Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrvmbfm Structured version   Visualization version   GIF version

Theorem rrvmbfm 32309
Description: A real-valued random variable is a measurable function from its sample space to the Borel sigma-algebra. (Contributed by Thierry Arnoux, 25-Jan-2017.)
Hypothesis
Ref Expression
isrrvv.1 (𝜑𝑃 ∈ Prob)
Assertion
Ref Expression
rrvmbfm (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅)))

Proof of Theorem rrvmbfm
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 isrrvv.1 . . 3 (𝜑𝑃 ∈ Prob)
2 dmeq 5801 . . . . 5 (𝑝 = 𝑃 → dom 𝑝 = dom 𝑃)
32oveq1d 7270 . . . 4 (𝑝 = 𝑃 → (dom 𝑝MblFnM𝔅) = (dom 𝑃MblFnM𝔅))
4 df-rrv 32308 . . . 4 rRndVar = (𝑝 ∈ Prob ↦ (dom 𝑝MblFnM𝔅))
5 ovex 7288 . . . 4 (dom 𝑃MblFnM𝔅) ∈ V
63, 4, 5fvmpt 6857 . . 3 (𝑃 ∈ Prob → (rRndVar‘𝑃) = (dom 𝑃MblFnM𝔅))
71, 6syl 17 . 2 (𝜑 → (rRndVar‘𝑃) = (dom 𝑃MblFnM𝔅))
87eleq2d 2824 1 (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  dom cdm 5580  cfv 6418  (class class class)co 7255  𝔅cbrsiga 32049  MblFnMcmbfm 32117  Probcprb 32274  rRndVarcrrv 32307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-rrv 32308
This theorem is referenced by:  isrrvv  32310  rrvadd  32319  rrvmulc  32320  orrvcval4  32331  orrvcoel  32332  orrvccel  32333
  Copyright terms: Public domain W3C validator