![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrvmbfm | Structured version Visualization version GIF version |
Description: A real-valued random variable is a measurable function from its sample space to the Borel sigma-algebra. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
Ref | Expression |
---|---|
isrrvv.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
Ref | Expression |
---|---|
rrvmbfm | ⊢ (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrrvv.1 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
2 | dmeq 5917 | . . . . 5 ⊢ (𝑝 = 𝑃 → dom 𝑝 = dom 𝑃) | |
3 | 2 | oveq1d 7446 | . . . 4 ⊢ (𝑝 = 𝑃 → (dom 𝑝MblFnM𝔅ℝ) = (dom 𝑃MblFnM𝔅ℝ)) |
4 | df-rrv 34423 | . . . 4 ⊢ rRndVar = (𝑝 ∈ Prob ↦ (dom 𝑝MblFnM𝔅ℝ)) | |
5 | ovex 7464 | . . . 4 ⊢ (dom 𝑃MblFnM𝔅ℝ) ∈ V | |
6 | 3, 4, 5 | fvmpt 7016 | . . 3 ⊢ (𝑃 ∈ Prob → (rRndVar‘𝑃) = (dom 𝑃MblFnM𝔅ℝ)) |
7 | 1, 6 | syl 17 | . 2 ⊢ (𝜑 → (rRndVar‘𝑃) = (dom 𝑃MblFnM𝔅ℝ)) |
8 | 7 | eleq2d 2825 | 1 ⊢ (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 dom cdm 5689 ‘cfv 6563 (class class class)co 7431 𝔅ℝcbrsiga 34162 MblFnMcmbfm 34230 Probcprb 34389 rRndVarcrrv 34422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-rrv 34423 |
This theorem is referenced by: isrrvv 34425 rrvadd 34434 rrvmulc 34435 orrvcval4 34446 orrvcoel 34447 orrvccel 34448 |
Copyright terms: Public domain | W3C validator |