| Metamath
Proof Explorer Theorem List (p. 340 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | ordtconnlem1 33901* | Connectedness in the order topology of a toset. This is the "easy" direction of ordtconn 33902. See also reconnlem1 24764. (Contributed by Thierry Arnoux, 14-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) & ⊢ 𝐽 = (ordTop‘ ≤ ) ⇒ ⊢ ((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) → ((𝐽 ↾t 𝐴) ∈ Conn → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑟 ∈ 𝐵 ((𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) → 𝑟 ∈ 𝐴))) | ||
| Theorem | ordtconn 33902 | Connectedness in the order topology of a complete uniform totally ordered space. (Contributed by Thierry Arnoux, 15-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) & ⊢ 𝐽 = (ordTop‘ ≤ ) ⇒ ⊢ ⊤ | ||
| Theorem | mndpluscn 33903* | A mapping that is both a homeomorphism and a monoid homomorphism preserves the "continuousness" of the operation. (Contributed by Thierry Arnoux, 25-Mar-2017.) |
| ⊢ 𝐹 ∈ (𝐽Homeo𝐾) & ⊢ + :(𝐵 × 𝐵)⟶𝐵 & ⊢ ∗ :(𝐶 × 𝐶)⟶𝐶 & ⊢ 𝐽 ∈ (TopOn‘𝐵) & ⊢ 𝐾 ∈ (TopOn‘𝐶) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ∗ (𝐹‘𝑦))) & ⊢ + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ⇒ ⊢ ∗ ∈ ((𝐾 ×t 𝐾) Cn 𝐾) | ||
| Theorem | mhmhmeotmd 33904 | Deduce a Topological Monoid using mapping that is both a homeomorphism and a monoid homomorphism. (Contributed by Thierry Arnoux, 21-Jun-2017.) |
| ⊢ 𝐹 ∈ (𝑆 MndHom 𝑇) & ⊢ 𝐹 ∈ ((TopOpen‘𝑆)Homeo(TopOpen‘𝑇)) & ⊢ 𝑆 ∈ TopMnd & ⊢ 𝑇 ∈ TopSp ⇒ ⊢ 𝑇 ∈ TopMnd | ||
| Theorem | rmulccn 33905* | Multiplication by a real constant is a continuous function. (Contributed by Thierry Arnoux, 23-May-2017.) Avoid ax-mulf 11207. (Revised by GG, 16-Mar-2025.) |
| ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ (𝑥 · 𝐶)) ∈ (𝐽 Cn 𝐽)) | ||
| Theorem | raddcn 33906* | Addition in the real numbers is a continuous function. (Contributed by Thierry Arnoux, 23-May-2017.) |
| ⊢ 𝐽 = (topGen‘ran (,)) ⇒ ⊢ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽) | ||
| Theorem | xrmulc1cn 33907* | The operation multiplying an extended real number by a nonnegative constant is continuous. (Contributed by Thierry Arnoux, 5-Jul-2017.) |
| ⊢ 𝐽 = (ordTop‘ ≤ ) & ⊢ 𝐹 = (𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐽)) | ||
| Theorem | fmcncfil 33908 | The image of a Cauchy filter by a continuous filter map is a Cauchy filter. (Contributed by Thierry Arnoux, 12-Nov-2017.) |
| ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = (MetOpen‘𝐸) ⇒ ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ((𝑌 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐸)) | ||
| Theorem | xrge0hmph 33909 | The extended nonnegative reals are homeomorphic to the closed unit interval. (Contributed by Thierry Arnoux, 24-Mar-2017.) |
| ⊢ II ≃ ((ordTop‘ ≤ ) ↾t (0[,]+∞)) | ||
| Theorem | xrge0iifcnv 33910* | Define a bijection from [0, 1] onto [0, +∞]. (Contributed by Thierry Arnoux, 29-Mar-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) ⇒ ⊢ (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ ◡𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 0, (exp‘-𝑦)))) | ||
| Theorem | xrge0iifcv 33911* | The defined function's value in the real. (Contributed by Thierry Arnoux, 1-Apr-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) ⇒ ⊢ (𝑋 ∈ (0(,]1) → (𝐹‘𝑋) = -(log‘𝑋)) | ||
| Theorem | xrge0iifiso 33912* | The defined bijection from the closed unit interval onto the extended nonnegative reals is an order isomorphism. (Contributed by Thierry Arnoux, 31-Mar-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) ⇒ ⊢ 𝐹 Isom < , ◡ < ((0[,]1), (0[,]+∞)) | ||
