Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrvmbfm Structured version   Visualization version   GIF version

Theorem rrvmbfm 31103
Description: A real-valued random variable is a measurable function from its sample space to the Borel sigma-algebra. (Contributed by Thierry Arnoux, 25-Jan-2017.)
Hypothesis
Ref Expression
isrrvv.1 (𝜑𝑃 ∈ Prob)
Assertion
Ref Expression
rrvmbfm (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅)))

Proof of Theorem rrvmbfm
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 isrrvv.1 . . 3 (𝜑𝑃 ∈ Prob)
2 dmeq 5569 . . . . 5 (𝑝 = 𝑃 → dom 𝑝 = dom 𝑃)
32oveq1d 6937 . . . 4 (𝑝 = 𝑃 → (dom 𝑝MblFnM𝔅) = (dom 𝑃MblFnM𝔅))
4 df-rrv 31102 . . . 4 rRndVar = (𝑝 ∈ Prob ↦ (dom 𝑝MblFnM𝔅))
5 ovex 6954 . . . 4 (dom 𝑃MblFnM𝔅) ∈ V
63, 4, 5fvmpt 6542 . . 3 (𝑃 ∈ Prob → (rRndVar‘𝑃) = (dom 𝑃MblFnM𝔅))
71, 6syl 17 . 2 (𝜑 → (rRndVar‘𝑃) = (dom 𝑃MblFnM𝔅))
87eleq2d 2844 1 (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1601  wcel 2106  dom cdm 5355  cfv 6135  (class class class)co 6922  𝔅cbrsiga 30842  MblFnMcmbfm 30910  Probcprb 31068  rRndVarcrrv 31101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3399  df-sbc 3652  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-iota 6099  df-fun 6137  df-fv 6143  df-ov 6925  df-rrv 31102
This theorem is referenced by:  isrrvv  31104  rrvadd  31113  rrvmulc  31114  orrvcval4  31125  orrvcoel  31126  orrvccel  31127
  Copyright terms: Public domain W3C validator