Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrvmbfm Structured version   Visualization version   GIF version

Theorem rrvmbfm 34407
Description: A real-valued random variable is a measurable function from its sample space to the Borel sigma-algebra. (Contributed by Thierry Arnoux, 25-Jan-2017.)
Hypothesis
Ref Expression
isrrvv.1 (𝜑𝑃 ∈ Prob)
Assertion
Ref Expression
rrvmbfm (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅)))

Proof of Theorem rrvmbfm
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 isrrvv.1 . . 3 (𝜑𝑃 ∈ Prob)
2 dmeq 5928 . . . . 5 (𝑝 = 𝑃 → dom 𝑝 = dom 𝑃)
32oveq1d 7463 . . . 4 (𝑝 = 𝑃 → (dom 𝑝MblFnM𝔅) = (dom 𝑃MblFnM𝔅))
4 df-rrv 34406 . . . 4 rRndVar = (𝑝 ∈ Prob ↦ (dom 𝑝MblFnM𝔅))
5 ovex 7481 . . . 4 (dom 𝑃MblFnM𝔅) ∈ V
63, 4, 5fvmpt 7029 . . 3 (𝑃 ∈ Prob → (rRndVar‘𝑃) = (dom 𝑃MblFnM𝔅))
71, 6syl 17 . 2 (𝜑 → (rRndVar‘𝑃) = (dom 𝑃MblFnM𝔅))
87eleq2d 2830 1 (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  dom cdm 5700  cfv 6573  (class class class)co 7448  𝔅cbrsiga 34145  MblFnMcmbfm 34213  Probcprb 34372  rRndVarcrrv 34405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-rrv 34406
This theorem is referenced by:  isrrvv  34408  rrvadd  34417  rrvmulc  34418  orrvcval4  34429  orrvcoel  34430  orrvccel  34431
  Copyright terms: Public domain W3C validator