| Theorem | xrge0iifhmeo 33913* | Expose a homeomorphism from the closed unit interval to the extended nonnegative reals. (Contributed by Thierry Arnoux, 1-Apr-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) & ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ⇒ ⊢ 𝐹 ∈ (IIHomeo𝐽) | ||
| Theorem | xrge0iifhom 33914* | The defined function from the closed unit interval to the extended nonnegative reals is a monoid homomorphism. (Contributed by Thierry Arnoux, 5-Apr-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) & ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ⇒ ⊢ ((𝑋 ∈ (0[,]1) ∧ 𝑌 ∈ (0[,]1)) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹‘𝑋) +𝑒 (𝐹‘𝑌))) | ||
| Theorem | xrge0iif1 33915* | Condition for the defined function, -(log‘𝑥) to be a monoid homomorphism. (Contributed by Thierry Arnoux, 20-Jun-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) & ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ⇒ ⊢ (𝐹‘1) = 0 | ||
| Theorem | xrge0iifmhm 33916* | The defined function from the closed unit interval to the extended nonnegative reals is a monoid homomorphism. (Contributed by Thierry Arnoux, 21-Jun-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) & ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ⇒ ⊢ 𝐹 ∈ (((mulGrp‘ℂfld) ↾s (0[,]1)) MndHom (ℝ*𝑠 ↾s (0[,]+∞))) | ||
| Theorem | xrge0pluscn 33917* | The addition operation of the extended nonnegative real numbers monoid is continuous. (Contributed by Thierry Arnoux, 24-Mar-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) & ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) & ⊢ + = ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) ⇒ ⊢ + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) | ||
| Theorem | xrge0mulc1cn 33918* | The operation multiplying a nonnegative real numbers by a nonnegative constant is continuous. (Contributed by Thierry Arnoux, 6-Jul-2017.) |
| ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) & ⊢ 𝐹 = (𝑥 ∈ (0[,]+∞) ↦ (𝑥 ·e 𝐶)) & ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐽)) | ||
| Theorem | xrge0tps 33919 | The extended nonnegative real numbers monoid forms a topological space. (Contributed by Thierry Arnoux, 19-Jun-2017.) |
| ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp | ||
| Theorem | xrge0topn 33920 | The topology of the extended nonnegative real numbers. (Contributed by Thierry Arnoux, 20-Jun-2017.) |
| ⊢ (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) | ||
| Theorem | xrge0haus 33921 | The topology of the extended nonnegative real numbers is Hausdorff. (Contributed by Thierry Arnoux, 26-Jul-2017.) |
| ⊢ (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) ∈ Haus | ||
| Theorem | xrge0tmd 33922 | The extended nonnegative real numbers monoid is a topological monoid. (Contributed by Thierry Arnoux, 26-Mar-2017.) (Proof Shortened by Thierry Arnoux, 21-Jun-2017.) |
| ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopMnd | ||
| Theorem | xrge0tmdALT 33923 | Alternate proof of xrge0tmd 33922. (Contributed by Thierry Arnoux, 26-Mar-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopMnd | ||
| Theorem | lmlim 33924 | Relate a limit in a given topology to a complex number limit, provided that topology agrees with the common topology on ℂ on the required subset. (Contributed by Thierry Arnoux, 11-Jul-2017.) |
| ⊢ 𝐽 ∈ (TopOn‘𝑌) & ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) & ⊢ (𝜑 → 𝑃 ∈ 𝑋) & ⊢ (𝐽 ↾t 𝑋) = ((TopOpen‘ℂfld) ↾t 𝑋) & ⊢ 𝑋 ⊆ ℂ ⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 𝐹 ⇝ 𝑃)) | ||
| Theorem | lmlimxrge0 33925 | Relate a limit in the nonnegative extended reals to a complex limit, provided the considered function is a real function. (Contributed by Thierry Arnoux, 11-Jul-2017.) |
| ⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) & ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) & ⊢ (𝜑 → 𝑃 ∈ 𝑋) & ⊢ 𝑋 ⊆ (0[,)+∞) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 𝐹 ⇝ 𝑃)) | ||
| Theorem | rge0scvg 33926 | Implication of convergence for a nonnegative series. This could be used to shorten prmreclem6 16939. (Contributed by Thierry Arnoux, 28-Jul-2017.) |
| ⊢ ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → sup(ran seq1( + , 𝐹), ℝ, < ) ∈ ℝ) | ||
| Theorem | fsumcvg4 33927 | A serie with finite support is a finite sum, and therefore converges. (Contributed by Thierry Arnoux, 6-Sep-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
| ⊢ 𝑆 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑆⟶ℂ) & ⊢ (𝜑 → (◡𝐹 “ (ℂ ∖ {0})) ∈ Fin) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | ||
| Theorem | pnfneige0 33928* | A neighborhood of +∞ contains an unbounded interval based at a real number. See pnfnei 23156. (Contributed by Thierry Arnoux, 31-Jul-2017.) |
| ⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) ⇒ ⊢ ((𝐴 ∈ 𝐽 ∧ +∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴) | ||
| Theorem | lmxrge0 33929* | Express "sequence 𝐹 converges to plus infinity" (i.e. diverges), for a sequence of nonnegative extended real numbers. (Contributed by Thierry Arnoux, 2-Aug-2017.) |
| ⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) & ⊢ (𝜑 → 𝐹:ℕ⟶(0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = 𝐴) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 < 𝐴)) | ||
| Theorem | lmdvg 33930* | If a monotonic sequence of real numbers diverges, it is unbounded. (Contributed by Thierry Arnoux, 4-Aug-2017.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶(0[,)+∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) & ⊢ (𝜑 → ¬ 𝐹 ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 < (𝐹‘𝑘)) | ||
| Theorem | lmdvglim 33931* | If a monotonic real number sequence 𝐹 diverges, it converges in the extended real numbers and its limit is plus infinity. (Contributed by Thierry Arnoux, 3-Aug-2017.) |
| ⊢ 𝐽 = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) & ⊢ (𝜑 → 𝐹:ℕ⟶(0[,)+∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) & ⊢ (𝜑 → ¬ 𝐹 ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)+∞) | ||
| Theorem | pl1cn 33932 | A univariate polynomial is continuous. (Contributed by Thierry Arnoux, 17-Sep-2018.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐸 = (eval1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐽 = (TopOpen‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ TopRing) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐸‘𝐹) ∈ (𝐽 Cn 𝐽)) | ||
| Syntax | chcmp 33933 | Extend class notation with the Hausdorff uniform completion relation. |
| class HCmp | ||
| Definition | df-hcmp 33934* | Definition of the Hausdorff completion. In this definition, a structure 𝑤 is a Hausdorff completion of a uniform structure 𝑢 if 𝑤 is a complete uniform space, in which 𝑢 is dense, and which admits the same uniform structure. Theorem 3 of [BourbakiTop1] p. II.21. states the existence and uniqueness of such a completion. (Contributed by Thierry Arnoux, 5-Mar-2018.) |
| ⊢ HCmp = {〈𝑢, 𝑤〉 ∣ ((𝑢 ∈ ∪ ran UnifOn ∧ 𝑤 ∈ CUnifSp) ∧ ((UnifSt‘𝑤) ↾t dom ∪ 𝑢) = 𝑢 ∧ ((cls‘(TopOpen‘𝑤))‘dom ∪ 𝑢) = (Base‘𝑤))} | ||
| Theorem | zringnm 33935 | The norm (function) for a ring of integers is the absolute value function (restricted to the integers). (Contributed by AV, 13-Jun-2019.) |
| ⊢ (norm‘ℤring) = (abs ↾ ℤ) | ||
| Theorem | zzsnm 33936 | The norm of the ring of the integers. (Contributed by Thierry Arnoux, 8-Nov-2017.) (Revised by AV, 13-Jun-2019.) |
| ⊢ (𝑀 ∈ ℤ → (abs‘𝑀) = ((norm‘ℤring)‘𝑀)) | ||
| Theorem | zlm0 33937 | Zero of a ℤ-module. (Contributed by Thierry Arnoux, 8-Nov-2017.) |
| ⊢ 𝑊 = (ℤMod‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ 0 = (0g‘𝑊) | ||
| Theorem | zlm1 33938 | Unity element of a ℤ-module (if present). (Contributed by Thierry Arnoux, 8-Nov-2017.) |
| ⊢ 𝑊 = (ℤMod‘𝐺) & ⊢ 1 = (1r‘𝐺) ⇒ ⊢ 1 = (1r‘𝑊) | ||
| Theorem | zlmds 33939 | Distance in a ℤ-module (if present). (Contributed by Thierry Arnoux, 8-Nov-2017.) (Proof shortened by AV, 11-Nov-2024.) |
| ⊢ 𝑊 = (ℤMod‘𝐺) & ⊢ 𝐷 = (dist‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑉 → 𝐷 = (dist‘𝑊)) | ||
| Theorem | zlmtset 33940 | Topology in a ℤ-module (if present). (Contributed by Thierry Arnoux, 8-Nov-2017.) (Proof shortened by AV, 12-Nov-2024.) |
| ⊢ 𝑊 = (ℤMod‘𝐺) & ⊢ 𝐽 = (TopSet‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑉 → 𝐽 = (TopSet‘𝑊)) | ||
| Theorem | zlmnm 33941 | Norm of a ℤ-module (if present). (Contributed by Thierry Arnoux, 8-Nov-2017.) |
| ⊢ 𝑊 = (ℤMod‘𝐺) & ⊢ 𝑁 = (norm‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑉 → 𝑁 = (norm‘𝑊)) | ||
| Theorem | zhmnrg 33942 | The ℤ-module built from a normed ring is also a normed ring. (Contributed by Thierry Arnoux, 8-Nov-2017.) |
| ⊢ 𝑊 = (ℤMod‘𝐺) ⇒ ⊢ (𝐺 ∈ NrmRing → 𝑊 ∈ NrmRing) | ||
| Theorem | nmmulg 33943 | The norm of a group product, provided the ℤ-module is normed. (Contributed by Thierry Arnoux, 8-Nov-2017.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑁 = (norm‘𝑅) & ⊢ 𝑍 = (ℤMod‘𝑅) & ⊢ · = (.g‘𝑅) ⇒ ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝑀 · 𝑋)) = ((abs‘𝑀) · (𝑁‘𝑋))) | ||
| Theorem | zrhnm 33944 | The norm of the image by ℤRHom of an integer in a normed ring. (Contributed by Thierry Arnoux, 8-Nov-2017.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑁 = (norm‘𝑅) & ⊢ 𝑍 = (ℤMod‘𝑅) & ⊢ 𝐿 = (ℤRHom‘𝑅) ⇒ ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (𝑁‘(𝐿‘𝑀)) = (abs‘𝑀)) | ||
| Theorem | cnzh 33945 | The ℤ-module of ℂ is a normed module. (Contributed by Thierry Arnoux, 25-Feb-2018.) |
| ⊢ (ℤMod‘ℂfld) ∈ NrmMod | ||
| Theorem | rezh 33946 | The ℤ-module of ℝ is a normed module. (Contributed by Thierry Arnoux, 14-Feb-2018.) |
| ⊢ (ℤMod‘ℝfld) ∈ NrmMod | ||
| Syntax | cqqh 33947 | Map the rationals into a field. |
| class ℚHom | ||
| Definition | df-qqh 33948* | Define the canonical homomorphism from the rationals into any field. (Contributed by Mario Carneiro, 22-Oct-2017.) (Revised by Thierry Arnoux, 23-Oct-2017.) |
| ⊢ ℚHom = (𝑟 ∈ V ↦ ran (𝑥 ∈ ℤ, 𝑦 ∈ (◡(ℤRHom‘𝑟) “ (Unit‘𝑟)) ↦ 〈(𝑥 / 𝑦), (((ℤRHom‘𝑟)‘𝑥)(/r‘𝑟)((ℤRHom‘𝑟)‘𝑦))〉)) | ||
| Theorem | qqhval 33949* | Value of the canonical homormorphism from the rational number to a field. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
| ⊢ / = (/r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐿 = (ℤRHom‘𝑅) ⇒ ⊢ (𝑅 ∈ V → (ℚHom‘𝑅) = ran (𝑥 ∈ ℤ, 𝑦 ∈ (◡𝐿 “ (Unit‘𝑅)) ↦ 〈(𝑥 / 𝑦), ((𝐿‘𝑥) / (𝐿‘𝑦))〉)) | ||
