization over 𝑥 of the latter. In this statement, all occurrences of 𝑥 are bound. (Contributed by BJ, 26-Dec-2020.) (Proof modification is discouraged.) |
| ⊢ ∀𝑥(𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜑))) | ||
| Theorem | bj-ax12 36690* | Remove a DV condition from bj-ax12v 36689 (using core axioms only). (Contributed by BJ, 26-Dec-2020.) (Proof modification is discouraged.) |
| ⊢ ∀𝑥(𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜑))) | ||
| Theorem | bj-ax12ssb 36691* | Axiom bj-ax12 36690 expressed using substitution. (Contributed by BJ, 26-Dec-2020.) (Proof modification is discouraged.) |
| ⊢ [𝑡 / 𝑥](𝜑 → [𝑡 / 𝑥]𝜑) | ||
| Theorem | bj-19.41al 36692 | Special case of 19.41 2238 proved from core axioms, ax-10 2144 (modal5), and hba1 2295 (modal4). (Contributed by BJ, 29-Dec-2020.) (Proof modification is discouraged.) |
| ⊢ (∃𝑥(𝜑 ∧ ∀𝑥𝜓) ↔ (∃𝑥𝜑 ∧ ∀𝑥𝜓)) | ||
| Theorem | bj-equsexval 36693* | Special case of equsexv 2271 proved from core axioms, ax-10 2144 (modal5), and hba1 2295 (modal4). (Contributed by BJ, 29-Dec-2020.) (Proof modification is discouraged.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ ∀𝑥𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥𝜓) | ||
| Theorem | bj-subst 36694* | Proof of sbalex 2245 from core axioms, ax-10 2144 (modal5), and bj-ax12 36690. (Contributed by BJ, 29-Dec-2020.) (Proof modification is discouraged.) |
| ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | ||
| Theorem | bj-ssbid2 36695 | A special case of sbequ2 2252. (Contributed by BJ, 22-Dec-2020.) |
| ⊢ ([𝑥 / 𝑥]𝜑 → 𝜑) | ||
| Theorem | bj-ssbid2ALT 36696 | Alternate proof of bj-ssbid2 36695, not using sbequ2 2252. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ([𝑥 / 𝑥]𝜑 → 𝜑) | ||
| Theorem | bj-ssbid1 36697 | A special case of sbequ1 2251. (Contributed by BJ, 22-Dec-2020.) |
| ⊢ (𝜑 → [𝑥 / 𝑥]𝜑) | ||
| Theorem | bj-ssbid1ALT 36698 | Alternate proof of bj-ssbid1 36697, not using sbequ1 2251. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → [𝑥 / 𝑥]𝜑) | ||
| Theorem | bj-ax6elem1 36699* | Lemma for bj-ax6e 36701. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.) |
| ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) | ||
| Theorem | bj-ax6elem2 36700* | Lemma for bj-ax6e 36701. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥 𝑦 = 𝑧 → ∃𝑥 𝑥 = 𝑦) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |