![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrvmbfm | Structured version Visualization version GIF version |
Description: A real-valued random variable is a measurable function from its sample space to the Borel sigma-algebra. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
Ref | Expression |
---|---|
isrrvv.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
Ref | Expression |
---|---|
rrvmbfm | ⊢ (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrrvv.1 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
2 | dmeq 5928 | . . . . 5 ⊢ (𝑝 = 𝑃 → dom 𝑝 = dom 𝑃) | |
3 | 2 | oveq1d 7463 | . . . 4 ⊢ (𝑝 = 𝑃 → (dom 𝑝MblFnM𝔅ℝ) = (dom 𝑃MblFnM𝔅ℝ)) |
4 | df-rrv 34406 | . . . 4 ⊢ rRndVar = (𝑝 ∈ Prob ↦ (dom 𝑝MblFnM𝔅ℝ)) | |
5 | ovex 7481 | . . . 4 ⊢ (dom 𝑃MblFnM𝔅ℝ) ∈ V | |
6 | 3, 4, 5 | fvmpt 7029 | . . 3 ⊢ (𝑃 ∈ Prob → (rRndVar‘𝑃) = (dom 𝑃MblFnM𝔅ℝ)) |
7 | 1, 6 | syl 17 | . 2 ⊢ (𝜑 → (rRndVar‘𝑃) = (dom 𝑃MblFnM𝔅ℝ)) |
8 | 7 | eleq2d 2830 | 1 ⊢ (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 dom cdm 5700 ‘cfv 6573 (class class class)co 7448 𝔅ℝcbrsiga 34145 MblFnMcmbfm 34213 Probcprb 34372 rRndVarcrrv 34405 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-rrv 34406 |
This theorem is referenced by: isrrvv 34408 rrvadd 34417 rrvmulc 34418 orrvcval4 34429 orrvcoel 34430 orrvccel 34431 |
Copyright terms: Public domain | W3C validator |