| Theorem | zrhf1ker 33950 | The kernel of the homomorphism from the integers to a ring, if it is injective. (Contributed by Thierry Arnoux, 26-Oct-2017.) (Revised by Thierry Arnoux, 23-May-2023.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐿 = (ℤRHom‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝐿:ℤ–1-1→𝐵 ↔ (◡𝐿 “ { 0 }) = {0})) | ||
| Theorem | zrhchr 33951 | The kernel of the homomorphism from the integers to a ring is injective if and only if the ring has characteristic 0 . (Contributed by Thierry Arnoux, 8-Nov-2017.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐿 = (ℤRHom‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → ((chr‘𝑅) = 0 ↔ 𝐿:ℤ–1-1→𝐵)) | ||
| Theorem | zrhker 33952 | The kernel of the homomorphism from the integers to a ring with characteristic 0. (Contributed by Thierry Arnoux, 8-Nov-2017.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐿 = (ℤRHom‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → ((chr‘𝑅) = 0 ↔ (◡𝐿 “ { 0 }) = {0})) | ||
| Theorem | zrhunitpreima 33953 | The preimage by ℤRHom of the units of a division ring is (ℤ ∖ {0}). (Contributed by Thierry Arnoux, 22-Oct-2017.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐿 = (ℤRHom‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (◡𝐿 “ (Unit‘𝑅)) = (ℤ ∖ {0})) | ||
| Theorem | elzrhunit 33954 | Condition for the image by ℤRHom to be a unit. (Contributed by Thierry Arnoux, 30-Oct-2017.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐿 = (ℤRHom‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → (𝐿‘𝑀) ∈ (Unit‘𝑅)) | ||
| Theorem | zrhneg 33955 | The canonical homomorphism from the integers to a ring 𝑅 maps additive inverses to additive inverses. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
| ⊢ 𝐿 = (ℤRHom‘𝑅) & ⊢ 𝐼 = (invg‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐿‘-𝑁) = (𝐼‘(𝐿‘𝑁))) | ||
| Theorem | zrhcntr 33956 | The canonical representation of an integer 𝑁 in a ring 𝑅 is in the centralizer of the ring's multiplicative monoid. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝐶 = (Cntr‘𝑀) & ⊢ 𝐿 = (ℤRHom‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐿‘𝑁) ∈ 𝐶) | ||
| Theorem | elzdif0 33957 | Lemma for qqhval2 33959. (Contributed by Thierry Arnoux, 29-Oct-2017.) |
| ⊢ (𝑀 ∈ (ℤ ∖ {0}) → (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ)) | ||
| Theorem | qqhval2lem 33958 | Lemma for qqhval2 33959. (Contributed by Thierry Arnoux, 29-Oct-2017.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ 𝐿 = (ℤRHom‘𝑅) ⇒ ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝐿‘(numer‘(𝑋 / 𝑌))) / (𝐿‘(denom‘(𝑋 / 𝑌)))) = ((𝐿‘𝑋) / (𝐿‘𝑌))) | ||
| Theorem | qqhval2 33959* | Value of the canonical homormorphism from the rational number when the target ring is a division ring. (Contributed by Thierry Arnoux, 26-Oct-2017.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ 𝐿 = (ℤRHom‘𝑅) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) = (𝑞 ∈ ℚ ↦ ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))) | ||
| Theorem | qqhvval 33960 | Value of the canonical homormorphism from the rational number when the target ring is a division ring. (Contributed by Thierry Arnoux, 30-Oct-2017.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ 𝐿 = (ℤRHom‘𝑅) ⇒ ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → ((ℚHom‘𝑅)‘𝑄) = ((𝐿‘(numer‘𝑄)) / (𝐿‘(denom‘𝑄)))) | ||
| Theorem | qqh0 33961 | The image of 0 by the ℚHom homomorphism is the ring's zero. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ 𝐿 = (ℤRHom‘𝑅) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘0) = (0g‘𝑅)) | ||
| Theorem | qqh1 33962 | The image of 1 by the ℚHom homomorphism is the ring unity. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ 𝐿 = (ℤRHom‘𝑅) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘1) = (1r‘𝑅)) | ||
| Theorem | qqhf 33963 | ℚHom as a function. (Contributed by Thierry Arnoux, 28-Oct-2017.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ 𝐿 = (ℤRHom‘𝑅) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅):ℚ⟶𝐵) | ||
| Theorem | qqhvq 33964 | The image of a quotient by the ℚHom homomorphism. (Contributed by Thierry Arnoux, 28-Oct-2017.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ 𝐿 = (ℤRHom‘𝑅) ⇒ ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((ℚHom‘𝑅)‘(𝑋 / 𝑌)) = ((𝐿‘𝑋) / (𝐿‘𝑌))) | ||
| Theorem | qqhghm 33965 | The ℚHom homomorphism is a group homomorphism if the target structure is a division ring. (Contributed by Thierry Arnoux, 9-Nov-2017.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ 𝐿 = (ℤRHom‘𝑅) & ⊢ 𝑄 = (ℂfld ↾s ℚ) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) ∈ (𝑄 GrpHom 𝑅)) | ||
| Theorem | qqhrhm 33966 | The ℚHom homomorphism is a ring homomorphism if the target structure is a field. If the target structure is a division ring, it is a group homomorphism, but not a ring homomorphism, because it does not preserve the ring multiplication operation. (Contributed by Thierry Arnoux, 29-Oct-2017.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ 𝐿 = (ℤRHom‘𝑅) & ⊢ 𝑄 = (ℂfld ↾s ℚ) ⇒ ⊢ ((𝑅 ∈ Field ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) ∈ (𝑄 RingHom 𝑅)) | ||
| Theorem | qqhnm 33967 | The norm of the image by ℚHom of a rational number in a topological division ring. (Contributed by Thierry Arnoux, 8-Nov-2017.) |
| ⊢ 𝑁 = (norm‘𝑅) & ⊢ 𝑍 = (ℤMod‘𝑅) ⇒ ⊢ (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ 𝑄 ∈ ℚ) → (𝑁‘((ℚHom‘𝑅)‘𝑄)) = (abs‘𝑄)) | ||
| Theorem | qqhcn 33968 | The ℚHom homomorphism is a continuous function. (Contributed by Thierry Arnoux, 9-Nov-2017.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐽 = (TopOpen‘𝑄) & ⊢ 𝑍 = (ℤMod‘𝑅) & ⊢ 𝐾 = (TopOpen‘𝑅) ⇒ ⊢ ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | qqhucn 33969 | The ℚHom homomorphism is uniformly continuous. (Contributed by Thierry Arnoux, 28-Jan-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝑈 = (UnifSt‘𝑄) & ⊢ 𝑉 = (metUnif‘((dist‘𝑅) ↾ (𝐵 × 𝐵))) & ⊢ 𝑍 = (ℤMod‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ NrmRing) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑍 ∈ NrmMod) & ⊢ (𝜑 → (chr‘𝑅) = 0) ⇒ ⊢ (𝜑 → (ℚHom‘𝑅) ∈ (𝑈 Cnu𝑉)) | ||
| Syntax | crrh 33970 | Map the real numbers into a complete field. |
| class ℝHom | ||
| Syntax | crrext 33971 | Extend class notation with the class of extension fields of ℝ. |
| class ℝExt | ||
| Definition | df-rrh 33972 | Define the canonical homomorphism from the real numbers to any complete field, as the extension by continuity of the canonical homomorphism from the rational numbers. (Contributed by Mario Carneiro, 22-Oct-2017.) (Revised by Thierry Arnoux, 23-Oct-2017.) |
| ⊢ ℝHom = (𝑟 ∈ V ↦ (((topGen‘ran (,))CnExt(TopOpen‘𝑟))‘(ℚHom‘𝑟))) | ||
| Theorem | rrhval 33973 | Value of the canonical homormorphism from the real numbers to a complete space. (Contributed by Thierry Arnoux, 2-Nov-2017.) |
| ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐾 = (TopOpen‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → (ℝHom‘𝑅) = ((𝐽CnExt𝐾)‘(ℚHom‘𝑅))) | ||
| Theorem | rrhcn 33974 | If the topology of 𝑅 is Hausdorff, and 𝑅 is a complete uniform space, then the canonical homomorphism from the real numbers to 𝑅 is continuous. (Contributed by Thierry Arnoux, 17-Jan-2018.) |
