HomeHome Metamath Proof Explorer
Theorem List (p. 367 of 498)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30854)
  Hilbert Space Explorer  Hilbert Space Explorer
(30855-32377)
  Users' Mathboxes  Users' Mathboxes
(32378-49798)
 

Theorem List for Metamath Proof Explorer - 36601-36700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
21.19.4  First-order logic

Utility lemmas or strengthenings of theorems in the main part (biconditional or closed forms, or fewer disjoint variable conditions, or disjoint variable conditions replaced with nonfreeness hypotheses...). Sorted in the same order as in the main part.

 
21.19.4.1  Adding ax-gen
 
Theorembj-genr 36601 Generalization rule on the right conjunct. See 19.28 2229. (Contributed by BJ, 7-Jul-2021.)
(𝜑𝜓)       (𝜑 ∧ ∀𝑥𝜓)
 
Theorembj-genl 36602 Generalization rule on the left conjunct. See 19.27 2228. (Contributed by BJ, 7-Jul-2021.)
(𝜑𝜓)       (∀𝑥𝜑𝜓)
 
Theorembj-genan 36603 Generalization rule on a conjunction. Forward inference associated with 19.26 1870. (Contributed by BJ, 7-Jul-2021.)
(𝜑𝜓)       (∀𝑥𝜑 ∧ ∀𝑥𝜓)
 
Theorembj-mpgs 36604 From a closed form theorem (the major premise) with an antecedent in the "strong necessity" modality (in the language of modal logic), deduce the inference 𝜑𝜓. Strong necessity is stronger than necessity, and equivalent to it when sp 2184 (modal T) is available. Therefore, this theorem is stronger than mpg 1797 when sp 2184 is not available. (Contributed by BJ, 1-Nov-2023.)
𝜑    &   ((𝜑 ∧ ∀𝑥𝜑) → 𝜓)       𝜓
 
21.19.4.2  Adding ax-4
 
Theorembj-2alim 36605 Closed form of 2alimi 1812. (Contributed by BJ, 6-May-2019.)
(∀𝑥𝑦(𝜑𝜓) → (∀𝑥𝑦𝜑 → ∀𝑥𝑦𝜓))
 
Theorembj-2exim 36606 Closed form of 2eximi 1836. (Contributed by BJ, 6-May-2019.)
(∀𝑥𝑦(𝜑𝜓) → (∃𝑥𝑦𝜑 → ∃𝑥𝑦𝜓))
 
Theorembj-alanim 36607 Closed form of alanimi 1816. (Contributed by BJ, 6-May-2019.)
(∀𝑥((𝜑𝜓) → 𝜒) → ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥𝜒))
 
Theorembj-2albi 36608 Closed form of 2albii 1820. (Contributed by BJ, 6-May-2019.)
(∀𝑥𝑦(𝜑𝜓) → (∀𝑥𝑦𝜑 ↔ ∀𝑥𝑦𝜓))
 
Theorembj-notalbii 36609 Equivalence of universal quantification of negation of equivalent formulas. Shortens ab0 4346 (103>94), ballotlem2 34487 (2655>2648), bnj1143 34787 (522>519), hausdiag 23539 (2119>2104). (Contributed by BJ, 17-Jul-2021.)
(𝜑𝜓)       (∀𝑥 ¬ 𝜑 ↔ ∀𝑥 ¬ 𝜓)
 
Theorembj-2exbi 36610 Closed form of 2exbii 1849. (Contributed by BJ, 6-May-2019.)
(∀𝑥𝑦(𝜑𝜓) → (∃𝑥𝑦𝜑 ↔ ∃𝑥𝑦𝜓))
 
Theorembj-3exbi 36611 Closed form of 3exbii 1850. (Contributed by BJ, 6-May-2019.)
(∀𝑥𝑦𝑧(𝜑𝜓) → (∃𝑥𝑦𝑧𝜑 ↔ ∃𝑥𝑦𝑧𝜓))
 
Theorembj-sylggt 36612 Stronger form of sylgt 1822, closer to ax-2 7. (Contributed by BJ, 30-Jul-2025.)
((𝜑 → ∀𝑥(𝜓𝜒)) → ((𝜑 → ∀𝑥𝜓) → (𝜑 → ∀𝑥𝜒)))
 
Theorembj-sylgt2 36613 Uncurried (imported) form of sylgt 1822. (Contributed by BJ, 2-May-2019.)
((∀𝑥(𝜓𝜒) ∧ (𝜑 → ∀𝑥𝜓)) → (𝜑 → ∀𝑥𝜒))
 
