| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrvmbfm | Structured version Visualization version GIF version | ||
| Description: A real-valued random variable is a measurable function from its sample space to the Borel sigma-algebra. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
| Ref | Expression |
|---|---|
| isrrvv.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
| Ref | Expression |
|---|---|
| rrvmbfm | ⊢ (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrrvv.1 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
| 2 | dmeq 5888 | . . . . 5 ⊢ (𝑝 = 𝑃 → dom 𝑝 = dom 𝑃) | |
| 3 | 2 | oveq1d 7425 | . . . 4 ⊢ (𝑝 = 𝑃 → (dom 𝑝MblFnM𝔅ℝ) = (dom 𝑃MblFnM𝔅ℝ)) |
| 4 | df-rrv 34478 | . . . 4 ⊢ rRndVar = (𝑝 ∈ Prob ↦ (dom 𝑝MblFnM𝔅ℝ)) | |
| 5 | ovex 7443 | . . . 4 ⊢ (dom 𝑃MblFnM𝔅ℝ) ∈ V | |
| 6 | 3, 4, 5 | fvmpt 6991 | . . 3 ⊢ (𝑃 ∈ Prob → (rRndVar‘𝑃) = (dom 𝑃MblFnM𝔅ℝ)) |
| 7 | 1, 6 | syl 17 | . 2 ⊢ (𝜑 → (rRndVar‘𝑃) = (dom 𝑃MblFnM𝔅ℝ)) |
| 8 | 7 | eleq2d 2821 | 1 ⊢ (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 dom cdm 5659 ‘cfv 6536 (class class class)co 7410 𝔅ℝcbrsiga 34217 MblFnMcmbfm 34285 Probcprb 34444 rRndVarcrrv 34477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-rrv 34478 |
| This theorem is referenced by: isrrvv 34480 rrvadd 34489 rrvmulc 34490 orrvcval4 34502 orrvcoel 34503 orrvccel 34504 |
| Copyright terms: Public domain | W3C validator |