| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-rrv | Structured version Visualization version GIF version | ||
| Description: In its generic definition, a random variable is a measurable function from a probability space to a Borel set. Here, we specifically target real-valued random variables, i.e. measurable function from a probability space to the Borel sigma-algebra on the set of real numbers. (Contributed by Thierry Arnoux, 20-Sep-2016.) (Revised by Thierry Arnoux, 25-Jan-2017.) |
| Ref | Expression |
|---|---|
| df-rrv | ⊢ rRndVar = (𝑝 ∈ Prob ↦ (dom 𝑝MblFnM𝔅ℝ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crrv 34442 | . 2 class rRndVar | |
| 2 | vp | . . 3 setvar 𝑝 | |
| 3 | cprb 34409 | . . 3 class Prob | |
| 4 | 2 | cv 1539 | . . . . 5 class 𝑝 |
| 5 | 4 | cdm 5685 | . . . 4 class dom 𝑝 |
| 6 | cbrsiga 34182 | . . . 4 class 𝔅ℝ | |
| 7 | cmbfm 34250 | . . . 4 class MblFnM | |
| 8 | 5, 6, 7 | co 7431 | . . 3 class (dom 𝑝MblFnM𝔅ℝ) |
| 9 | 2, 3, 8 | cmpt 5225 | . 2 class (𝑝 ∈ Prob ↦ (dom 𝑝MblFnM𝔅ℝ)) |
| 10 | 1, 9 | wceq 1540 | 1 wff rRndVar = (𝑝 ∈ Prob ↦ (dom 𝑝MblFnM𝔅ℝ)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: rrvmbfm 34444 |
| Copyright terms: Public domain | W3C validator |