| ⊢ 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵)) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐾 = (TopOpen‘𝑅) & ⊢ 𝑍 = (ℤMod‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑅 ∈ NrmRing) & ⊢ (𝜑 → 𝑍 ∈ NrmMod) & ⊢ (𝜑 → (chr‘𝑅) = 0) & ⊢ (𝜑 → 𝑅 ∈ CUnifSp) & ⊢ (𝜑 → (UnifSt‘𝑅) = (metUnif‘𝐷)) ⇒ ⊢ (𝜑 → (ℝHom‘𝑅) ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | rrhf 33975 | If the topology of 𝑅 is Hausdorff, Cauchy sequences have at most one limit, i.e. the canonical homomorphism of ℝ into 𝑅 is a function. (Contributed by Thierry Arnoux, 2-Nov-2017.) |
| ⊢ 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵)) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐾 = (TopOpen‘𝑅) & ⊢ 𝑍 = (ℤMod‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑅 ∈ NrmRing) & ⊢ (𝜑 → 𝑍 ∈ NrmMod) & ⊢ (𝜑 → (chr‘𝑅) = 0) & ⊢ (𝜑 → 𝑅 ∈ CUnifSp) & ⊢ (𝜑 → (UnifSt‘𝑅) = (metUnif‘𝐷)) ⇒ ⊢ (𝜑 → (ℝHom‘𝑅):ℝ⟶𝐵) | ||
| Definition | df-rrext 33976 | Define the class of extensions of ℝ. This is a shorthand for listing the necessary conditions for a structure to admit a canonical embedding of ℝ into it. Interestingly, this is not coming from a mathematical reference, but was from the necessary conditions to build the embedding at each step (ℤ, ℚ and ℝ). It would be interesting see if this is formally treated in the literature. See isrrext 33977 for a better readable version. (Contributed by Thierry Arnoux, 2-May-2018.) |
| ⊢ ℝExt = {𝑟 ∈ (NrmRing ∩ DivRing) ∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))} | ||
| Theorem | isrrext 33977 | Express the property "𝑅 is an extension of ℝ". (Contributed by Thierry Arnoux, 2-May-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵)) & ⊢ 𝑍 = (ℤMod‘𝑅) ⇒ ⊢ (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ (𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷)))) | ||
| Theorem | rrextnrg 33978 | An extension of ℝ is a normed ring. (Contributed by Thierry Arnoux, 2-May-2018.) |
| ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ NrmRing) | ||
| Theorem | rrextdrg 33979 | An extension of ℝ is a division ring. (Contributed by Thierry Arnoux, 2-May-2018.) |
| ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ DivRing) | ||
| Theorem | rrextnlm 33980 | The norm of an extension of ℝ is absolutely homogeneous. (Contributed by Thierry Arnoux, 2-May-2018.) |
| ⊢ 𝑍 = (ℤMod‘𝑅) ⇒ ⊢ (𝑅 ∈ ℝExt → 𝑍 ∈ NrmMod) | ||
| Theorem | rrextchr 33981 | The ring characteristic of an extension of ℝ is zero. (Contributed by Thierry Arnoux, 2-May-2018.) |
| ⊢ (𝑅 ∈ ℝExt → (chr‘𝑅) = 0) | ||
| Theorem | rrextcusp 33982 | An extension of ℝ is a complete uniform space. (Contributed by Thierry Arnoux, 2-May-2018.) |
| ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ CUnifSp) | ||
| Theorem | rrexttps 33983 | An extension of ℝ is a topological space. (Contributed by Thierry Arnoux, 7-Sep-2018.) |
| ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ TopSp) | ||
| Theorem | rrexthaus 33984 | The topology of an extension of ℝ is Hausdorff. (Contributed by Thierry Arnoux, 7-Sep-2018.) |
| ⊢ 𝐾 = (TopOpen‘𝑅) ⇒ ⊢ (𝑅 ∈ ℝExt → 𝐾 ∈ Haus) | ||
| Theorem | rrextust 33985 | The uniformity of an extension of ℝ is the uniformity generated by its distance. (Contributed by Thierry Arnoux, 2-May-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵)) ⇒ ⊢ (𝑅 ∈ ℝExt → (UnifSt‘𝑅) = (metUnif‘𝐷)) | ||
| Theorem | rerrext 33986 | The field of the real numbers is an extension of the real numbers. (Contributed by Thierry Arnoux, 2-May-2018.) |
| ⊢ ℝfld ∈ ℝExt | ||
| Theorem | cnrrext 33987 | The field of the complex numbers is an extension of the real numbers. (Contributed by Thierry Arnoux, 2-May-2018.) |
| ⊢ ℂfld ∈ ℝExt | ||
| Theorem | qqtopn 33988 | The topology of the field of the rational numbers. (Contributed by Thierry Arnoux, 29-Aug-2020.) |
| ⊢ ((TopOpen‘ℝfld) ↾t ℚ) = (TopOpen‘(ℂfld ↾s ℚ)) | ||
| Theorem | rrhfe 33989 | If 𝑅 is an extension of ℝ, then the canonical homomorphism of ℝ into 𝑅 is a function. (Contributed by Thierry Arnoux, 2-May-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ ℝExt → (ℝHom‘𝑅):ℝ⟶𝐵) | ||
| Theorem | rrhcne 33990 | If 𝑅 is an extension of ℝ, then the canonical homomorphism of ℝ into 𝑅 is continuous. (Contributed by Thierry Arnoux, 2-May-2018.) |
| ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐾 = (TopOpen‘𝑅) ⇒ ⊢ (𝑅 ∈ ℝExt → (ℝHom‘𝑅) ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | rrhqima 33991 | The ℝHom homomorphism leaves rational numbers unchanged. (Contributed by Thierry Arnoux, 27-Mar-2018.) |
| ⊢ ((𝑅 ∈ ℝExt ∧ 𝑄 ∈ ℚ) → ((ℝHom‘𝑅)‘𝑄) = ((ℚHom‘𝑅)‘𝑄)) | ||
| Theorem | rrh0 33992 | The image of 0 by the ℝHom homomorphism is the ring's zero. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
| ⊢ (𝑅 ∈ ℝExt → ((ℝHom‘𝑅)‘0) = (0g‘𝑅)) | ||
| Syntax | cxrh 33993 | Map the extended real numbers into a complete lattice. |
| class ℝ*Hom | ||
| Definition | df-xrh 33994* | Define an embedding from the extended real number into a complete lattice. (Contributed by Thierry Arnoux, 19-Feb-2018.) |
| ⊢ ℝ*Hom = (𝑟 ∈ V ↦ (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑟)‘𝑥), if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ)))))) | ||
| Theorem | xrhval 33995* | The value of the embedding from the extended real numbers into a complete lattice. (Contributed by Thierry Arnoux, 19-Feb-2018.) |
| ⊢ 𝐵 = ((ℝHom‘𝑅) “ ℝ) & ⊢ 𝐿 = (glb‘𝑅) & ⊢ 𝑈 = (lub‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → (ℝ*Hom‘𝑅) = (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈‘𝐵), (𝐿‘𝐵))))) | ||
| Theorem | zrhre 33996 | The ℤRHom homomorphism for the real number structure is the identity. (Contributed by Thierry Arnoux, 31-Oct-2017.) |
| ⊢ (ℤRHom‘ℝfld) = ( I ↾ ℤ) | ||
| Theorem | qqhre 33997 | The ℚHom homomorphism for the real number structure is the identity. (Contributed by Thierry Arnoux, 31-Oct-2017.) |
| ⊢ (ℚHom‘ℝfld) = ( I ↾ ℚ) | ||
| Theorem | rrhre 33998 | The ℝHom homomorphism for the real numbers structure is the identity. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
| ⊢ (ℝHom‘ℝfld) = ( I ↾ ℝ) | ||
Found this and was curious about how manifolds would be expressed in set.mm: https://mathoverflow.net/questions/336367/real-manifolds-in-a-theorem-prover This chapter proposes to define first manifold topologies, which characterize topological manifolds, and then to extend the structure with presentations, i.e., equivalence classes of atlases for a given topological space. We suggest to use the extensible structures to define the "topological space" aspect of topological manifolds, and then extend it with charts/presentations. | ||
| Syntax | cmntop 33999 | The class of n-manifold topologies. |
| class ManTop | ||
| Definition | df-mntop 34000* | Define the class of 𝑁-manifold topologies, as second countable Hausdorff topologies locally homeomorphic to a ball of the Euclidean space of dimension 𝑁. (Contributed by Thierry Arnoux, 22-Dec-2019.) |
| ⊢ ManTop = {〈𝑛, 𝑗〉 ∣ (𝑛 ∈ ℕ0 ∧ (𝑗 ∈ 2ndω ∧ 𝑗 ∈ Haus ∧ 𝑗 ∈ Locally [(TopOpen‘(𝔼hil‘𝑛))] ≃ ))} | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |