Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrvmbfm Structured version   Visualization version   GIF version

Theorem rrvmbfm 33906
Description: A real-valued random variable is a measurable function from its sample space to the Borel sigma-algebra. (Contributed by Thierry Arnoux, 25-Jan-2017.)
Hypothesis
Ref Expression
isrrvv.1 (πœ‘ β†’ 𝑃 ∈ Prob)
Assertion
Ref Expression
rrvmbfm (πœ‘ β†’ (𝑋 ∈ (rRndVarβ€˜π‘ƒ) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ)))

Proof of Theorem rrvmbfm
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 isrrvv.1 . . 3 (πœ‘ β†’ 𝑃 ∈ Prob)
2 dmeq 5903 . . . . 5 (𝑝 = 𝑃 β†’ dom 𝑝 = dom 𝑃)
32oveq1d 7427 . . . 4 (𝑝 = 𝑃 β†’ (dom 𝑝MblFnM𝔅ℝ) = (dom 𝑃MblFnM𝔅ℝ))
4 df-rrv 33905 . . . 4 rRndVar = (𝑝 ∈ Prob ↦ (dom 𝑝MblFnM𝔅ℝ))
5 ovex 7445 . . . 4 (dom 𝑃MblFnM𝔅ℝ) ∈ V
63, 4, 5fvmpt 6998 . . 3 (𝑃 ∈ Prob β†’ (rRndVarβ€˜π‘ƒ) = (dom 𝑃MblFnM𝔅ℝ))
71, 6syl 17 . 2 (πœ‘ β†’ (rRndVarβ€˜π‘ƒ) = (dom 𝑃MblFnM𝔅ℝ))
87eleq2d 2818 1 (πœ‘ β†’ (𝑋 ∈ (rRndVarβ€˜π‘ƒ) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   = wceq 1540   ∈ wcel 2105  dom cdm 5676  β€˜cfv 6543  (class class class)co 7412  π”…ℝcbrsiga 33644  MblFnMcmbfm 33712  Probcprb 33871  rRndVarcrrv 33904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7415  df-rrv 33905
This theorem is referenced by:  isrrvv  33907  rrvadd  33916  rrvmulc  33917  orrvcval4  33928  orrvcoel  33929  orrvccel  33930
  Copyright terms: Public domain W3C validator