Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrvmbfm Structured version   Visualization version   GIF version

Theorem rrvmbfm 32409
Description: A real-valued random variable is a measurable function from its sample space to the Borel sigma-algebra. (Contributed by Thierry Arnoux, 25-Jan-2017.)
Hypothesis
Ref Expression
isrrvv.1 (𝜑𝑃 ∈ Prob)
Assertion
Ref Expression
rrvmbfm (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅)))

Proof of Theorem rrvmbfm
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 isrrvv.1 . . 3 (𝜑𝑃 ∈ Prob)
2 dmeq 5812 . . . . 5 (𝑝 = 𝑃 → dom 𝑝 = dom 𝑃)
32oveq1d 7290 . . . 4 (𝑝 = 𝑃 → (dom 𝑝MblFnM𝔅) = (dom 𝑃MblFnM𝔅))
4 df-rrv 32408 . . . 4 rRndVar = (𝑝 ∈ Prob ↦ (dom 𝑝MblFnM𝔅))
5 ovex 7308 . . . 4 (dom 𝑃MblFnM𝔅) ∈ V
63, 4, 5fvmpt 6875 . . 3 (𝑃 ∈ Prob → (rRndVar‘𝑃) = (dom 𝑃MblFnM𝔅))
71, 6syl 17 . 2 (𝜑 → (rRndVar‘𝑃) = (dom 𝑃MblFnM𝔅))
87eleq2d 2824 1 (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  dom cdm 5589  cfv 6433  (class class class)co 7275  𝔅cbrsiga 32149  MblFnMcmbfm 32217  Probcprb 32374  rRndVarcrrv 32407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-rrv 32408
This theorem is referenced by:  isrrvv  32410  rrvadd  32419  rrvmulc  32420  orrvcval4  32431  orrvcoel  32432  orrvccel  32433
  Copyright terms: Public domain W3C validator