Home | Metamath
Proof Explorer Theorem List (p. 367 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | symrelcoss 36601 | The class of cosets by 𝑅 is symmetric. (Contributed by Peter Mazsa, 20-Dec-2021.) |
⊢ SymRel ≀ 𝑅 | ||
Theorem | idsymrel 36602 | The identity relation is symmetric. (Contributed by AV, 19-Jun-2022.) |
⊢ SymRel I | ||
Theorem | epnsymrel 36603 | The membership (epsilon) relation is not symmetric. (Contributed by AV, 18-Jun-2022.) |
⊢ ¬ SymRel E | ||
Theorem | symrefref2 36604 | Symmetry is a sufficient condition for the equivalence of two versions of the reflexive relation, see also symrefref3 36605. (Contributed by Peter Mazsa, 19-Jul-2018.) |
⊢ (◡𝑅 ⊆ 𝑅 → (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ↔ ( I ↾ dom 𝑅) ⊆ 𝑅)) | ||
Theorem | symrefref3 36605* | Symmetry is a sufficient condition for the equivalence of two versions of the reflexive relation, see also symrefref2 36604. (Contributed by Peter Mazsa, 23-Aug-2021.) (Proof modification is discouraged.) |
⊢ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) → (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 → 𝑥𝑅𝑦) ↔ ∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥)) | ||
Theorem | refsymrels2 36606 | Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels2 36628) can use the restricted version for their reflexive part (see below), not just the ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 version of dfrefrels2 36558, cf. the comment of dfrefrels2 36558. (Contributed by Peter Mazsa, 20-Jul-2019.) |
⊢ ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} | ||
Theorem | refsymrels3 36607* | Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels3 36629) can use the ∀𝑥 ∈ dom 𝑟𝑥𝑟𝑥 version for their reflexive part, not just the ∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥 = 𝑦 → 𝑥𝑟𝑦) version of dfrefrels3 36559, cf. the comment of dfrefrel3 36561. (Contributed by Peter Mazsa, 22-Jul-2019.) (Proof modification is discouraged.) |
⊢ ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥))} | ||
Theorem | refsymrel2 36608 | A relation which is reflexive and symmetric (like an equivalence relation) can use the restricted version for their reflexive part (see below), not just the ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 version of dfrefrel2 36560, cf. the comment of dfrefrels2 36558. (Contributed by Peter Mazsa, 23-Aug-2021.) |
⊢ (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ Rel 𝑅)) | ||
Theorem | refsymrel3 36609* | A relation which is reflexive and symmetric (like an equivalence relation) can use the ∀𝑥 ∈ dom 𝑅𝑥𝑅𝑥 version for its reflexive part, not just the ∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 → 𝑥𝑅𝑦) version of dfrefrel3 36561, cf. the comment of dfrefrel3 36561. (Contributed by Peter Mazsa, 23-Aug-2021.) |
⊢ (( RefRel 𝑅 ∧ SymRel 𝑅) ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) ∧ Rel 𝑅)) | ||
Theorem | elrefsymrels2 36610 | Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels2 36628) can use the restricted version for their reflexive part (see below), not just the ( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 version of dfrefrels2 36558, cf. the comment of dfrefrels2 36558. (Contributed by Peter Mazsa, 22-Jul-2019.) |
⊢ (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅) ∧ 𝑅 ∈ Rels )) | ||
Theorem | elrefsymrels3 36611* | Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels3 36629) can use the ∀𝑥 ∈ dom 𝑅𝑥𝑅𝑥 version for their reflexive part, not just the ∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 → 𝑥𝑅𝑦) version of dfrefrels3 36559, cf. the comment of dfrefrel3 36561. (Contributed by Peter Mazsa, 22-Jul-2019.) (Proof modification is discouraged.) |
⊢ (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) ∧ 𝑅 ∈ Rels )) | ||
Theorem | elrefsymrelsrel 36612 | For sets, being an element of the class of reflexive and symmetric relations is equivalent to satisfying the reflexive and symmetric relation predicates. (Contributed by Peter Mazsa, 23-Aug-2021.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ( RefRel 𝑅 ∧ SymRel 𝑅))) | ||
Definition | df-trs 36613 |
Define the class of all transitive sets (versus the transitive class
defined in df-tr 5188). It is used only by df-trrels 36614.
Note the similarity of the definitions of df-refs 36555, df-syms 36583 and df-trs 36613. (Contributed by Peter Mazsa, 17-Jul-2021.) |
⊢ Trs = {𝑥 ∣ ((𝑥 ∩ (dom 𝑥 × ran 𝑥)) ∘ (𝑥 ∩ (dom 𝑥 × ran 𝑥))) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))} | ||
Definition | df-trrels 36614 |
Define the class of transitive relations. For sets, being an element of
the class of transitive relations is equivalent to satisfying the
transitive relation predicate, see eltrrelsrel 36622. Alternate definitions
are dftrrels2 36616 and dftrrels3 36617.
This definition is similar to the definitions of the classes of reflexive (df-refrels 36556) and symmetric (df-symrels 36584) relations. (Contributed by Peter Mazsa, 7-Jul-2019.) |
⊢ TrRels = ( Trs ∩ Rels ) | ||
Definition | df-trrel 36615 | Define the transitive relation predicate. (Read: 𝑅 is a transitive relation.) For sets, being an element of the class of transitive relations (df-trrels 36614) is equivalent to satisfying the transitive relation predicate, see eltrrelsrel 36622. Alternate definitions are dftrrel2 36618 and dftrrel3 36619. (Contributed by Peter Mazsa, 17-Jul-2021.) |
⊢ ( TrRel 𝑅 ↔ (((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∩ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) | ||
Theorem | dftrrels2 36616 |
Alternate definition of the class of transitive relations.
I'd prefer to define the class of transitive relations by using the definition of composition by [Suppes] p. 63. df-coSUP (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥𝐴𝑢 ∧ 𝑢𝐵𝑦)} as opposed to the present definition of composition df-co 5589 (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥𝐵𝑢 ∧ 𝑢𝐴𝑦)} because the Suppes definition keeps the order of 𝐴, 𝐵, 𝐶, 𝑅, 𝑆, 𝑇 by default in trsinxpSUP (((𝑅 ∩ (𝐴 × 𝐵)) ∘ (𝑆 ∩ (𝐵 × 𝐶))) ⊆ (𝑇 ∩ (𝐴 × 𝐶)) ↔ ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵∀ 𝑧 ∈ 𝐶((𝑥𝑅𝑦 ∧ 𝑦𝑆𝑧) → 𝑥𝑇𝑧)) while the present definition of composition disarranges them: trsinxp (((𝑆 ∩ (𝐵 × 𝐶)) ∘ (𝑅 ∩ (𝐴 × 𝐵))) ⊆ (𝑇 ∩ (𝐴 × 𝐶 )) ↔ ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵∀𝑧 ∈ 𝐶((𝑥𝑅𝑦 ∧ 𝑦𝑆𝑧) → 𝑥𝑇𝑧) ). This is not mission critical to me, the implication of the Suppes definition is just more aesthetic, at least in the above case. If we swap to the Suppes definition of class composition, I would define the present class of all transitive sets as df-trsSUP and I would consider to switch the definition of the class of cosets by 𝑅 from the present df-coss 36464 to a df-cossSUP. But perhaps there is a mathematical reason to keep the present definition of composition. (Contributed by Peter Mazsa, 21-Jul-2021.) |
⊢ TrRels = {𝑟 ∈ Rels ∣ (𝑟 ∘ 𝑟) ⊆ 𝑟} | ||
Theorem | dftrrels3 36617* | Alternate definition of the class of transitive relations. (Contributed by Peter Mazsa, 22-Jul-2021.) |
⊢ TrRels = {𝑟 ∈ Rels ∣ ∀𝑥∀𝑦∀𝑧((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)} | ||
Theorem | dftrrel2 36618 | Alternate definition of the transitive relation predicate. (Contributed by Peter Mazsa, 22-Aug-2021.) |
⊢ ( TrRel 𝑅 ↔ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ Rel 𝑅)) | ||
Theorem | dftrrel3 36619* | Alternate definition of the transitive relation predicate. (Contributed by Peter Mazsa, 22-Aug-2021.) |
⊢ ( TrRel 𝑅 ↔ (∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ Rel 𝑅)) | ||
Theorem | eltrrels2 36620 | Element of the class of transitive relations. (Contributed by Peter Mazsa, 22-Aug-2021.) |
⊢ (𝑅 ∈ TrRels ↔ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ 𝑅 ∈ Rels )) | ||
Theorem | eltrrels3 36621* | Element of the class of transitive relations. (Contributed by Peter Mazsa, 22-Aug-2021.) |
⊢ (𝑅 ∈ TrRels ↔ (∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ 𝑅 ∈ Rels )) | ||
Theorem | eltrrelsrel 36622 | For sets, being an element of the class of transitive relations is equivalent to satisfying the transitive relation predicate. (Contributed by Peter Mazsa, 22-Aug-2021.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ TrRels ↔ TrRel 𝑅)) | ||
Theorem | trreleq 36623 | Equality theorem for the transitive relation predicate. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 23-Sep-2021.) |
⊢ (𝑅 = 𝑆 → ( TrRel 𝑅 ↔ TrRel 𝑆)) | ||
Definition | df-eqvrels 36624 | Define the class of equivalence relations. For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel 36634. Alternate definitions are dfeqvrels2 36628 and dfeqvrels3 36629. (Contributed by Peter Mazsa, 7-Nov-2018.) |
⊢ EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels ) | ||
Definition | df-eqvrel 36625 | Define the equivalence relation predicate. (Read: 𝑅 is an equivalence relation.) For sets, being an element of the class of equivalence relations (df-eqvrels 36624) is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel 36634. Alternate definitions are dfeqvrel2 36630 and dfeqvrel3 36631. (Contributed by Peter Mazsa, 17-Apr-2019.) |
⊢ ( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅)) | ||
Definition | df-coeleqvrels 36626 | Define the the coelement equivalence relations class, the class of sets with coelement equivalence relations. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 36636. Alternate definition is dfcoeleqvrels 36661. (Contributed by Peter Mazsa, 28-Nov-2022.) |
⊢ CoElEqvRels = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } | ||
Definition | df-coeleqvrel 36627 | Define the coelement equivalence relation predicate. (Read: the coelement equivalence relation on 𝐴.) Alternate definition is dfcoeleqvrel 36662. For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel 36636. (Contributed by Peter Mazsa, 11-Dec-2021.) |
⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ≀ (◡ E ↾ 𝐴)) | ||
Theorem | dfeqvrels2 36628 | Alternate definition of the class of equivalence relations. (Contributed by Peter Mazsa, 2-Dec-2019.) |
⊢ EqvRels = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} | ||
Theorem | dfeqvrels3 36629* | Alternate definition of the class of equivalence relations. (Contributed by Peter Mazsa, 2-Dec-2019.) |
⊢ EqvRels = {𝑟 ∈ Rels ∣ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧))} | ||
Theorem | dfeqvrel2 36630 | Alternate definition of the equivalence relation predicate. (Contributed by Peter Mazsa, 22-Apr-2019.) |
⊢ ( EqvRel 𝑅 ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) ∧ Rel 𝑅)) | ||
Theorem | dfeqvrel3 36631* | Alternate definition of the equivalence relation predicate. (Contributed by Peter Mazsa, 22-Apr-2019.) |
⊢ ( EqvRel 𝑅 ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ Rel 𝑅)) | ||
Theorem | eleqvrels2 36632 | Element of the class of equivalence relations. (Contributed by Peter Mazsa, 24-Aug-2021.) |
⊢ (𝑅 ∈ EqvRels ↔ ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ ◡𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) ∧ 𝑅 ∈ Rels )) | ||
Theorem | eleqvrels3 36633* | Element of the class of equivalence relations. (Contributed by Peter Mazsa, 24-Aug-2021.) |
⊢ (𝑅 ∈ EqvRels ↔ ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ∧ 𝑅 ∈ Rels )) | ||
Theorem | eleqvrelsrel 36634 | For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate. (Contributed by Peter Mazsa, 24-Aug-2021.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ EqvRels ↔ EqvRel 𝑅)) | ||
Theorem | elcoeleqvrels 36635 | Elementhood in the coelement equivalence relations class. (Contributed by Peter Mazsa, 24-Jul-2023.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ CoElEqvRels ↔ ≀ (◡ E ↾ 𝐴) ∈ EqvRels )) | ||
Theorem | elcoeleqvrelsrel 36636 | For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate. (Contributed by Peter Mazsa, 24-Jul-2023.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ CoElEqvRels ↔ CoElEqvRel 𝐴)) | ||
Theorem | eqvrelrel 36637 | An equivalence relation is a relation. (Contributed by Peter Mazsa, 2-Jun-2019.) |
⊢ ( EqvRel 𝑅 → Rel 𝑅) | ||
Theorem | eqvrelrefrel 36638 | An equivalence relation is reflexive. (Contributed by Peter Mazsa, 29-Dec-2021.) |
⊢ ( EqvRel 𝑅 → RefRel 𝑅) | ||
Theorem | eqvrelsymrel 36639 | An equivalence relation is symmetric. (Contributed by Peter Mazsa, 29-Dec-2021.) |
⊢ ( EqvRel 𝑅 → SymRel 𝑅) | ||
Theorem | eqvreltrrel 36640 | An equivalence relation is transitive. (Contributed by Peter Mazsa, 29-Dec-2021.) |
⊢ ( EqvRel 𝑅 → TrRel 𝑅) | ||
Theorem | eqvrelim 36641 | Equivalence relation implies that the domain and the range are equal. (Contributed by Peter Mazsa, 29-Dec-2021.) |
⊢ ( EqvRel 𝑅 → dom 𝑅 = ran 𝑅) | ||
Theorem | eqvreleq 36642 | Equality theorem for equivalence relation. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 23-Sep-2021.) |
⊢ (𝑅 = 𝑆 → ( EqvRel 𝑅 ↔ EqvRel 𝑆)) | ||
Theorem | eqvreleqi 36643 | Equality theorem for equivalence relation, inference version. (Contributed by Peter Mazsa, 23-Sep-2021.) |
⊢ 𝑅 = 𝑆 ⇒ ⊢ ( EqvRel 𝑅 ↔ EqvRel 𝑆) | ||
Theorem | eqvreleqd 36644 | Equality theorem for equivalence relation, deduction version. (Contributed by Peter Mazsa, 23-Sep-2021.) |
⊢ (𝜑 → 𝑅 = 𝑆) ⇒ ⊢ (𝜑 → ( EqvRel 𝑅 ↔ EqvRel 𝑆)) | ||
Theorem | eqvrelsym 36645 | An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.) |
⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐴𝑅𝐵) ⇒ ⊢ (𝜑 → 𝐵𝑅𝐴) | ||
Theorem | eqvrelsymb 36646 | An equivalence relation is symmetric. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised and distinct variable conditions removed by Peter Mazsa, 2-Jun-2019.) |
⊢ (𝜑 → EqvRel 𝑅) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝐵𝑅𝐴)) | ||
Theorem | eqvreltr 36647 | An equivalence relation is transitive. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.) |
⊢ (𝜑 → EqvRel 𝑅) ⇒ ⊢ (𝜑 → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶)) | ||
Theorem | eqvreltrd 36648 | A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 2-Jun-2019.) |
⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ (𝜑 → 𝐵𝑅𝐶) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
Theorem | eqvreltr4d 36649 | A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 2-Jun-2019.) |
⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ (𝜑 → 𝐶𝑅𝐵) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
Theorem | eqvrelref 36650 | An equivalence relation is reflexive on its field. Compare Theorem 3M of [Enderton] p. 56. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.) |
⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐴) | ||
Theorem | eqvrelth 36651 | Basic property of equivalence relations. Theorem 73 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) (Revised by Peter Mazsa, 2-Jun-2019.) |
⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅)) | ||
Theorem | eqvrelcl 36652 | Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.) |
⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐴𝑅𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) | ||
Theorem | eqvrelthi 36653 | Basic property of equivalence relations. Part of Lemma 3N of [Enderton] p. 57. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 2-Jun-2019.) |
⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐴𝑅𝐵) ⇒ ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) | ||
Theorem | eqvreldisj 36654 | Equivalence classes do not overlap. In other words, two equivalence classes are either equal or disjoint. Theorem 74 of [Suppes] p. 83. (Contributed by NM, 15-Jun-2004.) (Revised by Mario Carneiro, 9-Jul-2014.) (Revised by Peter Mazsa, 2-Jun-2019.) |
⊢ ( EqvRel 𝑅 → ([𝐴]𝑅 = [𝐵]𝑅 ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅)) | ||
Theorem | qsdisjALTV 36655 | Elements of a quotient set do not overlap. (Contributed by Rodolfo Medina, 12-Oct-2010.) (Revised by Mario Carneiro, 11-Jul-2014.) (Revised by Peter Mazsa, 3-Jun-2019.) |
⊢ (𝜑 → EqvRel 𝑅) & ⊢ (𝜑 → 𝐵 ∈ (𝐴 / 𝑅)) & ⊢ (𝜑 → 𝐶 ∈ (𝐴 / 𝑅)) ⇒ ⊢ (𝜑 → (𝐵 = 𝐶 ∨ (𝐵 ∩ 𝐶) = ∅)) | ||
Theorem | eqvrelqsel 36656 | If an element of a quotient set contains a given element, it is equal to the equivalence class of the element. (Contributed by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 28-Dec-2019.) |
⊢ (( EqvRel 𝑅 ∧ 𝐵 ∈ (𝐴 / 𝑅) ∧ 𝐶 ∈ 𝐵) → 𝐵 = [𝐶]𝑅) | ||
Theorem | eqvrelcoss 36657 | Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 4-Jul-2020.) (Revised by Peter Mazsa, 20-Dec-2021.) |
⊢ ( EqvRel ≀ 𝑅 ↔ TrRel ≀ 𝑅) | ||
Theorem | eqvrelcoss3 36658* | Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 28-Apr-2019.) |
⊢ ( EqvRel ≀ 𝑅 ↔ ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) | ||
Theorem | eqvrelcoss2 36659 | Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 3-May-2019.) |
⊢ ( EqvRel ≀ 𝑅 ↔ ≀ ≀ 𝑅 ⊆ ≀ 𝑅) | ||
Theorem | eqvrelcoss4 36660* | Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 3-May-2019.) (Revised by Peter Mazsa, 30-Sep-2021.) |
⊢ ( EqvRel ≀ 𝑅 ↔ ∀𝑥∀𝑧(([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ → ([𝑥]◡𝑅 ∩ [𝑧]◡𝑅) ≠ ∅)) | ||
Theorem | dfcoeleqvrels 36661 | Alternate definition of the coelement equivalence relations class. Other alternate definitions should be based on eqvrelcoss2 36659, eqvrelcoss3 36658 and eqvrelcoss4 36660 when needed. (Contributed by Peter Mazsa, 28-Nov-2022.) |
⊢ CoElEqvRels = {𝑎 ∣ ∼ 𝑎 ∈ EqvRels } | ||
Theorem | dfcoeleqvrel 36662 | Alternate definition of the coelement equivalence relation predicate: a coelement equivalence relation is an equivalence relation on coelements. Other alternate definitions should be based on eqvrelcoss2 36659, eqvrelcoss3 36658 and eqvrelcoss4 36660 when needed. (Contributed by Peter Mazsa, 28-Nov-2022.) |
⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ∼ 𝐴) | ||
Definition | df-redunds 36663* | Define the class of all redundant sets 𝑥 with respect to 𝑦 in 𝑧. For sets, binary relation on the class of all redundant sets (brredunds 36666) is equivalent to satisfying the redundancy predicate (df-redund 36664). (Contributed by Peter Mazsa, 23-Oct-2022.) |
⊢ Redunds = ◡{〈〈𝑦, 𝑧〉, 𝑥〉 ∣ (𝑥 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑧) = (𝑦 ∩ 𝑧))} | ||
Definition | df-redund 36664 | Define the redundancy predicate. Read: 𝐴 is redundant with respect to 𝐵 in 𝐶. For sets, binary relation on the class of all redundant sets (brredunds 36666) is equivalent to satisfying the redundancy predicate. (Contributed by Peter Mazsa, 23-Oct-2022.) |
⊢ (𝐴 Redund 〈𝐵, 𝐶〉 ↔ (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶))) | ||
Definition | df-redundp 36665 | Define the redundancy operator for propositions, cf. df-redund 36664. (Contributed by Peter Mazsa, 23-Oct-2022.) |
⊢ ( redund (𝜑, 𝜓, 𝜒) ↔ ((𝜑 → 𝜓) ∧ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)))) | ||
Theorem | brredunds 36666 | Binary relation on the class of all redundant sets. (Contributed by Peter Mazsa, 25-Oct-2022.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 Redunds 〈𝐵, 𝐶〉 ↔ (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)))) | ||
Theorem | brredundsredund 36667 | For sets, binary relation on the class of all redundant sets (brredunds 36666) is equivalent to satisfying the redundancy predicate (df-redund 36664). (Contributed by Peter Mazsa, 25-Oct-2022.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 Redunds 〈𝐵, 𝐶〉 ↔ 𝐴 Redund 〈𝐵, 𝐶〉)) | ||
Theorem | redundss3 36668 | Implication of redundancy predicate. (Contributed by Peter Mazsa, 26-Oct-2022.) |
⊢ 𝐷 ⊆ 𝐶 ⇒ ⊢ (𝐴 Redund 〈𝐵, 𝐶〉 → 𝐴 Redund 〈𝐵, 𝐷〉) | ||
Theorem | redundeq1 36669 | Equivalence of redundancy predicates. (Contributed by Peter Mazsa, 26-Oct-2022.) |
⊢ 𝐴 = 𝐷 ⇒ ⊢ (𝐴 Redund 〈𝐵, 𝐶〉 ↔ 𝐷 Redund 〈𝐵, 𝐶〉) | ||
Theorem | redundpim3 36670 | Implication of redundancy of proposition. (Contributed by Peter Mazsa, 26-Oct-2022.) |
⊢ (𝜃 → 𝜒) ⇒ ⊢ ( redund (𝜑, 𝜓, 𝜒) → redund (𝜑, 𝜓, 𝜃)) | ||
Theorem | redundpbi1 36671 | Equivalence of redundancy of propositions. (Contributed by Peter Mazsa, 25-Oct-2022.) |
⊢ (𝜑 ↔ 𝜃) ⇒ ⊢ ( redund (𝜑, 𝜓, 𝜒) ↔ redund (𝜃, 𝜓, 𝜒)) | ||
Theorem | refrelsredund4 36672 | The naive version of the class of reflexive relations is redundant with respect to the class of reflexive relations (see dfrefrels2 36558) if the relations are symmetric as well. (Contributed by Peter Mazsa, 26-Oct-2022.) |
⊢ {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , ( RefRels ∩ SymRels )〉 | ||
Theorem | refrelsredund2 36673 | The naive version of the class of reflexive relations is redundant with respect to the class of reflexive relations (see dfrefrels2 36558) in the class of equivalence relations. (Contributed by Peter Mazsa, 26-Oct-2022.) |
⊢ {𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟) ⊆ 𝑟} Redund 〈 RefRels , EqvRels 〉 | ||
Theorem | refrelsredund3 36674* | The naive version of the class of reflexive relations {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟𝑥𝑟𝑥} is redundant with respect to the class of reflexive relations (see dfrefrels3 36559) in the class of equivalence relations. (Contributed by Peter Mazsa, 26-Oct-2022.) |
⊢ {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥} Redund 〈 RefRels , EqvRels 〉 | ||
Theorem | refrelredund4 36675 | The naive version of the definition of reflexive relation is redundant with respect to reflexive relation (see dfrefrel2 36560) if the relation is symmetric as well. (Contributed by Peter Mazsa, 26-Oct-2022.) |
⊢ redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, ( RefRel 𝑅 ∧ SymRel 𝑅)) | ||
Theorem | refrelredund2 36676 | The naive version of the definition of reflexive relation is redundant with respect to reflexive relation (see dfrefrel2 36560) in equivalence relation. (Contributed by Peter Mazsa, 25-Oct-2022.) |
⊢ redund ((( I ↾ dom 𝑅) ⊆ 𝑅 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅) | ||
Theorem | refrelredund3 36677* | The naive version of the definition of reflexive relation (∀𝑥 ∈ dom 𝑅𝑥𝑅𝑥 ∧ Rel 𝑅) is redundant with respect to reflexive relation (see dfrefrel3 36561) in equivalence relation. (Contributed by Peter Mazsa, 25-Oct-2022.) |
⊢ redund ((∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥 ∧ Rel 𝑅), RefRel 𝑅, EqvRel 𝑅) | ||
Definition | df-dmqss 36678* | Define the class of domain quotients. Domain quotients are pairs of sets, typically a relation and a set, where the quotient (see df-qs 8462) of the relation on its domain is equal to the set. See comments of df-ers 36702 for the motivation for this definition. (Contributed by Peter Mazsa, 16-Apr-2019.) |
⊢ DomainQss = {〈𝑥, 𝑦〉 ∣ (dom 𝑥 / 𝑥) = 𝑦} | ||
Definition | df-dmqs 36679 | Define the domain quotient predicate. (Read: the domain quotient of 𝑅 is 𝐴.) If 𝐴 and 𝑅 are sets, the domain quotient binary relation and the domain quotient predicate are the same, see brdmqssqs 36687. (Contributed by Peter Mazsa, 9-Aug-2021.) |
⊢ (𝑅 DomainQs 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴) | ||
Theorem | dmqseq 36680 | Equality theorem for domain quotient. (Contributed by Peter Mazsa, 17-Apr-2019.) |
⊢ (𝑅 = 𝑆 → (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆)) | ||
Theorem | dmqseqi 36681 | Equality theorem for domain quotient, inference version. (Contributed by Peter Mazsa, 26-Sep-2021.) |
⊢ 𝑅 = 𝑆 ⇒ ⊢ (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆) | ||
Theorem | dmqseqd 36682 | Equality theorem for domain quotient set, deduction version. (Contributed by Peter Mazsa, 23-Apr-2021.) |
⊢ (𝜑 → 𝑅 = 𝑆) ⇒ ⊢ (𝜑 → (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆)) | ||
Theorem | dmqseqeq1 36683 | Equality theorem for domain quotient. (Contributed by Peter Mazsa, 17-Apr-2019.) |
⊢ (𝑅 = 𝑆 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom 𝑆 / 𝑆) = 𝐴)) | ||
Theorem | dmqseqeq1i 36684 | Equality theorem for domain quotient, inference version. (Contributed by Peter Mazsa, 26-Sep-2021.) |
⊢ 𝑅 = 𝑆 ⇒ ⊢ ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom 𝑆 / 𝑆) = 𝐴) | ||
Theorem | dmqseqeq1d 36685 | Equality theorem for domain quotient set, deduction version. (Contributed by Peter Mazsa, 26-Sep-2021.) |
⊢ (𝜑 → 𝑅 = 𝑆) ⇒ ⊢ (𝜑 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom 𝑆 / 𝑆) = 𝐴)) | ||
Theorem | brdmqss 36686 | The domain quotient binary relation. (Contributed by Peter Mazsa, 17-Apr-2019.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 DomainQss 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴)) | ||
Theorem | brdmqssqs 36687 | If 𝐴 and 𝑅 are sets, the domain quotient binary relation and the domain quotient predicate are the same. (Contributed by Peter Mazsa, 14-Aug-2021.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 DomainQss 𝐴 ↔ 𝑅 DomainQs 𝐴)) | ||
Theorem | n0eldmqs 36688 | The empty set is not an element of a domain quotient. (Contributed by Peter Mazsa, 2-Mar-2018.) |
⊢ ¬ ∅ ∈ (dom 𝑅 / 𝑅) | ||
Theorem | n0eldmqseq 36689 | The empty set is not an element of a domain quotient. (Contributed by Peter Mazsa, 3-Nov-2018.) |
⊢ ((dom 𝑅 / 𝑅) = 𝐴 → ¬ ∅ ∈ 𝐴) | ||
Theorem | n0el3 36690 | Two ways of expressing that the empty set is not an element of a class. (Contributed by Peter Mazsa, 27-May-2021.) |
⊢ (¬ ∅ ∈ 𝐴 ↔ (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴) | ||
Theorem | cnvepresdmqss 36691 | The domain quotient binary relation of the restricted converse epsilon relation is equivalent to the negated elementhood of the empty set in the restriction. (Contributed by Peter Mazsa, 14-Aug-2021.) |
⊢ (𝐴 ∈ 𝑉 → ((◡ E ↾ 𝐴) DomainQss 𝐴 ↔ ¬ ∅ ∈ 𝐴)) | ||
Theorem | cnvepresdmqs 36692 | The domain quotient predicate for the restricted converse epsilon relation is equivalent to the negated elementhood of the empty set in the restriction. (Contributed by Peter Mazsa, 14-Aug-2021.) |
⊢ ((◡ E ↾ 𝐴) DomainQs 𝐴 ↔ ¬ ∅ ∈ 𝐴) | ||
Theorem | unidmqs 36693 | The range of a relation is equal to the union of the domain quotient. (Contributed by Peter Mazsa, 13-Oct-2018.) |
⊢ (𝑅 ∈ 𝑉 → (Rel 𝑅 → ∪ (dom 𝑅 / 𝑅) = ran 𝑅)) | ||
Theorem | unidmqseq 36694 | The union of the domain quotient of a relation is equal to the class 𝐴 if and only if the range is equal to it as well. (Contributed by Peter Mazsa, 21-Apr-2019.) (Revised by Peter Mazsa, 28-Dec-2021.) |
⊢ (𝑅 ∈ 𝑉 → (Rel 𝑅 → (∪ (dom 𝑅 / 𝑅) = 𝐴 ↔ ran 𝑅 = 𝐴))) | ||
Theorem | dmqseqim 36695 | If the domain quotient of a relation is equal to the class 𝐴, then the range of the relation is the union of the class. (Contributed by Peter Mazsa, 29-Dec-2021.) |
⊢ (𝑅 ∈ 𝑉 → (Rel 𝑅 → ((dom 𝑅 / 𝑅) = 𝐴 → ran 𝑅 = ∪ 𝐴))) | ||
Theorem | dmqseqim2 36696 | Lemma for erim2 36716. (Contributed by Peter Mazsa, 29-Dec-2021.) |
⊢ (𝑅 ∈ 𝑉 → (Rel 𝑅 → ((dom 𝑅 / 𝑅) = 𝐴 → (𝐵 ∈ ran 𝑅 ↔ 𝐵 ∈ ∪ 𝐴)))) | ||
Theorem | releldmqs 36697* | Elementhood in the domain quotient of a relation. (Contributed by Peter Mazsa, 24-Apr-2021.) |
⊢ (𝐴 ∈ 𝑉 → (Rel 𝑅 → (𝐴 ∈ (dom 𝑅 / 𝑅) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑢]𝑅))) | ||
Theorem | eldmqs1cossres 36698* | Elementhood in the domain quotient of the class of cosets by a restriction. (Contributed by Peter Mazsa, 4-May-2019.) |
⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ (dom ≀ (𝑅 ↾ 𝐴) / ≀ (𝑅 ↾ 𝐴)) ↔ ∃𝑢 ∈ 𝐴 ∃𝑥 ∈ [ 𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅 ↾ 𝐴))) | ||
Theorem | releldmqscoss 36699* | Elementhood in the domain quotient of the class of cosets by a relation. (Contributed by Peter Mazsa, 23-Apr-2021.) |
⊢ (𝐴 ∈ 𝑉 → (Rel 𝑅 → (𝐴 ∈ (dom ≀ 𝑅 / ≀ 𝑅) ↔ ∃𝑢 ∈ dom 𝑅∃𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑥] ≀ 𝑅))) | ||
Theorem | dmqscoelseq 36700 | Two ways to express the equality of the domain quotient of the coelements on the class 𝐴 with the class 𝐴. (Contributed by Peter Mazsa, 26-Sep-2021.) |
⊢ ((dom ∼ 𝐴 / ∼ 𝐴) = 𝐴 ↔ (∪ 𝐴 / ∼ 𝐴) = 𝐴) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |