Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-rrv | Structured version Visualization version GIF version |
Description: In its generic definition, a random variable is a measurable function from a probability space to a Borel set. Here, we specifically target real-valued random variables, i.e. measurable function from a probability space to the Borel sigma-algebra on the set of real numbers. (Contributed by Thierry Arnoux, 20-Sep-2016.) (Revised by Thierry Arnoux, 25-Jan-2017.) |
Ref | Expression |
---|---|
df-rrv | ⊢ rRndVar = (𝑝 ∈ Prob ↦ (dom 𝑝MblFnM𝔅ℝ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crrv 32307 | . 2 class rRndVar | |
2 | vp | . . 3 setvar 𝑝 | |
3 | cprb 32274 | . . 3 class Prob | |
4 | 2 | cv 1538 | . . . . 5 class 𝑝 |
5 | 4 | cdm 5580 | . . . 4 class dom 𝑝 |
6 | cbrsiga 32049 | . . . 4 class 𝔅ℝ | |
7 | cmbfm 32117 | . . . 4 class MblFnM | |
8 | 5, 6, 7 | co 7255 | . . 3 class (dom 𝑝MblFnM𝔅ℝ) |
9 | 2, 3, 8 | cmpt 5153 | . 2 class (𝑝 ∈ Prob ↦ (dom 𝑝MblFnM𝔅ℝ)) |
10 | 1, 9 | wceq 1539 | 1 wff rRndVar = (𝑝 ∈ Prob ↦ (dom 𝑝MblFnM𝔅ℝ)) |
Colors of variables: wff setvar class |
This definition is referenced by: rrvmbfm 32309 |
Copyright terms: Public domain | W3C validator |