Theorembj-alrimg 36614 The general form of the *alrim* family of theorems: if 𝜑 is substituted for 𝜓, then the antecedent expresses a form of nonfreeness of 𝑥 in 𝜑, so the theorem means that under a nonfreeness condition in an antecedent, one can deduce from the universally quantified implication an implication where the consequent is universally quantified. Dual of bj-exlimg 36618. (Contributed by BJ, 9-Dec-2023.)
((𝜑 → ∀𝑥𝜓) → (∀𝑥(𝜓𝜒) → (𝜑 → ∀𝑥𝜒)))
 
Theorembj-alrimd 36615 A slightly more general alrimd 2216. A common usage will have 𝜑 substituted for 𝜓 and 𝜒 substituted for 𝜃, giving a form closer to alrimd 2216. (Contributed by BJ, 25-Dec-2023.)
(𝜑 → ∀𝑥𝜓)    &   (𝜑 → (𝜒 → ∀𝑥𝜃))    &   (𝜓 → (𝜃𝜏))       (𝜑 → (𝜒 → ∀𝑥𝜏))
 
Theorembj-sylget 36616 Dual statement of sylgt 1822. Closed form of bj-sylge 36619. (Contributed by BJ, 2-May-2019.)
(∀𝑥(𝜒𝜑) → ((∃𝑥𝜑𝜓) → (∃𝑥𝜒𝜓)))
 
Theorembj-sylget2 36617 Uncurried (imported) form of bj-sylget 36616. (Contributed by BJ, 2-May-2019.)
((∀𝑥(𝜑𝜓) ∧ (∃𝑥𝜓𝜒)) → (∃𝑥𝜑𝜒))
 
Theorembj-exlimg 36618 The general form of the *exlim* family of theorems: if 𝜑 is substituted for 𝜓, then the antecedent expresses a form of nonfreeness of 𝑥 in 𝜑, so the theorem means that under a nonfreeness condition in a consequent, one can deduce from the universally quantified implication an implication where the antecedent is existentially quantified. Dual of bj-alrimg 36614. (Contributed by BJ, 9-Dec-2023.)
((∃𝑥𝜑𝜓) → (∀𝑥(𝜒𝜑) → (∃𝑥𝜒𝜓)))
 
Theorembj-sylge 36619 Dual statement of sylg 1823 (the final "e" in the label stands for "existential (version of sylg 1823)". Variant of exlimih 2289. (Contributed by BJ, 25-Dec-2023.)
(∃𝑥𝜑𝜓)    &   (𝜒𝜑)       (∃𝑥𝜒𝜓)
 
Theorembj-exlimd 36620 A slightly more general exlimd 2219. A common usage will have 𝜑 substituted for 𝜓 and 𝜃 substituted for 𝜏, giving a form closer to exlimd 2219. (Contributed by BJ, 25-Dec-2023.)
(𝜑 → ∀𝑥𝜓)    &   (𝜑 → (∃𝑥𝜃𝜏))    &   (𝜓 → (𝜒𝜃))       (𝜑 → (∃𝑥𝜒𝜏))
 
Theorembj-nfimexal 36621 A weak from of nonfreeness in either an antecedent or a consequent implies that a universally quantified implication is equivalent to the associated implication where the antecedent is existentially quantified and the consequent is universally quantified. The forward implication always holds (this is 19.38 1839) and the converse implication is the join of instances of bj-alrimg 36614 and bj-exlimg 36618 (see 19.38a 1840 and 19.38b 1841). TODO: prove a version where the antecedents use the nonfreeness quantifier. (Contributed by BJ, 9-Dec-2023.)
(((∃𝑥𝜑 → ∀𝑥𝜑) ∨ (∃𝑥𝜓 → ∀𝑥𝜓)) → ((∃𝑥𝜑 → ∀𝑥𝜓) ↔ ∀𝑥(𝜑𝜓)))
 
Theorembj-alexim 36622 Closed form of aleximi 1832. Note: this proof is shorter, so aleximi 1832 could be deduced from it (exim 1834 would have to be proved first, see bj-eximALT 36636 but its proof is shorter (currently almost a subproof of aleximi 1832)). (Contributed by BJ, 8-Nov-2021.)
(∀𝑥(𝜑 → (𝜓𝜒)) → (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)))
 
Theorembj-nexdh 36623 Closed form of nexdh 1865 (actually, its general instance). (Contributed by BJ, 6-May-2019.)
(∀𝑥(𝜑 → ¬ 𝜓) → ((𝜒 → ∀𝑥𝜑) → (𝜒 → ¬ ∃𝑥𝜓)))
 
Theorembj-nexdh2 36624 Uncurried (imported) form of bj-nexdh 36623. (Contributed by BJ, 6-May-2019.)
((∀𝑥(𝜑 → ¬ 𝜓) ∧ (𝜒 → ∀𝑥𝜑)) → (𝜒 → ¬ ∃𝑥𝜓))
 
Theorembj-hbxfrbi 36625 Closed form of hbxfrbi 1825. Note: it is less important than nfbiit 1851. The antecedent is in the "strong necessity" modality of modal logic (see also bj-nnftht 36736) in order not to require sp 2184 (modal T). See bj-hbyfrbi 36626 for its version with existential quantifiers. (Contributed by BJ, 6-May-2019.)
(((𝜑𝜓) ∧ ∀𝑥(𝜑𝜓)) → ((𝜑 → ∀𝑥𝜑) ↔ (𝜓 → ∀𝑥𝜓)))
 
Theorembj-hbyfrbi 36626 Version of bj-hbxfrbi 36625 with existential quantifiers. (Contributed by BJ, 23-Aug-2023.)
(((𝜑𝜓) ∧ ∀𝑥(𝜑𝜓)) → ((∃𝑥𝜑𝜑) ↔ (∃𝑥𝜓𝜓)))
 
Theorembj-exalim 36627 Distribute quantifiers over a nested implication.

This and the following theorems are the general instances of already proved theorems. They could be moved to the main part, before ax-5 1910. I propose to move to the main part: bj-exalim 36627, bj-exalimi 36628, bj-exalims 36629, bj-exalimsi 36630, bj-ax12i 36632, bj-ax12wlem 36639, bj-ax12w 36672. A new label is needed for bj-ax12i 36632 and label suggestions are welcome for the others. I also propose to change ¬ ∀𝑥¬ to 𝑥 in speimfw 1963 and spimfw 1965 (other spim* theorems use 𝑥 and very few theorems in set.mm use ¬ ∀𝑥¬). (Contributed by BJ, 8-Nov-2021.)

(∀𝑥(𝜑 → (𝜓𝜒)) → (∃𝑥𝜑 → (∀𝑥𝜓 → ∃𝑥𝜒)))
 
Theorembj-exalimi 36628 An inference for distributing quantifiers over a nested implication. The canonical derivation from its closed form bj-exalim 36627 (using mpg 1797) has fewer essential steps, but more steps in total (yielding a longer compressed proof). (Almost) the general statement that speimfw 1963 proves. (Contributed by BJ, 29-Sep-2019.)
(𝜑 → (𝜓𝜒))       (∃𝑥𝜑 → (∀𝑥𝜓 → ∃𝑥𝜒))
 
Theorembj-exalims 36629 Distributing quantifiers over a nested implication. (Almost) the general statement that spimfw 1965 proves. (Contributed by BJ, 29-Sep-2019.)
(∃𝑥𝜑 → (¬ 𝜒 → ∀𝑥 ¬ 𝜒))       (∀𝑥(𝜑 → (𝜓𝜒)) → (∃𝑥𝜑 → (∀𝑥𝜓𝜒)))
 
Theorembj-exalimsi 36630 An inference for distributing quantifiers over a nested implication. (Almost) the general statement that spimfw 1965 proves. (Contributed by BJ, 29-Sep-2019.)
(𝜑 → (𝜓𝜒))    &   (∃𝑥𝜑 → (¬ 𝜒 → ∀𝑥 ¬ 𝜒))       (∃𝑥𝜑 → (∀𝑥𝜓𝜒))
 
Theorembj-ax12ig 36631 A lemma used to prove a weak form of the axiom of substitution. A generalization of bj-ax12i 36632. (Contributed by BJ, 19-Dec-2020.)
(𝜑 → (𝜓𝜒))    &   (𝜑 → (𝜒 → ∀𝑥𝜒))       (𝜑 → (𝜓 → ∀𝑥(𝜑𝜓)))
 
Theorembj-ax12i 36632 A weakening of bj-ax12ig 36631 that is sufficient to prove a weak form of the axiom of substitution ax-12 2178. The general statement of which ax12i 1966 is an instance. (Contributed by BJ, 29-Sep-2019.)
(𝜑 → (𝜓𝜒))    &   (𝜒 → ∀𝑥𝜒)       (𝜑 → (𝜓 → ∀𝑥(𝜑𝜓)))
 
Theorembj-nfimt 36633 Closed form of nfim 1896 and curried (exported) form of nfimt 1895. (Contributed by BJ, 20-Oct-2021.)
(Ⅎ𝑥𝜑 → (Ⅎ𝑥𝜓 → Ⅎ𝑥(𝜑𝜓)))
 
Theorembj-cbvalimt 36634 A lemma in closed form used to prove bj-cbval 36644 in a weak axiomatization. (Contributed by BJ, 12-Mar-2023.) Do not use 19.35 1877 since only the direction of the biconditional used here holds in intuitionistic logic. (Proof modification is discouraged.)
(∀𝑦𝑥𝜒 → (∀𝑦𝑥(𝜒 → (𝜑𝜓)) → ((∀𝑥𝜑 → ∀𝑦𝑥𝜑) → (∀𝑦(∃𝑥𝜓𝜓) → (∀𝑥𝜑 → ∀𝑦𝜓)))))
 
Theorembj-cbveximt 36635 A lemma in closed form used to prove bj-cbvex 36645 in a weak axiomatization. (Contributed by BJ, 12-Mar-2023.) Do not use 19.35 1877 since only the direction of the biconditional used here holds in intuitionistic logic. (Proof modification is discouraged.)
(∀𝑥𝑦𝜒 → (∀𝑥𝑦(𝜒 → (𝜑𝜓)) → (∀𝑥(𝜑 → ∀𝑦𝜑) → ((∃𝑥𝑦𝜓 → ∃𝑦𝜓) → (∃𝑥𝜑 → ∃𝑦𝜓)))))
 
Theorembj-eximALT 36636 Alternate proof of exim 1834 directly from alim 1810 by using df-ex 1780 (using duality of and . (Contributed by BJ, 9-Dec-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))
 
Theorembj-aleximiALT 36637 Alternate proof of aleximi 1832 from exim 1834, which is sometimes used as an axiom in instuitionistic modal logic. (Contributed by BJ, 9-Dec-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓𝜒))       (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))
 
Theorembj-eximcom 36638 A commuted form of exim 1834 which is sometimes posited as an axiom in instuitionistic modal logic. (Contributed by BJ, 9-Dec-2023.)
(∃𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓))
 
21.19.4.3  Adding ax-5
 
Theorembj-ax12wlem 36639* A lemma used to prove a weak version of the axiom of substitution ax-12 2178. (Temporary comment: The general statement that ax12wlem 2133 proves.) (Contributed by BJ, 20-Mar-2020.)
(𝜑 → (𝜓𝜒))       (𝜑 → (𝜓 → ∀𝑥(𝜑𝜓)))
 
Theorembj-cbvalim 36640* A lemma used to prove bj-cbval 36644 in a weak axiomatization. (Contributed by BJ, 12-Mar-2023.) (Proof modification is discouraged.)
(∀𝑦𝑥𝜒 → (∀𝑦𝑥(𝜒 → (𝜑𝜓)) → (∀𝑥𝜑 → ∀𝑦𝜓)))
 
Theorembj-cbvexim 36641* A lemma used to prove bj-cbvex 36645 in a weak axiomatization. (Contributed by BJ, 12-Mar-2023.) (Proof modification is discouraged.)
(∀𝑥𝑦𝜒 → (∀𝑥𝑦(𝜒 → (𝜑𝜓)) → (∃𝑥𝜑 → ∃𝑦𝜓)))
 
Theorembj-cbvalimi 36642* An equality-free general instance of one half of a precise form of bj-cbval 36644. (Contributed by BJ, 12-Mar-2023.) (Proof modification is discouraged.)
(𝜒 → (𝜑𝜓))    &   𝑦𝑥𝜒       (∀𝑥𝜑 → ∀𝑦𝜓)
 
Theorembj-cbveximi 36643* An equality-free general instance of one half of a precise form of bj-cbvex 36645. (Contributed by BJ, 12-Mar-2023.) (Proof modification is discouraged.)
(𝜒 → (𝜑𝜓))    &   𝑥𝑦𝜒       (∃𝑥𝜑 → ∃𝑦𝜓)
 
Theorembj-cbval 36644* Changing a bound variable (universal quantification case) in a weak axiomatization, assuming that all variables denote (which is valid in inclusive free logic) and that equality is symmetric. (Contributed by BJ, 12-Mar-2023.) (Proof modification is discouraged.)
𝑦𝑥 𝑥 = 𝑦    &   𝑥𝑦 𝑦 = 𝑥    &   (𝑥 = 𝑦 → (𝜑𝜓))    &   (𝑦 = 𝑥𝑥 = 𝑦)       (∀𝑥𝜑 ↔ ∀𝑦𝜓)
 
Theorembj-cbvex 36645* Changing a bound variable (existential quantification case) in a weak axiomatization, assuming that all variables denote (which is valid in inclusive free logic) and that equality is symmetric. (Contributed by BJ, 12-Mar-2023.) (Proof modification is discouraged.)
𝑦𝑥 𝑥 = 𝑦    &   𝑥𝑦 𝑦 = 𝑥    &   (𝑥 = 𝑦 → (𝜑𝜓))    &   (𝑦 = 𝑥𝑥 = 𝑦)       (∃𝑥𝜑 ↔ ∃𝑦𝜓)
 
Syntaxwmoo 36646 Syntax for BJ's version of the uniqueness quantifier.
wff ∃**𝑥𝜑
 
Definitiondf-bj-mo 36647* Definition of the uniqueness quantifier which is correct on the empty domain. Instead of the fresh variable 𝑧, one could save a dummy variable by using 𝑥 or 𝑦 at the cost of having nested quantifiers on the same variable. (Contributed by BJ, 12-Mar-2023.)
(∃**𝑥𝜑 ↔ ∀𝑧𝑦𝑥(𝜑𝑥 = 𝑦))
 
21.19.4.4  Equality and substitution
 
Theorembj-ssbeq 36648* Substitution in an equality, disjoint variables case. Uses only ax-1 6 through ax-6 1967. It might be shorter to prove the result about composition of two substitutions and prove bj-ssbeq 36648 first with a DV condition on 𝑥, 𝑡, and then in the general case. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.)
([𝑡 / 𝑥]𝑦 = 𝑧𝑦 = 𝑧)
 
Theorembj-ssblem1 36649* A lemma for the definiens of df-sb 2066. An instance of sp 2184 proved without it. Note: it has a common subproof with sbjust 2064. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.)
(∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)) → (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
 
Theorembj-ssblem2 36650* An instance of ax-11 2158 proved without it. The converse may not be provable without ax-11 2158 (since using alcomimw 2043 would require a DV on 𝜑, 𝑥, which defeats the purpose). (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.)
(∀𝑥𝑦(𝑦 = 𝑡 → (𝑥 = 𝑦𝜑)) → ∀𝑦𝑥(𝑦 = 𝑡 → (𝑥 = 𝑦𝜑)))
 
Theorembj-ax12v 36651* A weaker form of ax-12 2178 and ax12v 2179, namely the generalization over 𝑥 of the latter. In this statement, all occurrences of 𝑥 are bound. (Contributed by BJ, 26-Dec-2020.) (Proof modification is discouraged.)
𝑥(𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡𝜑)))
 
Theorembj-ax12 36652* Remove a DV condition from bj-ax12v 36651 (using core axioms only). (Contributed by BJ, 26-Dec-2020.) (Proof modification is discouraged.)
𝑥(𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡𝜑)))
 
Theorembj-ax12ssb 36653* Axiom bj-ax12 36652 expressed using substitution. (Contributed by BJ, 26-Dec-2020.) (Proof modification is discouraged.)
[𝑡 / 𝑥](𝜑 → [𝑡 / 𝑥]𝜑)
 
Theorembj-19.41al 36654 Special case of 19.41 2236 proved from core axioms, ax-10 2142 (modal5), and hba1 2293 (modal4). (Contributed by BJ, 29-Dec-2020.) (Proof modification is discouraged.)
(∃𝑥(𝜑 ∧ ∀𝑥𝜓) ↔ (∃𝑥𝜑 ∧ ∀𝑥𝜓))
 
Theorembj-equsexval 36655* Special case of equsexv 2269 proved from core axioms, ax-10 2142 (modal5), and hba1 2293 (modal4). (Contributed by BJ, 29-Dec-2020.) (Proof modification is discouraged.)
(𝑥 = 𝑦 → (𝜑 ↔ ∀𝑥𝜓))       (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥𝜓)
 
Theorembj-subst 36656* Proof of sbalex 2243 from core axioms, ax-10 2142 (modal5), and bj-ax12 36652. (Contributed by BJ, 29-Dec-2020.) (Proof modification is discouraged.)
(∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
 
Theorembj-ssbid2 36657 A special case of sbequ2 2250. (Contributed by BJ, 22-Dec-2020.)
([𝑥 / 𝑥]𝜑𝜑)
 
Theorembj-ssbid2ALT 36658 Alternate proof of bj-ssbid2 36657, not using sbequ2 2250. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
([𝑥 / 𝑥]𝜑𝜑)
 
Theorembj-ssbid1 36659 A special case of sbequ1 2249. (Contributed by BJ, 22-Dec-2020.)
(𝜑 → [𝑥 / 𝑥]𝜑)
 
Theorembj-ssbid1ALT 36660 Alternate proof of bj-ssbid1 36659, not using sbequ1 2249. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → [𝑥 / 𝑥]𝜑)
 
Theorembj-ax6elem1 36661* Lemma for bj-ax6e 36663. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.)
(¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧))
 
Theorembj-ax6elem2 36662* Lemma for bj-ax6e 36663. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.)
(∀𝑥 𝑦 = 𝑧 → ∃𝑥 𝑥 = 𝑦)
 
Theorembj-ax6e 36663 Proof of ax6e 2382 (hence ax6 2383) from Tarski's system, ax-c9 38890, ax-c16 38892. Remark: ax-6 1967 is used only via its principal (unbundled) instance ax6v 1968. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑥 𝑥 = 𝑦
 
21.19.4.5  Adding ax-6
 
Theorembj-spimvwt 36664* Closed form of spimvw 1986. See also spimt 2385. (Contributed by BJ, 8-Nov-2021.)
(∀𝑥(𝑥 = 𝑦 → (𝜑𝜓)) → (∀𝑥𝜑𝜓))
 
Theorembj-spnfw 36665 Theorem close to a closed form of spnfw 1979. (Contributed by BJ, 12-May-2019.)
((∃𝑥𝜑𝜓) → (∀𝑥𝜑𝜓))
 
Theorembj-cbvexiw 36666* Change bound variable. This is to cbvexvw 2037 what cbvaliw 2006 is to cbvalvw 2036. TODO: move after cbvalivw 2007. (Contributed by BJ, 17-Mar-2020.)
(∃𝑥𝑦𝜓 → ∃𝑦𝜓)    &   (𝜑 → ∀𝑦𝜑)    &   (𝑦 = 𝑥 → (𝜑𝜓))       (∃𝑥𝜑 → ∃𝑦𝜓)
 
Theorembj-cbvexivw 36667* Change bound variable. This is to cbvexvw 2037 what cbvalivw 2007 is to cbvalvw 2036. TODO: move after cbvalivw 2007. (Contributed by BJ, 17-Mar-2020.)
(𝑦 = 𝑥 → (𝜑𝜓))       (∃𝑥𝜑 → ∃𝑦𝜓)
 
Theorembj-modald 36668 A short form of the axiom D of modal logic. (Contributed by BJ, 4-Apr-2021.)
(∀𝑥 ¬ 𝜑 → ¬ ∀𝑥𝜑)
 
Theorembj-denot 36669* A weakening of ax-6 1967 and ax6v 1968. (Contributed by BJ, 4-Apr-2021.) (New usage is discouraged.)
(𝑥 = 𝑥 → ¬ ∀𝑦 ¬ 𝑦 = 𝑥)
 
Theorembj-eqs 36670* A lemma for substitutions, proved from Tarski's FOL. The version without DV (𝑥, 𝑦) is true but requires ax-13 2371. The disjoint variable condition DV (𝑥, 𝜑) is necessary for both directions: consider substituting 𝑥 = 𝑧 for 𝜑. (Contributed by BJ, 25-May-2021.)
(𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
 
21.19.4.6  Adding ax-7
 
Theorembj-cbvexw 36671* Change bound variable. This is to cbvexvw 2037 what cbvalw 2035 is to cbvalvw 2036. (Contributed by BJ, 17-Mar-2020.)
(∃𝑥𝑦𝜓 → ∃𝑦𝜓)    &   (𝜑 → ∀𝑦𝜑)    &   (∃𝑦𝑥𝜑 → ∃𝑥𝜑)    &   (𝜓 → ∀𝑥𝜓)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥𝜑 ↔ ∃𝑦𝜓)
 
Theorembj-ax12w 36672* The general statement that ax12w 2134 proves. (Contributed by BJ, 20-Mar-2020.)
(𝜑 → (𝜓𝜒))    &   (𝑦 = 𝑧 → (𝜓𝜃))       (𝜑 → (∀𝑦𝜓 → ∀𝑥(𝜑𝜓)))
 
21.19.4.7  Membership predicate, ax-8 and ax-9
 
Theorembj-ax89 36673 A theorem which could be used as sole axiom for the non-logical predicate instead of ax-8 2111 and ax-9 2119. Indeed, it is implied over propositional calculus by the conjunction of ax-8 2111 and ax-9 2119, as proved here. In the other direction, one can prove ax-8 2111 (respectively ax-9 2119) from bj-ax89 36673 by using mpan2 691 (respectively mpan 690) and equid 2012. TODO: move to main part. (Contributed by BJ, 3-Oct-2019.)
((𝑥 = 𝑦𝑧 = 𝑡) → (𝑥𝑧𝑦𝑡))
 
Theorembj-cleljusti 36674* One direction of cleljust 2118, requiring only ax-1 6-- ax-5 1910 and ax8v1 2113. (Contributed by BJ, 31-Dec-2020.) (Proof modification is discouraged.)
(∃𝑧(𝑧 = 𝑥𝑧𝑦) → 𝑥𝑦)
 
21.19.4.8  Adding ax-11
 
Theorembj-alcomexcom 36675 Commutation of two existential quantifiers on a formula is equivalent to commutation of two universal quantifiers over the same variables on the negation of that formula. Can be placed in the ax-4 1809 section, soon after 2nexaln 1830, and used to prove excom 2163. (Contributed by BJ, 29-Nov-2020.) (Proof modification is discouraged.)
((∀𝑥𝑦 ¬ 𝜑 → ∀𝑦𝑥 ¬ 𝜑) ↔ (∃𝑦𝑥𝜑 → ∃𝑥𝑦𝜑))
 
Theorembj-hbalt 36676 Closed form of hbal 2168. When in main part, prove hbal 2168 and hbald 2169 from it. (Contributed by BJ, 2-May-2019.)
(∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑥𝑦𝜑))
 
21.19.4.9  Adding ax-12
 
Theoremaxc11n11 36677 Proof of axc11n 2425 from { ax-1 6-- ax-7 2008, axc11 2429 } . Almost identical to axc11nfromc11 38926. (Contributed by NM, 6-Jul-2021.) (Proof modification is discouraged.)
(∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
 
Theoremaxc11n11r 36678 Proof of axc11n 2425 from { ax-1 6-- ax-7 2008, axc9 2381, axc11r 2367 } (note that axc16 2262 is provable from { ax-1 6-- ax-7 2008, axc11r 2367 }).

Note that axc11n 2425 proves (over minimal calculus) that axc11 2429 and axc11r 2367 are equivalent. Therefore, axc11n11 36677 and axc11n11r 36678 prove that one can use one or the other as an axiom, provided one assumes the axioms listed above (axc11 2429 appears slightly stronger since axc11n11r 36678 requires axc9 2381 while axc11n11 36677 does not).

(Contributed by BJ, 6-Jul-2021.) (Proof modification is discouraged.)

(∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
 
Theorembj-axc16g16 36679* Proof of axc16g 2261 from { ax-1 6-- ax-7 2008, axc16 2262 }. (Contributed by BJ, 6-Jul-2021.) (Proof modification is discouraged.)
(∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑))
 
Theorembj-ax12v3 36680* A weak version of ax-12 2178 which is stronger than ax12v 2179. Note that if one assumes reflexivity of equality 𝑥 = 𝑥 (equid 2012), then bj-ax12v3 36680 implies ax-5 1910 over modal logic K (substitute 𝑥 for 𝑦). See also bj-ax12v3ALT 36681. (Contributed by BJ, 6-Jul-2021.) (Proof modification is discouraged.)
(𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
 
Theorembj-ax12v3ALT 36681* Alternate proof of bj-ax12v3 36680. Uses axc11r 2367 and axc15 2421 instead of ax-12 2178. (Contributed by BJ, 6-Jul-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
 
Theorembj-sb 36682* A weak variant of sbid2 2507 not requiring ax-13 2371 nor ax-10 2142. On top of Tarski's FOL, one implication requires only ax12v 2179, and the other requires only sp 2184. (Contributed by BJ, 25-May-2021.)
(𝜑 ↔ ∀𝑦(𝑦 = 𝑥 → ∀𝑥(𝑥 = 𝑦𝜑)))
 
Theorembj-modalbe 36683 The predicate-calculus version of the axiom (B) of modal logic. See also modal-b 2318. (Contributed by BJ, 20-Oct-2019.)
(𝜑 → ∀𝑥𝑥𝜑)
 
Theorembj-spst 36684 Closed form of sps 2186. Once in main part, prove sps 2186 and spsd 2188 from it. (Contributed by BJ, 20-Oct-2019.)
((𝜑𝜓) → (∀𝑥𝜑𝜓))
 
Theorembj-19.21bit 36685 Closed form of 19.21bi 2190. (Contributed by BJ, 20-Oct-2019.)
((𝜑 → ∀𝑥𝜓) → (𝜑𝜓))
 
Theorembj-19.23bit 36686 Closed form of 19.23bi 2192. (Contributed by BJ, 20-Oct-2019.)
((∃𝑥𝜑𝜓) → (𝜑𝜓))
 
Theorembj-nexrt 36687 Closed form of nexr 2193. Contrapositive of 19.8a 2182. (Contributed by BJ, 20-Oct-2019.)
(¬ ∃𝑥𝜑 → ¬ 𝜑)
 
Theorembj-alrim 36688 Closed form of alrimi 2214. (Contributed by BJ, 2-May-2019.)
(Ⅎ𝑥𝜑 → (∀𝑥(𝜑𝜓) → (𝜑 → ∀𝑥𝜓)))
 
Theorembj-alrim2 36689 Uncurried (imported) form of bj-alrim 36688. (Contributed by BJ, 2-May-2019.)
((Ⅎ𝑥𝜑 ∧ ∀𝑥(𝜑𝜓)) → (𝜑 → ∀𝑥𝜓))
 
Theorembj-nfdt0 36690 A theorem close to a closed form of nf5d 2284 and nf5dh 2148. (Contributed by BJ, 2-May-2019.)
(∀𝑥(𝜑 → (𝜓 → ∀𝑥𝜓)) → (∀𝑥𝜑 → Ⅎ𝑥𝜓))
 
Theorembj-nfdt 36691 Closed form of nf5d 2284 and nf5dh 2148. (Contributed by BJ, 2-May-2019.)
(∀𝑥(𝜑 → (𝜓 → ∀𝑥𝜓)) → ((𝜑 → ∀𝑥𝜑) → (𝜑 → Ⅎ𝑥𝜓)))
 
Theorembj-nexdt 36692 Closed form of nexd 2222. (Contributed by BJ, 20-Oct-2019.)
(Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → ¬ 𝜓) → (𝜑 → ¬ ∃𝑥𝜓)))
 
Theorembj-nexdvt 36693* Closed form of nexdv 1936. (Contributed by BJ, 20-Oct-2019.)
(∀𝑥(𝜑 → ¬ 𝜓) → (𝜑 → ¬ ∃𝑥𝜓))
 
Theorembj-alexbiex 36694 Adding a second quantifier over the same variable is a transparent operation, (∀∃ case). (Contributed by BJ, 20-Oct-2019.)
(∀𝑥𝑥𝜑 ↔ ∃𝑥𝜑)
 
Theorembj-exexbiex 36695 Adding a second quantifier over the same variable is a transparent operation, (∃∃ case). (Contributed by BJ, 20-Oct-2019.)
(∃𝑥𝑥𝜑 ↔ ∃𝑥𝜑)
 
Theorembj-alalbial 36696 Adding a second quantifier over the same variable is a transparent operation, (∀∀ case). (Contributed by BJ, 20-Oct-2019.)
(∀𝑥𝑥𝜑 ↔ ∀𝑥𝜑)
 
Theorembj-exalbial 36697 Adding a second quantifier over the same variable is a transparent operation, (∃∀ case). (Contributed by BJ, 20-Oct-2019.)
(∃𝑥𝑥𝜑 ↔ ∀𝑥𝜑)
 
Theorembj-19.9htbi 36698 Strengthening 19.9ht 2319 by replacing its consequent with a biconditional (19.9t 2205 does have a biconditional consequent). This propagates. (Contributed by BJ, 20-Oct-2019.)
(∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑥𝜑𝜑))
 
Theorembj-hbntbi 36699 Strengthening hbnt 2294 by replacing its consequent with a biconditional. See also hbntg 35800 and hbntal 44550. (Contributed by BJ, 20-Oct-2019.) Proved from bj-19.9htbi 36698. (Proof modification is discouraged.)
(∀𝑥(𝜑 → ∀𝑥𝜑) → (¬ 𝜑 ↔ ∀𝑥 ¬ 𝜑))
 
Theorembj-biexal1 36700 A general FOL biconditional that generalizes 19.9ht 2319 among others. For this and the following theorems, see also 19.35 1877, 19.21 2208, 19.23 2212. When 𝜑 is substituted for 𝜓, both sides express a form of nonfreeness. (Contributed by BJ, 20-Oct-2019.)
(∀𝑥(𝜑 → ∀𝑥𝜓) ↔ (∃𝑥𝜑 → ∀𝑥𝜓))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48100 482 48101-48200 483 48201-48300 484 48301-48400 485 48401-48500 486 48501-48600 487 48601-48700 488 48701-48800 489 48801-48900 490 48901-49000 491 49001-49100 492 49101-49200 493 49201-49300 494 49301-49400 495 49401-49500 496 49501-49600 497 49601-49700 498 49701-49798
  Copyright terms: Public domain < Previous  Next >